CHARACTERISATION OF PULSE POSITION MODULATION TECHNIQUE FOR INDOOR VISIBLE LIGHT COMMUNICATION (VLC) SYSTEM

ENG CHOON XIAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

CHARACTERISATION OF PULSE POSITION MODULATION TECHNIQUE FOR INDOOR VISIBLE LIGHT COMMUNICATION (VLC) SYSTEM

ENG CHOON XIAN

This report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2019

PL MALAYS/4		
TEKNIH	LAKA	TaM
LUS BARNING		
ليسيا ملاك	کنیکل.	نيومرسيتي تي <i>ڪَ</i>

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

CHARACTERISATION OF PULSE POSITION MODULATION TECHNIQUE FOR INDOOR VISIBLE LIGHT COMMUNICATION (VLC) SYSTEM 2018/2019

Sesi Pengajian

:

Saya <u>ENG CHOON XIAN</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia SULIT* seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang **TERHAD*** telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan. **TIDAK TERHAD** Disahkan oleh: (TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA) Alamat Tetap: 26, LORONG 23, TAMAN GURUN JAYA, 08300 GURUN KEDAH Tarikh : 31 Mei 2019 Tarikh : <u>31 Mei 2019</u>

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "Characterisation of Pulse Position Modulation Technique for Indoor Visible Light Communication (VLC) System" is the result of my own work except for quotes as cited in the references.

Signature:.....Author:ENG CHOON XIANDate:31 May 2019

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:	
Supervisor Name	:	DR. ZAITON BINTI ABDUL MUTALIP
Date	:	31 May 2019

DEDICATION

Special thanks to my supervisor, family, and all lecturers who willing to guide me and support me throughout this final year project.

ABSTRACT

This project proposes characterisation of pulse position modulation technique for indoor visible light communication (VLC) system. The project fundamentally involves the light-emitting diode, LED as a light transmitter and the photodiode as a part of the receiver to capture the optical signal. The signal will be transferred from one to another at a certain distance. Later, On/Off keying is added to the circuit as to compare the distance in the previous circuit. Pulse position modulation technique is then added accompanied by the transmitter and receiver, which compared the distance with the On/Off keying circuit. Three different conditions and its performance will be analysed in terms of distance and capacity.

ABSTRAK

Projek ini mencadangkan pencirian teknik modulasi kedudukan nadi untuk sistem komunikasi cahaya yang boleh dilihat tertutup (VLC). Projek ini pada asasnya melibatkan diod pemancar cahaya, LED sebagai pemancar cahaya dan fotodiod sebagai sebahagian daripada penerima, isyarat akan kemudian memindahkan dari satu kepada yang lain dalam jarak tertentu. Kemudian, buka / tutup menaip ditambah ke litar untuk membuat perbandingan jarak dalam litar sebelumnya. Pulse teknik kedudukan modulasi kemudiannya ditambah disertakan dengan pemancar dan penerima, yang berbanding jarak dengan hidup / mati litar menaip. Tiga keadaan yang berbeza dan prestasinya akan dianalisis dari segi jarak dan kapasiti.

ACKNOWLEDGEMENTS

First and foremost, I would like to express profound gratitude to people supporting and aiding me to complete this study and report. Specially thank my family members for encouragement and support me in term spiritual and advises to complete my project with any concern.

Nevertheless, a thousand thanks to my supervisor, Dr. Zaiton binti Abdul Mutalip who contributes various recommendations and opinions in term of knowledge and experience, helped me through with my final year project. Dr. Zaiton always gave good motivation and suggestion to complete this project.

Lastly, a big thanks to Yong Chun Kit, Hazim, Syafiqah Ismail and Mohammad Hazim for sharing the ideas and knowledge for the circuit design and provide useful guidance to finish the project in time. They had given me a lot of encouragement and tips to improve my project. Last but not least, I would like to thank PSM lab assistant, Encik Imran Bin Mohamed Ali who did help and guide during the fabrication process.

