

Faculty of Electrical Engineering

IMPROVED DTC USING OPTIMAL SWITCHING STRATEGY FOR DUAL-OPEN END WINDING INDUCTION MOTOR

LEE KAH WAI

Bachelor of Electrical Engineering with Honours

IMRPOVED DTC USING OPTIMAL SWITCHING STRATEGY FOR DUAL-OPEN END WINDING INDUCTION MOTOR

LEE KAH WAI

A report submitted in partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering with Honours

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Improved DTC using Optimal Switching Strategy for Dual-Open End Winding Induction Motor is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Date	:	
Name	:	LEE KAH WAI
Signature	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have checked this report entitled "Improved DTC using Optimal Switching Strategy for Dual-Open End Winding Induction Motor" and in my opinion, this thesis it complies the partial fulfillment for awarding the award of the degree of Bachelor of Electrical Engineering with Honours

:
:
:

C Universiti	Teknikal	Malaysia	Melaka
--------------	----------	----------	--------

DEDICATIONS

To my beloved mother and father For giving the support in all perspective

To my respectful supervisor, Dr. Auzani Bin Jidin

For giving the endless support, guidance and teaching

To my respectful Guider, Madam Siti Azura Binti Tarusan

For helping in clearing my confusion

My friends

For their moral support and encouragement through my journey of education

ACKNOWLEDGEMENTS

First of all, I would like to thanks University Technical Malaysia Melaka for giving this opportunity to me to complete my studies and also this research. Besides, not to forget, I would like to express my special thanks of gratitude to my supervisor Dr Auzani Bin Jidin for the help, advise, recommendation and guidance in order to help me achieve the objective of this thesis. The supervision and support that he gave truly help in the progression and smoothness of this research. Without mentioning, all the other lecturers involved in this research either directly or indirectly, especially to the entire lecture who have taught me, thank you for the time for the lessons that have been taught which enlightened me.

My sincere thanks to all my friends in the one same guidance under Dr Auzani Bin Jidin, who willing to lend me their hands and supports when I was confused. A person who gave me advise and helps all the time when my supervisor was busy, Madam Siti Azura Binti Ahmad Tarusan.

In the end, not to forget the one and only one who give me all their support in the journey of my study, my parents. Their support either in mental or financial is a great help for me to strengthen my will in continue this tough journey.

ABSTRACT

Direct Torque Control (DTC) of induction machine has received wide acceptance in many adjustable speed drive applications due to its simplicity and high-performance torque control. However, the DTC using conventional design poses two major problems such as high switching frequency and larger torque ripple. These problems are due to inappropriate voltage vectors which are selected among a limited number of voltage vectors available. The proposed research aims to formulate an optimal switching strategy for dual-open end winding induction motor. By using dual inverters, it provides greater number of voltage vectors which can offer more options to select the most appropriate voltage vectors. By selecting the suitable voltage vectors, it allowed the motor to produce minimum torque slope but enough to reach the required demand. To achieve this result, the proposed method does not require speed information, PI controller, frame transformation, space vector modulator, reference voltage estimator and machine parameters. The improvements obtained are minimizing the switching frequency with reducing the losses and torque ripple reduction.

i

ABSTRAK

Kawalan dayakilas langsung (DTC) untuk motor aruhan telah mendapatkan penerimaan yang luas dalam kebanyakkan aplikasi pemacu pelarasan laju atas sebab reka bentuk ia ringkas dan mempunyai prestasi yang agak tinggi. Walau bagaimanapun, DTC yang menggunakan reka betuk yang biasa menimbulkan dua masalah, iaitu riak dayakilas yang besar dan frekuensi pensuisan yang tinggi. Masalah-masalah tersebut ditimbulkan kerana ketidak sesuaian vektor voltan terpilih antara vektor voltan yang terhad. Kajian yang dicadangkan bertujuan untuk memformulasi sebuah strategi pensuisan yang optimal bagi dual-open end winding motor aruhan dengan memakai dua inverter. Dwi inverter ini akan memberikan lebih banyak pilihan dalam vektor voltan dan mendapatkan vektor voltan yang sesuai untuk situasi motor yang berbeza. Dengan memilih vektor voltan yang sesuai, ia dibenarkan motor untuk menghasilkan cerun minimum tork tapi cukup untuk mencapai permintaan diperlukan. Untuk mencapai keputusan ini, kaedah yang dicadangkan memerlukan kelajuan maklumat, PI pengawal, rangka transformasi, space vektor modulator, rujukan voltan estimator dan parameter mesin. Penambahbaikan yang terdapat daripada kajian yang dicadangkan adalah dapat meminimumkan frekuensi pensuisan yang dijangka akan mengurangkan kehilangan kuasa dan pengurangan riak bagi dayakilas.

