

DESIGN AND CONSTRUCTION OF A 4-LEGGED ROBOT IN
VARIOUS SURFACE ENVIRONMENT

OOI JIAN WEI

BACHELOR OF MECHATRONICS ENGINEERING WITH
HONOURS

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DESIGN AND CONSTRUCTION OF A 4-LEGGED ROBOT IN VARIOUS

SURFACE ENVIRONMENT

OOI JIAN WEI

A report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Mechatronics Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled “DESIGN AND CONSTRUCTION OF A 4-LEGGED

ROBOT IN VARIOUS SURFACE ENVIRONMENT is the result of my own research

except as cited in the references. The thesis has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature :

Name :

Date :

APPROVAL

I hereby declare that I have checked this report entitled “DESIGN AND CONSTRUCTION

OF A 4-LEGGED ROBOT IN VARIOUS SURFACE ENVIRONMENT” and in my

opinion, this thesis it complies the partial fulfillment for awarding the award of the degree

of Bachelor of Mechatronics Engineering with Honours

Signature :

Supervisor Name :

Date :

DEDICATIONS

To my beloved mother and father

2

ACKNOWLEDGEMENTS

In this section, I would like to express my very great appreciation to my dedicate

supervisor, Dr Fariz bin Ali @Ibrahim, who was given me support and guidance

throughout the project. Without any guidance and support from him, this project would

be difficult to complete.

I would like to show my gratitude to my family, especially my parents, Ooi Aik Piew

and Lau Yam Keng for their love and support. They provide a lot morale support and

encouragement when I was doing this project. I thank them for believing in me and for

helping me to keep my spirits high.

I also want to thank to my friends especially my course mates for assisting me when I

need help. They provide a lot of technical advice and mentally support during the

journey to accomplish this project. They made a lot of valuable comments suggestions

on my paper which gave me an inspiration to improve the quality of the project.

3

ABSTRACT

This paper presents a study about a 4-legged robot walk in various surface environment

with different walking pattern. The main objectives of this paper are designing and

constructing a 4-legged walking robot, perform lateral-type and sprawling-type

walking pattern on different surface environment. The problems need to solve in this

project is to solve the design of the robot that can able to perform both walking pattern.

In order to solve this problem, a stable walking algorithm need to be constructed. The

first part of this report will be the introduction of the report. In that chapter, the detail

of motivation and problem statement will be explained clearly, and the objectives and

scope will be stated clearly. Literature review has been done base on previous and

latest research which similar to this project. Some of the components had been studied

in this part such as the walking pattern of quadruped robot and the degree of freedom

(DOF). The third part of this paper will be the methodology which discuss the method

used to solve the problem in this project. The software and hardware used in this

project will explain in detail. For example, the software used to draw the design of the

robot is SolidWorks, and the quadruped robot is programmed by using Arduino IDE.

Besides, some of the experiments are carried out to test the accuracy of the robot. Next

part of the report will be the result and discussion part. The results from the experiment

are discussed in this part to show that the objectives of the research were achieved.

The last part of this paper will be the conclusion and recommendation.

4

ABSTRAK

Makalah ini membentangkan kajian tentang berjalan kaki robot berkaki empat di

pelbagai persekitaran permukaan dengan corak berjalan yang berbeza. Objektif utama

makalah ini adalah mereka bentuk dan membina robot berkaki empat, melaksanakan

corak jenis dan corak jenis lantang pada persekitaran permukaan yang berlainan.

Masalah yang perlu diselesaikan dalam projek ini adalah untuk menyelesaikan reka

bentuk robot yang mampu melakukan kedua-dua corak berjalan. Untuk menyelesaikan

masalah ini, algoritma berjalan yang stabil perlu dibina. Bahagian pertama laporan ini

adalah pengenalan laporan. Dalam bab itu, perincian motivasi dan pernyataan masalah

akan dijelaskan dengan jelas, dan objektif dan skop akan dinyatakan dengan jelas.

Kajian literatur telah dilakukan berdasarkan penyelidikan sebelumnya dan terkini yang

serupa dengan projek ini. Beberapa komponen telah dipelajari di bahagian ini seperti

pola berjalan robot empat hulu dan tahap kebebasan (DOF). Bahagian ketiga makalah

ini akan menjadi metodologi yang membincangkan kaedah yang digunakan untuk

menyelesaikan masalah dalam projek ini. Perisian dan perkakasan yang digunakan

dalam projek ini akan menerangkan secara terperinci. Sebagai contoh, perisian yang

digunakan untuk menarik reka bentuk robot adalah SolidWorks, dan robot empat kali

diprogramkan menggunakan Arduino IDE. Selain itu, beberapa eksperimen dijalankan

untuk menguji ketepatan robot. Bahagian seterusnya laporan akan menjadi hasil dan

perbincangan. Hasil daripada eksperimen dibincangkan di bahagian ini untuk

menunjukkan bahawa objektif penyelidikan telah dicapai. Bahagian terakhir dari

kertas ini akan menjadi kesimpulan dan cadangan.