TABLE OF CONTENTS

Decla	ration	
Appr	roval	
Dedie	cation	
Absti	ract	i
Abst	rak	ii
Ackn	owledgements	iii
Table	e of Contents	iv
List o	of Figures	ix
List o	of Tables	xiii
List o	of Symbols and Abbreviations	xiv
List o	of Appendices	xvi
СНА	PTER 1 INTRODUCTION	1
1.1	Project Background	2
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of the Project	4

1.5	Project Significance	5
1.6	Summary	5
1.7	Thesis Content	6
CHA	PTER 2 BACKGROUND STUDY	7
2.1	Optical Wireless Communication (OWC)	8
2.2	Visible Light Communication (VLC)	9
	2.2.1 Transmitter	10
	2.2.2 Receiver	10
	2.2.3 Modulation	11
	2.2.3.1 On/Off Keying (OOK) Modulation	13
	2.2.3.2 Pulse Position Modulation (PPM)	13
2.3	Related Project	15
	2.3.1.1 Visible Light Communication	15
	2.3.1.2 Design and Implementation of Visible Light Communication	
	System in Indoor Environment	17
	2.3.1.3 Design of Visible Light Communication Receiver for On-Off	
	Keying Modulation by Adaptive Minimum-Voltage	
	Cancelation	19
	2.3.2 Critical Review	20
CHA	PTER 3 METHODOLOGY	21
3.1	Project Methodology	22

v

	3.1.1	Research Section	22
		3.1.1.1 Related Information	22
		3.1.1.2 Details of Technical Flowchart	23
	3.1.2	Hardware Development	28
		3.1.2.1 Simple Transceiver Circuit Without Modulation Technique	28
		Figure 3.5: Receiver Circuit Without Modulation Technique	29
		3.1.2.2 On/Off Keying (OOK) Circuit with Modulation Technique	30
		3.1.2.3 Pulse Position Modulation Circuit	33
		3.1.2.4 Hardware Requirement	37
	3.1.3	Analysis	39
	3.1.4	Circuit Simulation & Fabrication	40
	3.1.5	Prototype	44
		3.1.5.1 PPM Transmitter Circuit	44
		3.1.5.2 PPM Receiver Circuit	45
3.2	Sumn	nary	45
CHA	PTER	4 RESULTS AND ANALYSIS	46
4.1	Analy	rsing The Nodes	47
4.2	Deter	mining the Attenuation	47
	4.2.1	Performance Characterisation Of Unmodulated System	48
		4.2.1.1 Testing with Light On	48

		4.2.1.2	Testing with Light Off	51
		4.2.1.3	Testing with Viewing Angle	53
		4.2.1.4	Output Waveform & Data Capacity in Unmodulated Transceiver Circuit	55
	4.2.2	Perform	nance Characterisation of OOK Modulated System	57
		4.2.2.1	Testing with Light On	57
		4.2.2.2	Testing with Light Off	60
		4.2.2.3	Testing with Viewing Angle	63
		4.2.2.4	Output Waveform & Data Capacity in OOK Modulation Transceiver Circuit	64
	4.2.3	Perform System	nance Characterisation of Pulse Position Modulation (PPM)	66
		4.2.3.1	Testing with Light On	66
		4.2.3.2	Testing with Light Off	70
		4.2.3.3	Testing with Viewing Angle	73
		4.2.3.4	Output Waveform in PPM System Transceiver Circuit	75
4.3	Sumn	nary		76
СНА	PTER	5 CON	CLUSION AND FUTURE WORKS	79
5.1	Discu	ssion		80
5.2	Limit	ation and	Weakness of the Project	81
5.3	Reco	nmendat	ion for Future Improvement	82

