## OPTIMIZATION OF INTRUDER DETECTION ALGORITHM USING RASPBERRY PI PLATFORM

MOHD ASYRAF BIN ZULKALNAIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

## **OPTIMIZATION OF INTRUDER DETECTION ALGORITHM USING RASPBERRY PI PLATFORM**

### MOHD ASYRAF BIN ZULKALNAIN

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2019

C Universiti Teknikal Malaysia Melaka



**UNIVERSITI TEKNIKAL MALAYSIA MELAKA** FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

#### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

:

:

OPTIMIZATION OF INTRUDER DETECTION ALGORITHM USING RASPBERRY PI PLATFORM 2018/2019

Sesi Pengajian

Saya <u>MOHD ASYRAF BIN ZULKALNAIN</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia SULIT\* seperti yang termaktub di dalam AKTA **RAHSIA RASMI 1972)** (Mengandungi maklumat terhad yang **TERHAD\*** telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan. **TIDAK TERHAD** Disahkan oleh: (TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA) Alamat Tetap: No.35 Jalan Nilai Impian 3, Nilai, 71800, Negeri Sembilan Tarikh : 01 Januari 2010 Tarikh : 01 Januari 2010

\*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

# DECLARATION

I declare that this report entitled "OPTIMIZATION OF INTRUDER DETECTION ALGORITHM USING RASPBERRY PI PLATFORM" is the result of my own work except for quotes as cited in the references.

| Signature | : |  |
|-----------|---|--|
| Author    | : |  |
| Date      | : |  |

# APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

| Signature       | : |  |
|-----------------|---|--|
| Supervisor Name | : |  |
| Date            | : |  |

## DEDICATION

I dedicate this work to my family, especially my beloved parents whom always been there for me and been a source of my inspiration to study and work and also provide moral, spiritual, emotional and financial support. I also dedicate this work to my brothers and sisters, friends and teachers who shared their guidance and moral support throughout my life.

### ABSTRAK

Projek ini melibatkan penggunaan senibina Rangkaian Neural Konvolusi (CNN) untuk membangunkan algoritma pengesan penceroboh. Pada asasnya, algoritma pengesan penceroboh melibatkan tugas klasifikasi imej untuk mengklasifikasikan imej input ke penceroboh dan bukan penceroboh. Baru-baru ini, CNN telah menunjukkan mempunyai ketepatan yang besar pada aplikasi klasifikasi imej. Oleh itu, projek ini berdasarkan model LeNet dan MobileNet, di mana kedua-dua model dilatih untuk mengklasifikasikan imej penceroboh dan bukan penceroboh. Selepas pelbagai model DNN telah dilatih, model terbaik dari segi prestasi telah dipindahkan dari Komputer Peribadi (PC) ke Raspberry Pi 3 Model B+. MobileNet telah menunjukkan mempunyai ketepatan yang tinggi di samping mengekalkan kerumitan model yang rendah. MobileNet v3 telah dipilih untuk dipindahkan ke Raspberry Pi kerana ia telah terbukti mempunyai ketepatan tertinggi apabila diuji dengan imej penguji. Apabila fasa port selesai, prestasi dari segi ketepatan dan kelajuan MobileNet v3 di Raspberry Pi dan PC telah dibandingkan dan dinilai. Kelajuan MobileNet di Raspberry Pi adalah sebanyak 2.855 fps manakala di PC sebanyak 6.263 fps secara purata. Kelajuan dari segi fps MobileNet v3 apabila dilaksanakan pada Raspberry Pi adalah 54.41% lebih perlahan dibandingkan dengan PC. Ini menyimpulkan bahawa

model DNN berjalan lebih lambat pada Raspberry Pi berbanding apabila dilaksanakan pada PC.