TABLE OF CONTENTS

		PAGE
DEC	LARATION	
APP	ROVAL	
DED	ICATIONS	
AC	KNOWLEDGEMENTS	i
ABS'	ТКАСТ	ii
ABS	ТКАК	iii
TAB	LE OF CONTENTS	iv
LIST	COF TABLES	vi
LIST	COF FIGURES	vii
LIST	COF SYMBOLS AND ABBREVIATIONS	xi
LIST	COF APPENDICES	xiv
СНА	PTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objective of Research	4
1.4	Scope of Work	4
1.5	Research Methodology	4
1.6	Thesis Contribution	5
1.7	Thesis Outline	5
СНА	PTER 2 LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Direct Torque Control of Induction Machine	6
	2.2.1 Voltage Source Inverter (VSI)	7
	2.2.2 Stator Flux and Torque Estimator	8
	2.2.3 Look-up Table	10
2.3	Principle of Direct Torque Control	11
	2.3.1 Principle of Flux Control	11
	2.3.2 Principle of Torque Control	13
2.4	Major Problem of Direct Torque Control	15
2.5	Performance Improvements of Direct Torque Control	15
	2.5.1 Space Vector Modulation (SVM)	15
	2.5.2 Carried Based Modulation	20

iii

CHAP	PTER 3	METHODOLOGY	24
3.1	Introduction		24
3.2	Mathematical	Modelling of an Induction Machine	24
3.3	Dual Voltage	Source Inverter	28
3.4	Proposed Opti	imal Switching Strategy	30
	3.4.1 Princip	ble of Torque Control based on Load Angle, δ_{sr}	30
3.5	Definition of I	Flux Sectors for Selecting Optimal Voltage Vectors	33
3.6	Look-up Table	e for Selecting Optimal Voltage Vector	34
3.7	Proposed Con	trol Structure	36
СНАР	PTER 4	RESULTS AND DISCUSSIONS	38
4.1	Introduction		38
4.2	Torque Ripple	e Reduction and Switching Frequency Reduction	38
4.3	Reduction of 7	Torque Ripple and Switching Frequency for a Torque	Dynamic
	Control		46
СНАР	PTER 5	CONCLUSION AND RECOMMENDATIONS	60
CHAF 5.1	PTER 5 Conclusion	CONCLUSION AND RECOMMENDATIONS	60 60
CHAP 5.1 5.2	PTER 5 Conclusion Recommandat	CONCLUSION AND RECOMMENDATIONS	60 60 61
CHAP 5.1 5.2 REFE	PTER 5 Conclusion Recommandat	CONCLUSION AND RECOMMENDATIONS	60 60 61 62
CHAF 5.1 5.2 REFE APPE	PTER 5 Conclusion Recommandat RENCES NDIX A	CONCLUSION AND RECOMMENDATIONS	60 60 61 62 67
CHAF 5.1 5.2 REFE APPE A.1	PTER 5 Conclusion Recommandat RENCES NDIX A Sector Detecti	CONCLUSION AND RECOMMENDATIONS tion	60 60 61 62 67 67
CHAF 5.1 5.2 REFE A.1 A.2	PTER 5 Conclusion Recommandat RENCES NDIX A Sector Detecti Look-up Table	CONCLUSION AND RECOMMENDATIONS tion	60 60 61 62 67 67 69
CHAF 5.1 5.2 REFE A.1 A.2 A.3	PTER 5 Conclusion Recommandat RENCES NDIX A Sector Detecti Look-up Table Induction Mot	tion ton Block Coding e Coding tor Simulation Block Parameters	60 60 61 62 67 67 69 77
CHAF 5.1 5.2 REFE APPE A.1 A.2 A.3 APPE	PTER 5 Conclusion Recommandat RENCES NDIX A Sector Detecti Look-up Table Induction Mot	tion ton Block Coding e Coding tor Simulation Block Parameters	60 60 61 62 67 67 67 77 77
CHAF 5.1 5.2 REFE A.1 A.2 A.3 APPE B.1	PTER 5 Conclusion Recommandat RENCES NDIX A Sector Detecti Look-up Table Induction Mot NDIX B Induction Mot	CONCLUSION AND RECOMMENDATIONS tion to Block Coding e Coding tor Simulation Block Parameters	60 60 61 62 67 67 69 77 78 78
CHAF 5.1 5.2 REFE A.1 A.2 A.3 APPE B.1 B.2	PTER 5 Conclusion Recommandat RENCES NDIX A Sector Detecti Look-up Table Induction Mot NDIX B Induction Mot Dual-Voltage	CONCLUSION AND RECOMMENDATIONS tion tion to Block Coding to Simulation Block Parameters tor Simulation Block Source Inverter Simulation Block	 60 60 61 62 67 67 69 77 78 78 80