vii

5.4	Conclusion	83
REF	ERENCES	84
BIBI	LIOGRAPHY	87
APP	ENDICES	92

LIST OF FIGURES

Figure 2.1: Optical Wireless Communication[2]	8
Figure 2.2: Transmission of Visible Communication System	9
Figure 2.3: Carrier Wave and Modulating Wave	11
Figure 2.4: Modulator	12
Figure 2.5: Modulation Scheme of On/Off Keying (OOK) [8]	13
Figure 2.6: Pulse Modulation Waveform	14
Figure 2.7: Block Diagram of Pulse Position Modulation (PPM) [12]	15
Figure 2.8: Transmitter via Microcontroller [13]	16
Figure 2.9: Receiver via Microcontroller [13]	17
Figure 2.10: Transmitter Circuit of OOK [7]	18
Figure 2.11: Receiver Circuit of OOK [7]	19
Figure 3.1: Flow Diagram for Project Methodology	22
Figure 3.2: Flowchart of Completing the Visible Light Communication Project	25
Figure 3.3: Details Flowchart of Designing and Testing the Transceiver Circuit	27
Figure 3.4: Simple Transmitter Circuit Without Modulation Technique	28
Figure 3.5: Receiver Circuit Without Modulation Technique	29
Figure 3.6: Practical Setup for Simple Unmodulated Transceiver Circuit	30
Figure 3.7: Transmitter Circuit of OOK with Modulation Technique	31

Figure 3.8: Receiver Circuit of OOK	32
Figure 3.9: Practical Setup for OOK Modulated Circuit	32
Figure 3.10: Transmitter Circuit of Pulse Position Modulation	33
Figure 3.11: Sine Wave Generator	34
Figure 3.12: Ramp Generator	34
Figure 3.13: Comparator	35
Figure 3.14: Mono-stable Multi Vibrator	36
Figure 3.15: Receiver Circuit of PPM	36
Figure 3.16: Practical Setup for PPM Transceiver Circuit	37
Figure 3.17: White LED NSDL510GS	38
Figure 3.18: Photodiode TEPT5700	39
Figure 3.19: Simulation of PPM Transmitter Circuit in Proteus ISIS	41
Figure 3.20: Simulation of Receiver Circuit in Proteus ISIS	41
Figure 3.21: PCB Layout of the Transmitter in Proteus ARES	42
Figure 3.22: PCB Layout of the Receiver in Proteus ARES	43
Figure 3.23: 3D Visualizer of PPM Transmitter Circuit in Proteus Software	43
Figure 3.24: 3D Visualizer of PPM Receiver Circuit in Proteus Software	44
Figure 3.25: PPM Transmitter Circuit	44
Figure 3.26: PPM Receiver Circuit	45
Figure 4.1: Output Voltage at Three Different Nodes	47
Figure 4.2: Output Voltage vs Distance Between the Simple Unmodulated Transce Circuit when the Surrounding Light is On	iver 50
Figure 4.3: Attenuation/Loss vs Distance Between the Simple Unmodula Transceiver Circuit when the Surrounding Light is On	ated 50

Х

Figure 4.4: Output Voltage vs Distance Between the Simple Unmodulated TransceiverCircuit when the Surrounding Light is Off52
Figure 4.5: Attenuation/Loss vs Distance Between the Simple UnmodulatedTransceiver Circuit when the Surrounding Light is Off53
Figure 4.6: Output Voltage vs Viewing Angle for Unmodulated Transceiver Circuit 55
Figure 4.7: Output Waveform in Unmodulated Transmitter Circuit56
Figure 4.8: Output Waveform in Unmodulated Receiver Circuit56
Figure 4.9: Output Voltage vs Distance Between the OOK Transceiver Circuit when the Surrounding Light is On 59
Figure 4.10: Attenuation/Loss vs Distance Between the OOK Transceiver Circuit when the Surrounding Light is On 59
Figure 4.11: Output Voltage vs Distance Between the OOK Transceiver Circuit when the Surrounding Light is Off 62
Figure 4.12: Attenuation/Loss vs Distance Between the OOK Transceiver Circuitwhen the Surrounding Light is Off62
Figure 4.13: Output Voltage vs Viewing Angle for OOK Modulated Transceiver Circuit 64
Figure 4.14: Output Waveform in OOK Modulation Transmitter Circuit65
Figure 4.15: Output Waveform in OOK Modulation Receiver Circuit65
Figure 4.16: Output Voltage vs Distance Between the PPM Transceiver Circuit when the Surrounding Light is On 69
Figure 4.17: Attenuation/Loss vs Distance Between the PPM Transceiver Circuit when the Surrounding Light is On 69
Figure 4.18: Output Voltage vs Distance Between the PPM Transceiver Circuit when the Surrounding Light is Off 72
Figure 4.19: Attenuation/Loss vs Distance Between the PPM Transceiver Circuitwhen the Surrounding Light is Off73
Figure 4.20: Output Voltage vs Viewing Angle for PPM System Transceiver Circuit 75