### ABSTRACT

This project involves the use of Convolutional Neural Network (CNN) architecture to develop an intruder detection algorithm. Basically, the intruder detection algorithm involves image classification task to classify input image into intruder and nonintruder. Recently, CNN have shown to have great accuracy on image classification application. Thus, this project is based on LeNet and MobileNet models, where both of the models were trained to classify intruder and non-intruder images. After various DNN models have been trained, the best model in terms of performance were ported from Personal Computer (PC) to Raspberry Pi 3 Model B+ in the deployment phase. MobileNet have shown to have high accuracy while maintaining low model complexity or number of operations. MobileNet v3 was chosen to be ported to Raspberry Pi because it has proven to have highest accuracy when tested with testing images of intruder and non-intruder. When the porting is complete, the performance in terms of accuracy and speed of MobileNet v3 in Raspberry Pi and PC was compared and evaluated. The average speed of MobileNet v3 when running on Raspberry Pi is 2.855 fps while on PC is 6.263 fps. The speed in terms of frames per second (fps) of MobileNet v3 when executed on Raspberry Pi was 54.41% slower compare to PC. This conclude that DNN model runs slower on Raspberry Pi compared to when executed on PC.

## ACKNOWLEDGEMENTS

Foremost, I would like to express my gratitude to Allah the Almighty God for letting me breathe air up until now and giving me strength and opportunity to finish this thesis. I also would like to give my appreciation towards my dearest parents, Zulkalnain bin Mohd Yussof and Norlela binti Mohd Nordin for providing me love, utmost moral and financial support.

Also to my supervisor, Dr.Sani Irwan bin Md. Salim, I would like to express my gratitude for the guidance, motivation and knowledge throughout completing my thesis. And not to mention, all of my lecturers and colleagues that have been there by my side through ups and downs.

# **TABLE OF CONTENTS**

| Decla  | aration                      |      |
|--------|------------------------------|------|
| Appr   | oval                         |      |
| Dedi   | cation                       |      |
| Abst   | rak                          | i    |
| Abst   | ract                         | iii  |
| Ackn   | owledgements                 | iv   |
| Table  | e of Contents                | v    |
| List o | of Figures                   | ix   |
| List o | of Symbols and Abbreviations | xiii |
| List o | of Appendices                | xiv  |
| CHA    | PTER 1 INTRODUCTION          | 15   |
| 1.1    | Background of project        | 15   |
| 1.2    | Problem Statement            | 16   |
| 1.3    | Objectives                   | 16   |
| 1.4    | Scope of Project             | 17   |
| 1.5    | Thesis Outline               | 17   |

| СНА | PTER 2 THEORY AND BACKGROUND STUDY        | 18 |
|-----|-------------------------------------------|----|
| 2.1 | Neural network                            | 18 |
|     | 2.1.1 Perceptron                          | 19 |
|     | 2.1.2 Activation function                 | 20 |
| 2.2 | Convolutional Neural Network (CNN)        | 21 |
|     | 2.2.1 Convolution layer                   | 22 |
|     | 2.2.2 Rectified Linear Unit (ReLU) layer  | 24 |
|     | 2.2.3 Pooling layer                       | 25 |
|     | 2.2.4 Fully connected layer               | 26 |
| 2.3 | Recent CNN architecture                   | 27 |
|     | 2.3.1 VGGNet                              | 28 |
|     | 2.3.2 GoogleNet                           | 28 |
|     | 2.3.3 ResNet 29                           |    |
|     | 2.3.4 DenseNet                            | 30 |
|     | 2.3.5 MobileNet                           | 31 |
| 2.4 | Popular Datasets for Image Classification | 33 |
|     | 2.4.1 ImageNet ILSVRC 2012                | 33 |
|     | 2.4.2 Stanford Dogs                       | 34 |
| 2.5 | Transfer learning                         | 34 |
| 2.6 | Implementing CNN in Raspberry Pi          | 35 |