LIST OF TABLES

TABLE	TITLE	PAGE
1	LOOK-UP TABLE	10
2	LOOK-UP TABLE FOR SELECTION OPTIMAL VOLTAGE VECTORS IN DUAL-INVERTERS	35

LIST OF FIGURES

FIGURE	TITLE	PAGE
1	FOC and DTC structure	2
2	Structure of DTC of Induction Machine	7
3	Voltage Source Inverter	7
4	Voltage Space Vectors with Corresponded Switching State	8
5	Motion of Stator Flux Vector	11
6	(a)Possible voltage vector for each section, (b) relation	12
7	between bands and flux error status(a) Relation between stator flux and rotor flux and torque, (b)Relation between bands and torque error status	14
8	DTC-SVM structure	16
9	Reference of Space Voltage Vector based on (2.12)	18
10	Generation of Switching of Vectors and its Effect on Torque Variations	19
11	DTC with Dithering Signals Structure	20
12	DTC with Constant Switching Frequency Torque Controller	21
13	Significant Reduction of Torque Ripple with Application of Higher Constant Switching Frequency (a) at Low Carrier Frequency (b) at High Carrier Frequency	22
14	Dual Voltage Source Inverter configuration with Open-End Winding	28
15	Dual Voltage Source Inverter Schematic (Inverter 1)	30
16	Relation between selection of vector and torque and flux status	33

17	Flux sector and suitable Voltage Vector for (a) Long/Short (b)	34
18	Proposed Control Structure of DTC	37
19	Speed of the motor 92rad/s (a) general view (b) Zoomed	39
	version	
20	Waveforms of Torque (Te), Phase Currents (ia, ib, ic) and	41
	Phase Voltage with non-optimized and optimized switching at	
	Low-Speed Operation. (a) General view (b) the zoom-in	
	version	
21	Speed of the motor 123 rad/s (a) general view (b) Zoomed	42
22	Version	10
22	Waveforms of Torque (Te), Phase Currents (1a, 1b, 1c) and	43
	Phase Voltage with non-optimized and optimized switching at	
	Medium-Speed Operation. (a) General view (b) the zoom-in	
	version	
23	Speed of the motor 140rad/s (a) general view (b) Zoomed	44
	version	
24	Waveforms of Torque (Te), Phase Currents (ia, ib, ic) and	45
	Phase Voltage with non-optimized and optimized switching at	
	High-Speed Operation. (a) General view (b) the zoom-in	
	version	
25	Waveform of Torque, Phase Voltage and Phase current for a	47
	Step Change of Reference Torque in DTC with Non-	
	Optimized Switching Strategy at Low-Speed Operation (a)	
	General View (b) Zoom-in Version	
26	Waveform of Torque, Phase Voltage and Phase current for a	48
	Step Change of Reference Torque in DTC with Non-	
	Optimized Switching Strategy at Medium-Speed Operation (a)	
	General View (b) Zoom-in Version	

27	Waveform of Torque, Phase Voltage and Phase current for a	49
	Step Change of Reference Torque in DTC with Non-	
	Optimized Switching Strategy at High-Speed Operation (a)	
	General View (b) Zoom-in Version	
28	Waveform of Torque, Phase Voltage and Phase current for a	50
	Step Change of Reference Torque in DTC with Optimized	
	Switching Strategy at Low-Speed Operation (a) General View	
	(b) Zoom-in Version	
29	Waveform of Torque, Phase Voltage and Phase current for a	51
	Step Change of Reference Torque in DTC with Optimized	
	Switching Strategy at Medium-Speed Operation (a) General	
	View (b) Zoom-in Version	
30	Waveform of Torque, Phase Voltage and Phase current for a	52
	Step Change of Reference Torque in DTC with Optimized	
	Switching Strategy at High-Speed Operation (a) General View	
	(b) Zoom-in Version	
31	Waveform of Torque, Phase Voltage and Phase current for a	54
	Step Reduction of Reference Torque in DTC with Non-	
	Optimized Switching Strategy at Low-Speed Operation (a)	
	General View (b) Zoom-in Version	
32	Waveform of Torque, Phase Voltage and Phase current for a	55
	Step Reduction of Reference Torque in DTC with Non-	
	Optimized Switching Strategy at Medium-Speed Operation (a)	
	General View (b) Zoom-in Version	
33	Waveform of Torque, Phase Voltage and Phase current for a	56
	Step Reduction of Reference Torque in DTC with Non-	
	Optimized Switching Strategy at High-Speed Operation (a)	
	General View (b) Zoom-in Version	
34	Waveform of Torque, Phase Voltage and Phase current for a	57
	Step Reduction of Reference Torque in DTC with Optimized	
	Switching Strategy at Low-Speed Operation (a) General View	
	(b) Zoom-in Version	