Figure 4.21: 0	Output Way	veform in PPM	System Trans	sceiver Circuit	76
----------------	------------	---------------	--------------	-----------------	----

Figure 4.23: Output Voltage vs Distance Between Transceiver Circuit in ThreeDifferent Conditions (Light Off)77

LIST OF TABLES

Table 2.1: Type of Modulation [10]	12
Table 2.2: Critical Review of Researcher	20
Table 4.1: Characterise of the Unmodulated VLC System (Light On)	48
Table 4.2: Characterise of the Unmodulated System (Light Off)	51
Table 4.3: Relationship between Viewing Angle and Output Voltage at Node C	54
Table 4.4: Characterise of the OOK Modulated System (Light On)	57
Table 4.5: Characterise of the OOK Modulated System (Light Off)	60
Table 4.6: Relationship between the Viewing Angle and the Output Voltage a Second Amplifier	after 63
Table 4.7: Characterise of the PPM System (Light On)	67
Table 4.8: Characterise of the PPM System (Light Off)	70
Table 4.9: Relationship between the Viewing Angle and the Output Voltage a Second Amplifier	after 74
Table 5.1: Project Achievement for Three Different Conditions	81

LIST OF SYMBOLS AND ABBREVIATIONS

- VLC : Visible light communication
- LED : Light emitting diode
- PPM : Pulse Position Modulation
- OWC : Optical Wireless Communication
- OOK : On/Off keying
- HAP : High altitude platform
- RF : Radio Frequency
- Mbps : Megabits per second
- THz : Tera hertz
- RGB : Red, Green, Blue
- MHz : Mega hertz
- nm : Nanometres
- mm : Millimetres
- SMD : Surface-mount device
- PCB : Printed circuit board
- E : Energy
- h : Planck's constant
- f : Frequency
- m² : Metres squared

- kg : Kilogram
- s : Seconds
- DC : Direct current
- SNR : Signal to noise ratio
- TIA : Transimpedance amplifier
- R_1 : Resistor 1
- R₂ : Resistor 2
- C : Capacitor
- PWM : Pulse width Modulation
- CSK : Colour Shift Keying
- OFDM : Orthogonal Frequency-Division Multiplexing
- DPPM : Differential Pulse-Position Modulation
- VPPM : Variable Pulse Position Modulation
- IPPM : Inverse Pulse Position Modulation
- UART : Universal Asynchronous Receiver-Transmitter
- CCS : Code Compose Studio

LIST OF APPENDICES

C Universiti Teknikal Malaysia Melaka

Appendix A: NSDL510GS	5
-----------------------	---

Appendix B: TEPT5700

93

98

xvi

CHAPTER 1

INTRODUCTION

The introduction of this project is explained in this chapter following the background studies/research and the problem statement. The objectives, scopes and expected results are also discussed in this chapter. For the project background, an explanation about the lighting has been depicted.

1.1 Project Background

Visible light communication (VLC) is one of a promising communication technology, which is intensively being developed recently. It is asserted as an advanced free-space optical wireless communication method. The basic idea for this communication is to employ conventional light source, which is nowadays light emitting diode (LED), for simultaneously transmitting information and illuminating by modulating data into its light intensity. Human eyes will not notice the light flickering or blinking due to a relatively high modulation speed. On the receiver side, the photodiodes can be utilized at the receiver side to detect the modulated light signal and demodulate the data. Furthermore, this technology can be used to heighten the performance characterisation without using any additional communication bandwidth.

This project proposes characterisation of pulse position modulation technique for indoor visible light communication (VLC) system. The project fundamentally involves the light-emitting diode, LED as a light transmitter and the photodiode as a part of the receiver. The optical signal will be then transferred from one to another at a certain distance. Later, On/Off keying is added to the circuit as to compare the distance in the previous circuit. Pulse position modulation technique is then added accompanied by the transmitter and receiver, which compared the distance with the On/Off keying circuit. In fact, the modulation technique may enhance the transmitted frequency resulting in extending the distance transmission between the transceiver circuit. It means that higher frequency leads to larger energy in transmitter to send the optical signal to a longer distance. From that point of view, the photoelectric effect comes with the equation as such: