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ABSTRAK 

Projek ini melibatkan penggunaan senibina Rangkaian Neural Konvolusi (CNN) 

untuk membangunkan algoritma pengesan penceroboh. Pada asasnya, algoritma 

pengesan penceroboh melibatkan tugas klasifikasi imej untuk mengklasifikasikan 

imej input ke penceroboh dan bukan penceroboh. Baru-baru ini, CNN telah 

menunjukkan mempunyai ketepatan yang besar pada aplikasi klasifikasi imej. Oleh 

itu, projek ini berdasarkan model LeNet dan MobileNet, di mana kedua-dua model 

dilatih untuk mengklasifikasikan imej penceroboh dan bukan penceroboh. Selepas 

pelbagai model DNN telah dilatih, model terbaik dari segi prestasi telah dipindahkan 

dari Komputer Peribadi (PC) ke Raspberry Pi 3 Model B+. MobileNet telah 

menunjukkan mempunyai ketepatan yang tinggi di samping mengekalkan kerumitan 

model yang rendah. MobileNet v3 telah dipilih untuk dipindahkan ke Raspberry Pi 

kerana ia telah terbukti mempunyai ketepatan tertinggi apabila diuji dengan imej 

penguji. Apabila fasa port selesai, prestasi dari segi ketepatan dan kelajuan MobileNet 

v3 di Raspberry Pi dan PC telah dibandingkan dan dinilai. Kelajuan MobileNet di 

Raspberry Pi adalah sebanyak 2.855 fps manakala di PC sebanyak 6.263 fps secara 

purata. Kelajuan dari segi fps MobileNet v3 apabila dilaksanakan pada Raspberry Pi 

adalah 54.41% lebih perlahan dibandingkan dengan PC. Ini menyimpulkan bahawa 
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model DNN berjalan lebih lambat pada Raspberry Pi berbanding apabila dilaksanakan 

pada PC.  
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ABSTRACT 

This project involves the use of Convolutional Neural Network (CNN) architecture 

to develop an intruder detection algorithm. Basically, the intruder detection algorithm 

involves image classification task to classify input image into intruder and non-

intruder. Recently, CNN have shown to have great accuracy on image classification 

application. Thus, this project is based on LeNet and MobileNet models, where both 

of the models were trained to classify intruder and non-intruder images. After various 

DNN models have been trained, the best model in terms of performance were ported 

from Personal Computer (PC) to Raspberry Pi 3 Model B+ in the deployment phase. 

MobileNet have shown to have high accuracy while maintaining low model 

complexity or number of operations. MobileNet v3 was chosen to be ported to 

Raspberry Pi because it has proven to have highest accuracy when tested with testing 

images of intruder and non-intruder. When the porting is complete, the performance 

in terms of accuracy and speed of MobileNet v3 in Raspberry Pi and PC was compared 

and evaluated. The average speed of MobileNet v3 when running on Raspberry Pi is 

2.855 fps while on PC is 6.263 fps. The speed in terms of frames per second (fps) of 

MobileNet v3 when executed on Raspberry Pi was 54.41% slower compare to PC. 

This conclude that DNN model runs slower on Raspberry Pi compared to when 

executed on PC.  
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CHAPTER 1  

INTRODUCTION  

Convolutional neural network (CNN) is a class of deep neural network that is 

commonly used to analyze visual images. CNN architecture consists of weights and 

biases that are learnable in deep learning. There are many applications of CNN such 

as face detection and recognition, gender recognition, object detection, and other 

common computer vision tasks.  

1.1 Background of project  

 

This project involves the use of CNN architecture to develop an intruder detection 

algorithm. Basically, the intruder detection algorithm involves image classification 

task to classify input image into intruder and non-intruder. Recently, CNN have shown 

to have great accuracy on image classification application. Thus, this project is based 
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on LeNet and MobileNet models, where both of the models were trained to classify 

intruder and non-intruder images. After both models have been trained, they were 

ported from Personal Computer (PC) to Raspberry Pi in the deployment phase. When 

the porting is complete, the accuracy and losses of both of the networks were 

evaluated.  

 

1.2 Problem Statement 

 

The main problem is that CNN model requires high complexity in terms of number 

of operations, thus computationally expensive. To efficiently process the high 

complexity of CNN models, a very powerful Graphical Processing Units (GPU) is 

required. In order to implement the CNN model on an embedded and resource 

constrained system like Raspberry Pi, the CNN model must be optimized so that it 

will operate using lesser number of operation or complexity while maintaining high 

accuracy on the Raspberry Pi.  More importantly, Raspberry Pi has limited computing 

power and memory storage to store and run the CNN model. Thus, the CNN model 

can be optimized experimentally by reducing the computations in the neural network 

experimentally so that it can fit into Raspberry Pi platform. 

1.3 Objectives 

 

The following statements are the objectives of this project: 

 To train LeNet and MobileNet models for image classification. 

 To implement optimized deep neural network (DNN) on Raspberry Pi.  
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 To evaluate the performance of deep neural networks on Raspberry Pi in 

terms of accuracy and speed (frames per second) 

1.4 Scope of Project 

 

The scope of this project is to classify input images into intruder and non-intruder 

using two existing CNN models; LeNet and MobileNet. Both of the CNN models were 

written in Python language and uses TensorFlow 1.9 and Keras 2.2 framework. The 

version of Python is 3.5.2. Various versions of LeNet and MobileNet were trained and 

all of the networks’ accuracy were evaluated. Training phase was assisted by using 

two GPUs; NVIDIA GeForce GTX 970 and Tesla K70c. The best optimized CNN 

model was selected and then ported to Raspberry Pi 3 Model B+. The accuracy and 

speed (frames per second) of the CNN model on Raspberry Pi was evaluated.  

 

1.5 Thesis Outline 

 

This thesis consists of five chapters that includes Chapter 1: Introduction, Chapter 

2: Theory and Background Study, Chapter 3: Methodology, Chapter 4: Results and 

Discussion and Chapter 5: Conclusion and Future works.  Chapter 1 briefly states the 

background of project, problem, objectives, and scope of the project. Chapter 2 

discusses theories related to Neural Network, recent CNN architecture and several 

background studies. Chapter 3 shows the method of this project while Chapter 4 

depicts the result and analysis. Chapter 5 concludes the project and states the future 

works. 
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CHAPTER 2  

THEORY AND BACKGROUND STUDY 

This chapter covers the theories that are used to understand and train a CNN model. 

Large deep neural networks like VGGNet, GoogleNet, ResNet, DenseNet and 

MobileNet were also described briefly. Several background studies were conducted to 

study a few applications of CNN and the optimization of the DNN models into 

Raspberry Pi platform.  

2.1 Neural network 

 

Neural network or Artificial Neural Networks (ANN) is a computational brain-like 

model inspired from the way of how humans learn. A neural network has 

interconnected artificial neurons that transmit data among each other called nodes. The 

neural network consists of three layers: Input layer, hidden layer and output layer. 

Figure 2.1 shows the layers in neural network. 