|                       | 2.6.1   | Deep Neural Network (DNN) in Raspberry Pi for Face Recognition | 36 |
|-----------------------|---------|----------------------------------------------------------------|----|
|                       | 2.6.2   | Analysis of Real Time DNN inference on Raspberry Pi            | 36 |
|                       | 2.6.3   | Performance of keyword spotting in Raspberry Pi                | 39 |
| CHAPTER 3 METHODOLOGY |         | 42                                                             |    |
| 3.1                   | Overv   | view of Intruder Detection Algorithm                           | 42 |
| 3.2                   | Image   | e Classification using CNN                                     | 44 |
|                       | 3.2.1   | Training dataset                                               | 44 |
|                       | 3.2.2   | Validation dataset                                             | 46 |
| 3.3                   | Train   | ing phase                                                      | 46 |
|                       | 3.3.1   | MobileNet structure                                            | 47 |
|                       |         | 3.3.1.1 Width multiplier                                       | 49 |
|                       |         | 3.3.1.2 Resolution multiplier                                  | 51 |
| 3.4                   | Expe    | iments                                                         | 52 |
|                       | 3.4.1   | Fine-tuning LeNet models                                       | 52 |
|                       | 3.4.2   | Fine-tuning MobileNet models                                   | 54 |
|                       | 3.4.3   | Testing phase                                                  | 55 |
| СНА                   | PTER 4  | 4 RESULTS AND DISCUSSION                                       | 56 |
| 4.1                   | Perfo   | rmance of various LeNet versions                               | 56 |
| 4.2 P                 | erforma | ance of various MobileNet versions                             | 63 |
| 4.3 S                 | peed co | omparison between PC and Raspberry Pi                          | 73 |

| CHAPTER 5 CONCLUSION AND FUTURE WORKS |    |
|---------------------------------------|----|
| 5.1 Future works                      | 78 |
| REFERENCES                            | 80 |
| APPENDICES                            | 83 |

# **LIST OF FIGURES**

| Figure 2.1: Layers in a neural network                                                  |                 |  |  |
|-----------------------------------------------------------------------------------------|-----------------|--|--|
| Figure 2.2: Working principle of the perceptron                                         | 20              |  |  |
| Figure 2.3 : Example of Activation functions                                            |                 |  |  |
| Figure 2.4: Layers in a CNN architecture                                                | 22              |  |  |
| Figure 2.5: Convolution operation in CNN                                                | 22              |  |  |
| Figure 2.6: Convolution operation with three filters                                    | 23              |  |  |
| Figure 2.7: Operation of ReLU activation function                                       | 24              |  |  |
| Figure 2.8: Example of Pooling operation                                                | 25              |  |  |
| Figure 2.9: The fully connected layers from the network                                 | 26              |  |  |
| Figure 2.10: Existing layers in the LeNet-5 architecture [14]                           | 27              |  |  |
| Figure 2.11: VGGNet architecture                                                        | 28              |  |  |
| Figure 2.12: Inception model with reduced dimension [8]                                 | 29              |  |  |
| Figure 2.13: High level diagram of ResNet architecture                                  | 30              |  |  |
| Figure 2.14: High level diagram of DenseNet architecture                                | 30              |  |  |
| Figure 2.15: Comparison between standard convolution filter and convolution filters [1] | depthwise<br>31 |  |  |

Figure 2.16: Comparison between different CNN models in terms of accuracy and number of parameters 33

| Figure 2.17: Top-5 Accuracy of different models using different frameworks, bar shows the measured accuracy, lighter bar shows the reported accuracy  | darker<br>37       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Figure 2.18: Mean throughput for each DNN models and different framework                                                                              | cs [15]<br>38      |
| Figure 2.19: CNN architecture for keyword spotting                                                                                                    | 39                 |
| Figure 3.1: Flow diagram of intruder detection algorithm                                                                                              | 43                 |
| Figure 3.2: People dataset                                                                                                                            | 45                 |
| Figure 3.3: Without people dataset                                                                                                                    | 45                 |
| Figure 3.4 : Left: Standard convolution layer with batch normalization and layer, Right: Depthwise separable convolution with batch normalization and | ReLU<br>ReLU<br>48 |
| Figure 3.5: Example of testing images                                                                                                                 | 55                 |
| Figure 4.1: LeNet v1 training accuracy                                                                                                                | 57                 |
| Figure 4.2: LeNet v1 Testing Image for People                                                                                                         | 58                 |
| Figure 4.3: LeNet v1 Testing Image for Not People                                                                                                     | 58                 |
| Figure 4.4: LeNet v2 training accuracy with 50 epochs                                                                                                 | 59                 |
| Figure 4.5: LeNet v2 Testing Image for People                                                                                                         | 59                 |
| Figure 4.6: LeNet v2 Testing Image for Not People                                                                                                     | 60                 |
| Figure 4.7: LeNet v3 training accuracy with 50 epochs and an increased num filters                                                                    | ber of<br>60       |
| Figure 4.8: LeNet v3 Testing Image for People                                                                                                         | 61                 |
| Figure 4.9: LeNet v3 Testing Image for Not People                                                                                                     | 61                 |
| Figure 4.10: MobileNet v1 training accuracy                                                                                                           | 63                 |
| Figure 4.11: MobileNet v1 Testing Image for People                                                                                                    | 64                 |
| Figure 4.12: MobileNet v1 Testing Image for Not People                                                                                                | 64                 |
| Figure 4.13: MobileNet v2 training accuracy                                                                                                           | 65                 |

| Figure 4.14: MobileNet v2 Testing Image for People                        | 65 |
|---------------------------------------------------------------------------|----|
| Figure 4.15: MobileNet v2 Testing Image for Not People                    | 66 |
| Figure 4.16: MobileNet v3 training accuracy                               | 66 |
| Figure 4.17: MobileNet v3 Testing Image for People                        | 67 |
| Figure 4.18: MobileNet v3 Testing Image for Not People                    | 67 |
| Figure 4.19: MobileNet v4 training accuracy                               | 68 |
| Figure 4.20: MobileNet v4 Testing Image for People                        | 68 |
| Figure 4.21: MobileNet v4 Testing Image for Not People                    | 69 |
| Figure 4.22: MobileNet v5 training accuracy                               | 69 |
| Figure 4.23: MobileNet v5 Testing Image for People                        | 70 |
| Figure 4.24: MobileNet v5 Testing Image for Not People                    | 70 |
| Figure 4.25: MobileNet v6 training accuracy                               | 71 |
| Figure 4.26: MobileNet v6 Testing Image for People                        | 71 |
| Figure 4.27: MobileNet v6 Testing Image for Not People                    | 72 |
| Figure 4.28: Setup of the project                                         | 74 |
| Figure 4.29: MobileNet v3 is executed using Raspberry Pi                  | 74 |
| Figure 4.30: Approximate frames per second (fps) captured on Raspberry Pi | 75 |
| Figure 4.31: Approximate frames per second (fps) captured on PC           | 76 |

| Table 2.1: Comparison between MobileNet and popular models [11] [11]        | 32 |
|-----------------------------------------------------------------------------|----|
| Table 2.2: Performance of various DNN models on Raspberry Pi [16]           | 40 |
| Table 2.3: Comparison between 3 background studies                          | 41 |
| Table 3.1: Effect of width multiplier to accuracy of network [11]           | 50 |
| Table 3.2: Effect of resolution multiplier to accuracy of the network [11]  | 51 |
| Table 3.3: Detailed description of the layers in LeNet v1 architecture      | 52 |
| Table 3.4: Model configurations for LeNet v1, LeNet v2 and LeNet v3         | 53 |
| Table 3.5: Model configurations for MobileNet-128 v1, v2, v3, v4, v5 and v6 | 54 |
| Table 4.1: Comparison of accuracy of various LeNet version                  | 62 |
| Table 4.2: Comparison of accuracy of various MobileNet version              | 72 |
| Table 4.3: Frames per second captured on Raspberry Pi                       | 75 |
| Table 4.4: Frames per second captured on PC                                 | 76 |

## LIST OF SYMBOLS AND ABBREVIATIONS

| CNN    | : | Convolutional Neural Network                        |
|--------|---|-----------------------------------------------------|
| PC     | : | Personal Computer                                   |
| GPU    | : | Graphical Processing Units                          |
| DNN    | : | Deep Neural Network                                 |
| CNN    | : | Convolutional Neural Network                        |
| ANN    | : | Artificial Neural Network                           |
| MLP    | : | Multi-layer perceptron                              |
| ReLU   | : | Rectified Linear Unit                               |
| COCO   | : | Common Object in Context                            |
| MACs   | : | Multiply-Accumulates                                |
| ILSVRC | : | ImageNet Large Scale Visual Recognition Competition |
| Wnid   | : | WordNet Identification                              |
| ONNX   | : | Open Neural Network Exchange                        |
| API    | : | Application Programming Interface                   |
| FTP    | : | File Transfer Protocol                              |
| RAM    | : | Random Access Memory                                |
| VPU    | : | Vision Processing Unit                              |
| ASIC   | : | Application-specific Integrated Circuits            |
| TPU    | : | Tensor Processing Unit                              |

# LIST OF APPENDICES

| Appendix A: Training            | 82 |
|---------------------------------|----|
| Appendix B: Testing             | 87 |
| Appendix C: Running trained DNN | 88 |

xiv

## **CHAPTER 1**

### **INTRODUCTION**

Convolutional neural network (CNN) is a class of deep neural network that is commonly used to analyze visual images. CNN architecture consists of weights and biases that are learnable in deep learning. There are many applications of CNN such as face detection and recognition, gender recognition, object detection, and other common computer vision tasks.

#### 1.1 Background of project

This project involves the use of CNN architecture to develop an intruder detection algorithm. Basically, the intruder detection algorithm involves image classification task to classify input image into intruder and non-intruder. Recently, CNN have shown to have great accuracy on image classification application. Thus, this project is based on LeNet and MobileNet models, where both of the models were trained to classify intruder and non-intruder images. After both models have been trained, they were ported from Personal Computer (PC) to Raspberry Pi in the deployment phase. When the porting is complete, the accuracy and losses of both of the networks were evaluated.

#### **1.2 Problem Statement**

The main problem is that CNN model requires high complexity in terms of number of operations, thus computationally expensive. To efficiently process the high complexity of CNN models, a very powerful Graphical Processing Units (GPU) is required. In order to implement the CNN model on an embedded and resource constrained system like Raspberry Pi, the CNN model must be optimized so that it will operate using lesser number of operation or complexity while maintaining high accuracy on the Raspberry Pi. More importantly, Raspberry Pi has limited computing power and memory storage to store and run the CNN model. Thus, the CNN model can be optimized experimentally by reducing the computations in the neural network experimentally so that it can fit into Raspberry Pi platform.

#### 1.3 Objectives

The following statements are the objectives of this project:

- To train LeNet and MobileNet models for image classification.
- To implement optimized deep neural network (DNN) on Raspberry Pi.

• To evaluate the performance of deep neural networks on Raspberry Pi in terms of accuracy and speed (frames per second)

#### **1.4** Scope of Project

The scope of this project is to classify input images into intruder and non-intruder using two existing CNN models; LeNet and MobileNet. Both of the CNN models were written in Python language and uses TensorFlow 1.9 and Keras 2.2 framework. The version of Python is 3.5.2. Various versions of LeNet and MobileNet were trained and all of the networks' accuracy were evaluated. Training phase was assisted by using two GPUs; NVIDIA GeForce GTX 970 and Tesla K70c. The best optimized CNN model was selected and then ported to Raspberry Pi 3 Model B+. The accuracy and speed (frames per second) of the CNN model on Raspberry Pi was evaluated.

#### **1.5** Thesis Outline

This thesis consists of five chapters that includes Chapter 1: Introduction, Chapter 2: Theory and Background Study, Chapter 3: Methodology, Chapter 4: Results and Discussion and Chapter 5: Conclusion and Future works. Chapter 1 briefly states the background of project, problem, objectives, and scope of the project. Chapter 2 discusses theories related to Neural Network, recent CNN architecture and several background studies. Chapter 3 shows the method of this project while Chapter 4 depicts the result and analysis. Chapter 5 concludes the project and states the future works.

### **CHAPTER 2**

### **THEORY AND BACKGROUND STUDY**

This chapter covers the theories that are used to understand and train a CNN model. Large deep neural networks like VGGNet, GoogleNet, ResNet, DenseNet and MobileNet were also described briefly. Several background studies were conducted to study a few applications of CNN and the optimization of the DNN models into Raspberry Pi platform.

#### 2.1 Neural network

Neural network or Artificial Neural Networks (ANN) is a computational brain-like model inspired from the way of how humans learn. A neural network has interconnected artificial neurons that transmit data among each other called nodes. The neural network consists of three layers: Input layer, hidden layer and output layer. Figure 2.1 shows the layers in neural network.