35	Waveform of Torque, Phase Voltage and Phase current for a	58
	Step Reduction of Reference Torque in DTC with Optimized	
	Switching Strategy at Medium-Speed Operation (a) General	
	View (b) Zoom-in Version	
36	Waveform of Torque, Phase Voltage and Phase current for a	59
	Step Reduction of Reference Torque in DTC with Optimized	
	Switching Strategy at High-Speed Operation (a) General View	
	(b) Zoom-in Version	
37	Sector Detection Simulation Block	59
38	Look-up Table Simulation Block	69
39	Induction Motor Simulation Block	78
40	Interior of Induction Motor Simulation Block	79
41	Dual Voltage Source Inverter Simulation Block	80
42	Interior of Dual Voltage Source Inverter Simulation Block	80
43	Torque and Flux Estimator Simulation Block	81
44	Interior of Torque and Flux Estimator Simulation Block	81

ix

LIST OF SYMBOLS AND ABBREVIATIONS

- Direct and quadrature of the stationary reference frame d,q d^r, q^r Real and imaginary of the rotor Stator and rotor current space vector in stationary reference frame i_s, i_r Stator and rotor resistance R_s, R_r Stator self-inductance L_s L_r Rotor self-inductance Mutual inductance L_m Stator and rotor flux linkage space vector in reference frame $\bar{\varphi}_s, \bar{\varphi}_r$ d and q components of the rotor current in stationary reference i_{rd}, i_{ra} frame d and q components of the stator current in stationary reference i_{sd}, i_{sa} frame d and q axis of the stator voltage in stationary reference frame v_{sd}, v_{sq} d and q components of the stator flux in stationary reference frame $\varphi_{sd}, \varphi_{sq}$ \bar{v}_s Voltage vector Number of phase п i_a, i_b, i_c Phase current of a, b, c L Self-inductance Electromagnetic torque T_e T_e^* Reference torque Output torque error ϵ_T
 - σ_T Output torque status

- θ_r Angle with respect to rotor axis
- θ_s Angle with respect to stator axis
- δ_{sr} Different angle between stator flux linkage and rotor flux linkage
- V_{DC} DC link voltage
- S_a^+, S_b^+, S_c^+ Switching states of IGBTs
 - *P* Number of pole pair
 - θ_{sec} Angle of sector definition
 - ω_r Rotor electrical speed in rad/s
 - ϵ_{φ} Output flux error
 - φ_s^* Reference of flux
 - φ_s Flux estimate
 - σ_{φ} Output flux status
 - σ Total flux leakage factor
 - DTC Direct Torque Control
 - *IM* Induction Motor
 - VSI Voltage Source Inverter
 - *FOC* Field Oriented Control
 - *DT* Sampling period
 - AC Alternating Current
 - *DC* Direct Current
 - *SVM* Space Vector Modulator
 - UB Upper Band
 - *LB* Lower Band
 - *IGBT* Insulated Gate Bipolar Transistor

- i_{sq}^{e} , i_{sd}^{e} Current from the excitation frame
- *CSFTC* Constant Switching Frequency Torque Controller
 - PI Proportional Integral
 - $\bar{\iota}_s$ Current vector

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	MATLAB SIMULATION BLOCK CODING	78
В	MATLAB SIMULATION BLOCK	67

CHAPPTER 1

INTRODUCTION

1.1 Research Background

Direct torque control (DTC) and Field Oriented Control (FOC) were introduced by Takahashi and Noguchi and Siemens' F. Blaschke in 1980. Both methods utilized the AC motor drives. DC motor drives was widely used in many industrial applications due to their structure and fast torque dynamic control. But due to its construction of brushed DC motor, the DC motor required regular maintenance such as replacing the carbon brush and it can't operate in high speeds. Slowly AC motor drive become the top choice of many industrial applications due to its low maintenance, high efficiency and tolerate in very high speeds demand.

The first method introduced, Field Oriented Control (FOC), this method is based on two mathematical transformation introduced by Clark and Park. Clark and Park transformation are used in high performance drive or vector control which involved magnet machines. With these the torque and flux will then can be control by using the generated current component, i_{sq}^e and i_{sd}^e in the reference frame. To use FOC method it required the frame transformer, the speed data and current controller to control the torque and flux. Besides, FOC needed a frame transformation to convert the produced current from the excitation frame (i_{sq}^e and i_{sd}^e) to the stationary reference frame. To convert, it required a complex mathematical calculation and varies sensors. Further detail will be discuss in chapter II.

Later then the Direct Torque Control (DTC) method was introduced. Even though the FOC method provide more advantages most of the companies are then slowly shift from FOC to DTC method. The DTC requires lesser sensitivity on parameter variation to estimate the control parameters. On the other hand, DTC eliminated the use of frame transformation which involved in complex mathematical calculation. Besides using the sensor in DTC, it utilizes the hysteresis controller and a single PI controller to regulate the speed. To establish a fast-instantaneous torque and flux control, a decouple structure is employed and with the present of three-level and two-level hysteresis the torque and flux can be controlled even better.

Figure 1: FOC and DTC structure

Although DTC provides varies of benefits compared to FOC but there is one major drawback of DTC, large torque ripple and variable switching frequencies. There are many modifications been proposed from many areas to minimize the torque ripple and the problem in switching frequencies. Among all the modification proposed, the Space Vector Modulation (SVM) has gained the interest of the public and widely acceptance due to its offer great reduction of torque ripple and a constant switching frequency. Even though this modification, SVM, offered a great improve to DTC but at the same time it increases the complexity and leads to the inaccurate of the performance in control as well as the dynamic torque control.

1.2 Problem statement

With the comparison between DTC and FOC, it clearly shows that the DTC provides more advantages over FOC. Although the DTC offers these advantages and a simple control structure with fast dynamic control but with the use of hysteresis controller come with a next problem, namely large torque ripple and variable inverter switching frequencies. These problems are due to the digital implementation of hysteresis controllers which with a low sampling time. As the sampling time was small it tends to create delay and resulted in torque overshoot the upper band or the lower band of the hysteresis. In the other way it means the torque error are not within the restricted bandwidth of the hysteresis controller. As the torque error are not accurate it will then affect the selections of the voltage vector. The incorrect selection of voltage vector causes the large torque ripples.

Due to the torque slope behaviour, it leads to high switching frequencies as well as the switching losses and hence reduces the efficiency of the inverter. As the power loss emitted in the form on heat, through time the switching devices will degrade and in the end to malfunction.

1.3 Objectives of Research

The objective of this thesis is to reduce the torque ripple and the switching frequencies by implementing dual-inverters for open-end windings induction machine.

1.4 Scopes of Work

The scopes of work for this study are:

- Improve the DTC performances by selecting the most suitable voltage vector.
- To formulate the optimal switching strategy by using a look-up table and modification of torque error status.
- To verify the improvements with simulations and experimentations.

1.5 Research Methodology

A study on the various switching strategies in DTC was carried out in order to understand the how to reduce the torque ripple and maintain a constant switching frequency.

Based on the study, voltage vectors method was the most popular and interested by the public. By selecting the appropriate voltage vector based on the torque error for different speed operation it will certainly help in reducing the torque ripple as well as the switching frequencies. After the justification of torque error, the voltage vector will then be selected by referring to the look-up table.

To obtain constant switching frequencies, the hysteresis controller was then replaced by the constant switching frequency torque controller (CSFTC) to eliminate

the use of PI controller. With CSFTC the major problem in DTC structure can be minimize without changing the entire original DTC structure.

1.6 Thesis Contributions

The research work gave the contribution as follow:

- The torque ripple and switching frequency can be reduce with the appropriate selection of voltage vector.
- The comparison between torque error status and flux error produced by hysteresis controller was made to remain the simple structure of the original DTC design. By then, the use of speed sensor and complex calculation can be eliminated.
- Increase the control bandwidth of DTC by replacing the hysteresis controller with CSFTC and eliminated the use of PI controller.

1.7 Thesis Outline

In this thesis the chapters are:

- Chapter 2 provides an overview of Direct Torque Control structure of induction machine. The parts used in DTC and the mathematical formula were discussed. The basic principle of DTC and the major problems will to be discussed.
- Chapter 3 will explain the detail of methods used to formulate an optimal switching strategy of DTC using dual-inverter for open-end windings induction machine.