5

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ACKNOWLEDGEMENTS 2

ABSTRACT 3

ABSTRAK 4

TABLE OF CONTENTS 5

LIST OF TABLES 7

LIST OF FIGURES 9

LIST OF APPENDICES 11

 INTRODUCTION 12
1.1 Motivation 12

1.2 Problem Statement 13
1.3 Objectives 14
1.4 Scopes 14

 LITERATURE REVIEW 15

2.1 Overview of the System 15
2.2 Degree of Freedom 25
2.3 Walking Pattern 26

2.4 Actuator Drive System 30

 METHODOLOGY 33
3.1 Project Research 33

3.2 Design of the Structure and Mechanism 35
3.2.1 Design of Qudruped robot 35
3.2.2 Design Consideration 36

3.3 Preview Electronic System and Devices for Quadruped Robot 36
3.3.1 Arduino Mega and Arduino Nano 37

3.3.2 Servo Motor 38
3.3.3 Power Supply for Quadruped Robot 39
3.3.4 nRF24L01 Transceiver Module 40
3.3.5 PS2 Joystick 41
3.3.6 LCD (Liquid Crystal Display) 43

3.4 Mechanical Design 44
3.4.1 SolidWorks Design 44

3.4.2 Material Selection 46

6

3.5 Electronic Design 48
3.6 Fabrication 50

3.7 Design of Walking Pattern for Quadruped Robot 51
3.7.1 Angle Calculation for Each Servo Motor 51
3.7.2 Design for Sprawling Type and Lateral Walking Pattern 53

3.8 Programing for Quaduped Robot and Wireless Remote Controller 54
3.9 Experiments 57

3.9.1 Experiment 1:Test the error exists for servo motor 57
3.9.2 Experiment 2: Test the errors occurs for the movement of

Quadruped Robot. 58
3.9.3 Experiment 3: Time taken for the robot passthrough different

surface with different walking pattern 59

 RESULTS AND DISCUSSIONS 63
4.1 Introduction 63
4.2 Result for Design and Construction of Quadruped Robot 63

4.2.1 Conceptual Design 63

4.2.2 Finalize Design 64
4.2.3 Calibration for Quadruped Robot 66
4.2.4 Walking Pattern Result 67

4.3 Experiment Results 68

4.3.1 Accuracy test for servo motors for each leg of the quadruped

robot 68

4.3.2 Accuracy test for quadruped robot while walking in different

walking pattern and different movements. 70

4.3.3 Speed test for the quadruped robot in different type of walking

pattern on different surfaces. 72

 CONCLUSION AND RECOMMENDATIONS 74
5.1 Conclusion 74

5.2 Future Works 74

REFERENCES 75

APPENDICES 78

7

LIST OF TABLES

Table 3.1 Summary Tasks and Experiments which mapped to Objectives. 34

Table 3.2 Design Consideration of the Quadruped Robot 36

Table 3.3 Technical Specification Arduino Mega 2560 37

Table 3.4 Technical Specification of Power HD-1501MG Servo Motors. 39

Table 3.5 nRF24L01 quick reference data 41

Table 3.6 Function for Each Wire of Connector 42

Table 3.7 Pin Description for LCD 44

Table 3.8 First and Second Design for Femur and Tibia. 46

Table 3.9 The position of leg that needed to be decide for both sprawling and

lateral walking pattern. 53

Table 3.10 Data Require in Experiment 1 57

Table 3.11 Data Require in Experiment 2 59

Table 3.12 Data Require in Experiment 3 60

Table 4.1 Walking pattern for 1 cycle for sprawling and lateral walking pattern

 67

Table 4.2 Exact angle and error occur on servo motor 68

Table 4.3 The offset distances and angles when quadruped walk through 2 m of

different surface environments. 71

Table 4.4 The offset distances and calculated error for quadruped walk through

2 m of different surface environments. 71

Table 4.5 Time taken for sprawling type and lateral type of walking pattern

walk on different surfaces for 2 meters. 72

8

Table 4.6 The speed calculated for sprawling type and lateral type of walking

pattern walk on different surfaces for 2 meters. 73

9

LIST OF FIGURES

Figure 2.1Morphology of four-legged robot. 27

Figure 2.2Schematic walking pattern for various walk. 28

Figure 2.3Event sequence for different gaits. The limbs: LF, left forelimb; RF,

right forelimb; LH, left hindlimb; RH, right hindlimb. Dark colour

indicates that the foot is in contact with the ground.[18] 29

Figure 2.4The gait is developed as a function of time. Each presented frame is

taken at a gait event. Solid circles denote a foot in ground contact.

White circles denote the placing event of one leg and dashed circles

denote the lifting event.[18] 30

Figure 2.5Picture of HYQ leg prototype with hydraulic cylinder, without

compliant element and foot.[16] 31

Figure 2.6 A mammal-type quadruped robot with electrical actuators. 31

Figure 2.7 A sprawling-type quadruped robot with electrical actuators. 32

Figure 3.1: Methodology of Design and Construction 34

Figure 3.2 Design of Four-Legged Robot in SolidWorks 35

Figure 3.3 Arduino Mega 2560 and Arduino Nano 37

Figure 3.4 Structure of Power HD-1501MG Servo Motor 38

Figure 3.5 (i) Buck converter, (ii) T15 Power Plus Battery Charger (iii) 2S1P

Lithium ion battery 40

Figure 3.6 nRF24L01 Antenna Wireless Transceiver Module. 41

Figure 3.7 PS2 Joystick and Information of Connector 42

Figure 3.8 LCD 16x2 used in this project 43

Figure 3.9 First and Second Design of Robot’s Body. 45

file:///D:/Desktop/Uni%20note%20n%20tutorial/FYP%202/FYP%20report/fyp2%20report%20finalize.dotx.docx%23_Toc10901995

10

Figure 3.10 Right and Left Joint of Robot. 45

Figure 3.11 3D Printed Robot’s Part using PLA 47

Figure 3.12 Relationship Between All Circuit for Quadruped Robot and

Remote Controller. 49

Figure 3.13 Schematic Drawing for The Circuit of Quadruped Robot and

Remote Controller by Fritzing Software 49

Figure 3.14 Connection of Perf Board. 50

Figure 3.15 Fabrication Process of quadruped robot. 51

Figure 3.16 Parameters Needed to Calculate Angle of Servo Motor. 52

Figure 3.17 Flow chart for wireless remote controller. 55

Figure 3.18 Flow chart for quadruped robot. 56

Figure 3.19 Experiment 1 Set Up 58

Figure 3.20 Experiment 2 Set Up 59

Figure 3.21 Experiment 3 Set Up 62

Figure 4.1 Design of quadruped robot by using hand drawing. 63

Figure 4.2 Final design of quadruped robot in SolidWorks. 64

Figure 4.3 Fabricated quadruped robot. 65

Figure 4.4 Calibration of quadruped robot’s legs. 66

Figure 4.5 Sprawling type and lateral type of walking pattern. 68

Figure 4.6 Graph of error occur (%) against the desire angle. 69

Figure 4.7 The experiment carried out on different surface. 70

file:///D:/Desktop/Uni%20note%20n%20tutorial/FYP%202/FYP%20report/fyp2%20report%20finalize.dotx.docx%23_Toc10902006
file:///D:/Desktop/Uni%20note%20n%20tutorial/FYP%202/FYP%20report/fyp2%20report%20finalize.dotx.docx%23_Toc10902006

11

LIST OF APPENDICES

APPENDIX A GANTT CHART 78

APPENDIX B CODING FOR QUADRUPED ROBOT. 80

12

INTRODUCTION

1.1 Motivation

Robot is an actuated mechanism programmable in two or more axes with a

degree of autonomy, moving within its environment, to perform intended tasks.

Autonomy in this context means the ability to perform intended tasks based on current

state and sensing, without human intervention.

Robot can be categorized into 2 main types which are “industrial robot” and

“service robot”. A service robot is a robot that perform tasks for humans or equipment

excluding industrial automation application. Mobile robot can be defined as an

automatic machine that is capable to move around in its environment and is not fixed

to one physical location.

A quadruped robot can be categorized as a mobile service robot since it can

move around in its environment and help human to complete the task given. A

quadruped robot is used to carry the object and deliver it to a target places which

human is not able to enter due to its flexibility and mobility. Although quadruped robot

always used to compare with wheeled robots, however it is well known that legged

robots are superior to wheeled robots due to legged robots have better performance on

discontinuous terrain than that of wheeled robots and thus quadruped robot will be

focus in this research.

This project is motivated by some motivation to start up the research of

quadruped robot. The first motivation is from the Sasago Tunnel collapse accidents

happen in japan in 2012. This accident caused nine people died and two were injured,

making it the deadliest Japanese roadway accident in history[1]. Besides the disaster

such as earthquake also cause a lot of people died and injured. If a quadruped robot is

well developed, it can help the rescue team go inside the disaster area to search for the

survivors.

The second motivation is come from the quadruped robot designed by Bostan

Dynamics. It is a high technology research and development company that develop

13

quadruped robot. The most famous product from this company is the robot called

“BigDog”[2]. BigDog was funded by the Défense Advanced Research Projects

Agency (DARPA) in the hopes that it will be able to serve as a robotic pack mule to

accompany soldiers in terrain too rough for conventional vehicles. Besides, these

machines only need a discrete number of isolated footholds, their mobility in

unstructured environments can be much higher than their wheeled counterparts, which

require a more or less continuous path of support.

Through these motivations, the research about quadruped robot is done in this

project and through this research, it can be helpful in the development in quadruped

robot in future.

1.2 Problem Statement

In this research project, there are few knowledges are required to study which

are robotics, programming, electric circuits and the quadruped motion. These

knowledges can help to solve the problems that will faced during the research.

 In robotics, the knowledge of kinematic is studied, which is a branch of

classical mechanics that describes the motion of points, bodies (objects), and systems

of bodies (groups of objects) without considering the forces that caused the motion.

For the electric circuit knowledge, the connection between the microprocessor and the

other electric components are learnt. Programming knowledge help to design the

program needed and import it to the microprocessor. For quadruped motion, it is helps

to study the terrestrial locomotion in animals using four limbs or legs.

 The main problem that need to solve in this project is to decides the

motion for the quadruped robot. There are few types of gaits in quadruped motion

which are mammal-type and sprawling-type[3]. A mammal-type means the robot

which locates its foot vertically downward from the base of the leg as a standard

posture. A sprawling-type means the robot whose first leg segment (thigh) is in

horizontal direction and second leg segment (shank) is in vertical direction as a

standard posture. For both types of quadruped motion, they have their own pros and

cons and it must be understood before decides which motion is suitable for the

quadruped robot to move on various surface environment.

 The next problem is to solve the design of the robot. After decides the

motion of the robot, the next step is to design the shape and size of the robot, so it can

14

perform the motion chosen. The design of the robot must concern about the center of

the gravity and also the kinematic of the robot so that the robot can be balance and

move.

The other problems are the electric components that required to use such as

motors, microprocessor. The microprocessor must decide first so that the other

components can fit the microprocessor. After programmed the microprocessor and

connected to other electric components, the power must be calculated so that it can use

as a reference to choose the required battery capacity and others specification.

1.3 Objectives

The objectives of this project are:

i. To design and construct a 4-legged walking robot controlled by using remote

controller.

ii. To design various movements for the robot to move on flat, tarred and grass

surface environments.

iii. To analyse the walking pattern of the robot.

1.4 Scopes

i. Use 3 degree of freedom for each leg.

ii. Walking on flat, tarred and grass surface environment.

iii. Control the movement by using a controller.

iv. It should perform 2 type of walking pattern.

v. Using Arduino Mega as the microprocessor

vi. Use 12 servo motors as actuators

vii. Can perform forward movement on both walking pattern

viii. Can perform backward movement on both walking pattern

ix. Can perform rotational movement on sprawling-type walking pattern

15

LITERATURE REVIEW

2.1 Overview of the System

Category Studied articles

Journal 1 [4] Journal 2 [5]

Title A geometric approach to solving

the stable workspace of a hand-

foot-integrated quadruped

walking robot.

Design of one degree-of-freedom

quadruped robot based on

mechanical link system:

Cheetaroid-II

Aim of this

paper

Solving the robot’s workspace,

including searching steady

condition of operation of the

robot.

A five-bar linkage mechanism is

proposed to emulate the

locomotive motion of a leg of a

quadruped robot with the reduced

number of actuators. (to reduce the

weight of robot)

Method Geometric method of kinematic

analysis

Experimental method by

observing the locomotion of a dog

Software

used

MATLAB, VB and SolidWorks

software programs.

MATLAB, Fmincon.m

Walking

pattern

Sprawling type Mammal type

Degree of

freedom

(each leg)

3 1

Actuator

drive

system

Servo motor a Brushless DC (BLDC) motor, a

gearing system

Structure

and

mechanism

Parallel and serial mechanism five-bar mechanical link system

16

Dimension

of Robot

Length of hip: 67.5mm

Length of tight: 232mm

Length of shank: 359mm

Length of body: 276mm

Width of body: 325mm

Mass of body: 8681g

Mass of thigh: 1471g

Mass of working arm: 1359g

N/A

Design of

the robot

Category Studied articles

Journal 3 [6] Journal 4 [7]

Title A new algorithm to maintain

lateral stabilization during the

running gait of quadruped robot

Control of a quadruped robot with

bionic springy legs in trotting gait

Aim of this

paper

i. Calculating the lateral

position and speed of the

fore swinging leg when it

next makes contact with

the ground.

i. This paper addresses the

problem of trotting control

of a quadruped robot with

bionic springy legs. The

goals are to enhance the

robustness of trotting of a

quadruped robot and to see

17

ii. Controlling the roll angle

by mean of inertia forces

using the stance leg.

if the quadruped running

could be smoother and

more stable by introducing

certain biological

characteristics.

ii. The robot reaches the

highest speed of 2.0 m·s−1

and keeps balance under

250 Kg·m·s−1 lateral

disturbance in the

simulations.

iii. The effectiveness of these

approaches is also verified

on a prototype robot which

runs to 0.83 m·s−1 on the

treadmill.

Method Kinetic Momentum Management

Algorithm (KMMA)

Robot kinematic analysis

Software

used

ADAMS and MATLAB co-simulation of ADAMS and

Matlab/Simulink.

Walking

pattern

Mammal type (running gait) Mammal type

Degree of

freedom

(each leg)

3 6 Degrees of Freedom (DOF) on

torso and 5 DOF on each leg.

Actuator

drive

system

Brushed DC motors i. Each leg has four active

joints driven by four

identical hydraulic

cylinders, as well as a

passive prismatic spring.

ii. The robot has 41 sensors

including displacement

18

sensors and load cells on

the hydraulic cylinders and

springs, 3-component

force sensors in feet and an

Inertial Measurement

Units (IMU) on torso.

Structure

and

mechanism

Uncoupled leg mechanism (three

sequentially arranged four-bar

mechanism)

N/A

Dimension

of Robot

Mass: 43 kg

Length: 0.68 m

Width: 0.9 m

Mass: 67 kg

Length: 0.63 m

Width: 0.3 m

Height: 0.85 m

Thigh length: 0.233 m

Shank length: 0.31 m

Foot length with spring in normal

position: 0.31 m

Design of

the robot

19

Category Studied articles

Journal 5 [3] Journal 6 [8]

Title TITAN-XIII: sprawling-type

quadruped robot with ability

of fast and energy-efficient

walking

Kinematic analysis for trajectory

generation in one leg of a

hexapod robot.

Aim of this

paper

Development of a sprawling-

type quadruped robot named

TITAN-XIII which is capable of

high speed and energy efficient

walking

Kinematic analysis of a single

leg of a hexapod robot is

introduced and the trajectory

generation is implemented.

Method i. Calculate cost of

transport (COT) to get

the energy efficiency

ii. Forward kinematic

kinematic and dynamic

Software

used

N/A VRML 2.0, open GL

Walking

pattern

Sprawling type 3-types:

i. Front disposal (Reptilian

type)

ii. Sagittal disposal

(Mammal type)

iii. Circular disposal

Advantage /

Disadvantage

of walking

pattern

Mammal-type

i. Walk faster than a

sprawling-type

quadruped robot by

utilizing two actuators

(e.g., hip and knee) in

each leg.

ii. Required small torque on

each joint by

N/A

20

straightening its leg,

especially when the

robot stands.

iii. Because of the its small

footprint, the robot can

walk through narrow

space or side of a cliff

like a mountain goat

doing.

Sprawling-type

i. High stability, because

the robot can locate its

centre of gravity at low

position and have a

wider supporting leg

polygon.

ii. Wide range of motion

because of its proximal

yaw axis

iii. Since its centre of

gravity is low, even if the

robot falls down, the

damage to the robot is

considered to be

relatively small.

iv. The sprawling first

segment, the proximal

pitch axis always has to

generate the torque to

support its own weight,

therefore its energy

21

efficiency seems to be

low.

v. The walking velocity is

generated by only

proximal yaw actuator,

its walking speed would

be limited compared to

mammal-type.

Degree of

freedom

(each leg)

The leg unit has 3DOF and

consists of a planar mechanism

with 2 DOF employing two

pitch axes (Axis 2 and Axis 3),

and a yaw axis (Axis 1) which

rotates the planar mechanism

3 DOF per leg

Actuator

drive system

and other

components

I. Customized DC

brushless motors

(FX1206-11 made by

Nippo Denki Co., Ltd.,

max. power 68 W) is

used for all of the joint.

II. LiFePO4 battery

(26.4 V, 1100 mAh)

made by A123

N/A

Structure and

mechanism

Wire driven mechanism N/A

Dimension

of Robot

Size (L × W × H): 213.4 × 558.4

× 340.0 mm

Weight (w/o battery): 5.29 kg

Weight (with battery): 5.65 kg

Payload: 5.0 kg

Battery: LiFe 26.4V 1100mAh

N/A

22

Battery run time: approx. 20

min.

Design of the

robot

Category Studied articles

Journal 7 [9] Journal 8 [10]

Title Improving traversability of

quadruped walking robots using

body movement in 3D rough

terrains

Modelling and Simulation for One

Leg of Quadruped Robot

Trajectory

Aim of this

paper

Improving the traversability of a

quadruped walking robot in 3D

rough terrains

Develop a 3 DOF leg which will be

used in quadruped robot.

Method N/A Forward kinematic

Software

used

N/A SolidWorks 2013 x64 Edition,

MATLAB, Arduino, MIT AI2

Companion software (develop

android software)

Walking

pattern

Sprawling type N/A

Degree of

freedom

(each leg)

3 DOF for each leg

3 DOF for each leg

23

Actuator

drive

system and

other

component

s

N/A Servomotors with 7kg.cm torque

at 6 V rating., Arduino Pro Mini

328 - 5V/16MHz

Structure

and

mechanism

N/A N/A

Dimension

of Robot

Length of leg: 550mm

Length of thigh: 226mm

Length of tibia: 226mm

Length of body: 226mm

N/A

Design of

the robot

Category Studied articles

Journal 9 [11] Journal 10 [12]

Title Load distribution and body

angle measurement in static

walking of quadruped walking

robot.

Mechanical design of

multifunctional quadruped

Aim of this

paper

To obtain some information on

load distribution and

inclination angle of vehicle

body in three typical motion of

forward, lateral and turning

walk.

Describes the mechanical design of

a multifunctional four-legged

walking machine that is being

developed at the Robotics Research

Centre, NTU.

Method N/A N/A

Software

used

N/A N/A

24

Walking

pattern

2 types:

i. Static walking (always

keeps the projected

centre-of-gravity (CG)

point in the support

polygon domain.)

ii. Dynamic walking (legs

are activated fast

without falling into

statically unstable

condition.)

Many different gaits, such as:

i. Insect configuration

ii. Typical reptile configuration

iii. Reptile configuration

iv. Intermediate configuration:

insect-reptile type

v. Intermediate configuration:

reptile-mammal type

Degree of

freedom

(each leg)

3 3

Actuator

drive

system and

other

components

Actuators: DC motors

Sensor used:

i. Ring type load cell for

load distribution

measurement

ii. Inclination sensor for

pitch and roll angle

measurement (SL-OIJS

by Ohmic Co.)

Servo motors:

Hip motor: 4.5 W (MAXON motor)

coupled through a 2 stage 19:1

planetary gear box and a 40:1 worm

gear.

Knee motor: 3 W with a 3 stage 76:1

planetary gearbox and a 40:1 worm

gear.

All motors are coupled to a 16

counts per turn 2 phase TTL

compatible magnet digital encoder.

Structure

and

mechanism

N/A i. Reptile type

ii. Mammalian type

iii. “V” Shape configuration

iv. Picking object

25

v. LAVA “back to belly”

transfer

Dimension

of Robot

Length: 0.86m

Width: 0.66m

Height: 0.92m

Number of legs: 4

Number of DOF per leg: 3

Number of DC Motors: 12

WL: 51N

WV: 314.9N

Note: WL= Leg Weight; WV=

Vehicle Weight

Lengths of machine leg segments

are:

i. Thigh segment: 0.12 m

ii. Shank segment: 0.14 m

Body (square): 0.08m

Body weight: 1.5-2.0 kg

Design of

the robot

2.2 Degree of Freedom

The degree of freedom (DOF) of a mechanical system is the number of

parameters that define its configuration. It is defined as the number of independent

movements it has and it is important to analyse the system of body in mechanical

engineering, aeronautical engineering, robotics, and structural engineering. By

knowing the degree of freedom, the exact constraint mechanical design method able

to apply in the product design. The exact constraint mechanical design method

manages the degrees of freedom to neither under constrain nor over constrain a device.

Always begin a design thinking exact constraint. Additional constraints can often cost

26

more so have a good reason for and fully understand the consequences of over

constraint. [13]

Most of the quadruped robots have 1 to 3 degree of freedom for each leg. The

designers for the quadruped robot have their own reason when decide for the degree

of freedom of the legs for the robot. For example, a quadruped robot called

“Cheetaroid-II” was designed in one degree of freedom based on a mechanical link

system. The reason to reduce the degree of freedom is reduce the weight if the robot

so that it can increase the speed and reduce the energy used of the robot. [5] A

quadruped robot with 3 degree of freedom will provide more controllability and thus

increase the reachable area of the robot. Therefore, most of the quadruped robots will

have 3 degree of freedom for each leg. Some of the designers will limit the minimal

number of degrees of freedom, to keep the complexity low and thus increase the

robustness, modularity, and ease of maintenance of the system. [14]

In this project, the quadruped robot will design in 3 degree of freedom for each

leg, which means the robot will has 12 degree of freedom in total. There will be 2 DOF

in the hip section and the other 1 of the DOF will located in the knee section. The hip

section of the quadruped robot will control the leg to swing and lift and the knee section

of the quadruped robot will control the location of the end of the leg. Since the

quadruped robot in this project is required to perform various movements and move

on various surface environments, hence 3 DOF for each leg is the minimum

requirement for the robot. If DOF of the quadruped robot is less than 3, the

performance of the movement of quadruped robot will be limited.

2.3 Walking Pattern

Recently there are a lot of discussion about a wheeled vehicle and quadruped

walking robot. Locomotion on the natural rough terrains where a biped or a wheeled

vehicle cannot cope with is one of the most attractive issues for quadruped walking

robots[9]. One of the advantage for quadruped robot is the ability to reduce the

mechanical coupling between the payload and the terrain thereby enabling irregular

terrain traversal[15]. Since these machines only need a discrete number of isolated

footholds, their mobility in unstructured environments can be much higher than their

wheeled counterparts, which require a more or less continuous path of support[16][17].

27

Another reason that make quadruped walking robot able to walk on uneven terrain is

the walking pattern of the robot that enable it to cope with the uneven terrain.

There are a lot of walking pattern or known as gait for a quadruped robot and

most of the walking pattern are adapted from the animal or insect. The walking pattern

of the quadruped robot can mainly be classified into 2 main group, a mammal-type and

a sprawling-type, according to its leg configuration. A mammal-type means the robot

which locates its foot vertically downward from the base of the leg as a standard

posture (Figure 2.1(a)). A sprawling-type means the robot whose first leg segment

(thigh) is in horizontal direction and second leg segment (shank) is in vertical direction

as a standard posture (Figure 2.1(b)).[3]

Figure 2.1Morphology of four-legged robot.

Mammal-type quadruped robot has several advantages. First, a mammal-type

quadruped robot can walk faster than a sprawling-type quadruped robot by utilizing

two actuators (e.g., hip and knee) in each leg. Second, a mammal-type quadruped robot

required small torque on each joint by straightening its leg, especially when the robot

stands. Third, because of the its small footprint, the robot can walk through narrow

space or side of a cliff like a mountain goat doing [3].

On the other hand, a sprawling-type (reptile-type) quadruped robot has its

features. First, the stability of the robot is high, because the centre of gravity of the

robot can be located at low position and have a wider supporting leg polygon. Second,

the robot has wide range of motion because of its proximal yaw axis, therefore it can

choose foot placement widely. Third, since its centre of gravity is low, the damage to

28

the robot is considered relatively small when the robot falls down. Additionally, it is

easy to use the body of the robot as a fifth foot depending on the terrain[3].

For a sprawling-type quadruped robot, it can divide into 2 types of walking,

one is static walking which always keeps the projected centre-of-gravity (CG) point in

the support polygon domain. The support polygon domain is created by the 3 unmoved

legs which to make a tripod stance. The other is dynamic walking where legs are

activated fast without falling into statically unstable condition. For a static walking, it

can basically perform 3 basics type of walking, which are forward walk, lateral walk

and turning walk. In this project, the walking pattern of sprawling-type in forward walk

and lateral walk will be analyzed, since both sprawling-type walking patterns has its

own advantages to move on certain terrain.

(a) Schematic walking pattern for forward

walk.

(b) Schematic walking pattern for

lateral walk.

(c) Schematic walking pattern for

turning walk.

Figure 2.2Schematic walking pattern for various walk.

As shown in Figure 2.2, lifting of legs are always lift one and move forward at

a time. At the same time, the other 3 legs will rotate the joint at hip to move the centre-

of-gravity (CG) into the support polygon. It will make the robot stay in a stable position

29

when moving forward. The method for lateral walk and turning walk are similar with

forward walk. The body of the robot will move toward to the support polygon to

maintain its stability when lifting one of the legs forward or turning [11].

As mentioned, a mammal-type quadruped robot it can perform a higher speed

movement compare to sprawling type quadruped robot. In this walking pattern, robot

is able to perform crawl gait and also trot gait. When increasing the speed during the

walking of the robot, the robot continuously change from a crawl gait to a trot gait, in

order to achieve a smoother quadruped locomotion[18]. In robotics, in order to achieve

smooth walking from low speed to high speed, these gaits should be similarly switched

continuously. This can be easily achieved by applying the wave gait rule [17,18], i.e.,

the interlimb phase relationships should follow the value of the duty factor for a

changing speed. This rule improves the stability of the locomotion and maximizes the

stability margin [17,18] because the support of the body smoothly changes from three-

point support (walk) to two-point support (trot) [17–19].

Figure 2.3Event sequence for different gaits. The limbs: LF, left

forelimb; RF, right forelimb; LH, left hindlimb; RH, right hindlimb.

Dark colour indicates that the foot is in contact with the ground.[18]

(a) Non-singular crawl gait.

(b) Singular crawl gait

30

(c) Gait diagram for the trot gait.

Figure 2.4The gait is developed as a function of time. Each presented

frame is taken at a gait event. Solid circles denote a foot in ground

contact. White circles denote the placing event of one leg and dashed

circles denote the lifting event.[18]

Figure 2.3 and Figure 2.4 shown the event sequence for different gaits and the

gait is developed as a function of time respectively. In non-singular crawl gait, only 1

leg will denote the lifting event and continue with denote a foot in ground contact on

the same time. After The next step will start when the previous step finish denotes a

foot in ground. For a singular crawl gait, when a leg is ready to denote the placing

event, the diagonal leg will denote the lifting event. When the leg is contacted to

ground, the diagonal leg will denote the placing event and the leg parallel to the placing

event leg will denote the lifting event. These events will repeat as a loop. For a trot

gait, the diagonal legs will pair up and do a similar motion. When a pair of leg (pair

A) contacted to ground, the other pair (pair B) will present a lifting event follow by

placing event. After the pair of legs (pair B) touch the ground, the leg of pair A will

repeat the same event that pair B presented.

 In this project, both mammal-type and sprawling-type will be used. Both

types of walking pattern have its own advantages and disadvantages. Therefore,

combine two type of walking pattern can increase the ability of the robot to walk on

various surface.

2.4 Actuator Drive System

An actuator is something that used to converts energy into motion. It also can

be used to apply a force. Basically, actuator can be divided in to 3 types, which are

hydraulic, pneumatic and electric actuators. In most of the research shows that

hydraulic actuators, pneumatic actuators and electrical actuators are most commonly

been used. All type of the actuators has its own advantages and disadvantages.

For the most advanced quadruped BigDog [20, 21], developed by Boston

Dynamics, is driven by hydraulic actuation and uses force controlled architecture in

31

combination with passive linear pneumatic compliance in the lower leg to be able to

cope with unstructured terrain.[16] One of the advantage of using hydraulic actuation

is they have high power to weight ratio and thus are the smallest actuation option

available. Besides, hydraulic actuation has a high control bandwidth due to hydraulic

fluid is generally incompressible.

Figure 2.5Picture of HYQ leg prototype with hydraulic cylinder,

without compliant element and foot.[16]

As shown in Figure 2.5, it is a HYQ leg prototype with hydraulic cylinder. The

design is a mammal skeletons design which show the configuration of the front and

hind legs form an x-shape in the sagittal plane. Although hydraulic actuator is good as

a actuator of a quadruped robot, but it is more complicated to assemble and design

compare to electrical actuators such as servo motors.

There are two type of electrical actuators which commonly used in a quadruped

robot, which are dc motor and servo motor. Electrical actuators are commonly used

because it is easy to control its speed and position.

Figure 2.6 A mammal-type quadruped robot with electrical actuators.

32

Figure 2.7 A sprawling-type quadruped robot with electrical actuators.

Figure 2.6 and Figure 2.7 shown different type walking pattern quadruped

robot with electrical actuators. In this project, electrical actuator is more suitable to use

because electrical actuators easy to control and can easy to change the type of walking

pattern of the robot. It can change the walking pattern of the robot by changing the

turning angle of the motor and it can just change it by programming controller to

control the turning angle of the motors.

33

METHODOLOGY

3.1 Project Research

B

34

The tasks and experiments in this project is mapped to the main objective this

project. Table 3.1 shown the experiment that mapped to the objective of this project.

Table 3.1 Summary Tasks and Experiments which mapped to

Objectives.

 Objectives

1 2 3

Task 1 ✓ ✓

Task 2 ✓

Experiment 1 ✓

Experiment 2 ✓

Experiment 3 ✓

B

Sketching and mechanical

Design using SolidWorks

No

Material Selection

Yes

Fabrication

End

No

Yes

Develop of Software Algorithm

Analysis and

Troubleshooting

Integration of electric and

Electronic

Figure 3.1: Methodology of Design and Construction

35

3.2 Design of the Structure and Mechanism

The design of the structure and mechanism of the quadruped robot is based on

the walking pattern of the robot, degree of freedom of the robot, the materials used for

the body of robot and the electronic device used for the robot. These considerations

stated will affected by each other when doing the design for the robot. Therefore, the

scope listed is used to limit the design of the robot so that it will has a clear goal for

the design of the robot.

3.2.1 Design of Qudruped robot

The idea of conceptual design for the quadruped robot is comes from some

thesis and journals that had been done by previous researcher. In this project, the

design of the robot will perform forward and lateral sprawling type walking pattern for

the quadruped robot.

Figure 3.2 Design of Four-Legged Robot in SolidWorks

Figure 3.2 shows the design of four-legged robot in SolidWork. In the design

of robot, it is decided to use 12 servo motors as the actuators of robot. That means each

leg will be attached by 3 servo motors and produce 3 Degree of Freedom (DOF). For

the servo motors, it will mount on joint, femur and tibia of the leg which can help the

robot to perform a smooth movement. The size of the body for the robot is 15cm x

36

15cm and the length of femur and tibia are 10cm and 16cm. The ratio for the length of

femur and tibia is based on the golden ratio which is 1.618.

3.2.2 Design Consideration

The consideration for the design of the robot will be the walking pattern of the

robot, degree of freedom of the robot, the materials used for the body of robot and the

electronic device used for the robot. As mentioned before, each of them will affect

each other and come out with a different design.

Table 3.2 Design Consideration of the Quadruped Robot

Design considerations Selected option Description

Walking pattern Sprawling-type

with forward and

lateral walking

pattern.

To walk on different surface,

both type of walking patterns is

used.

Degree of Freedom

(DOF) for each leg

3 DOF 3DOF is suitable for both

walking pattern of the quadruped

robot.

Material used PLA (Polylactic

Acid) for 3D

Printing

3D printing is easier to fabricate,

and it dimension accuracy will

be higher and price will be

cheaper compare to other

material and method.

Electronic devices Arduino and servo

motors.

Arduino is easy to be program

and the price is relatively cheap.

Servo motor are chosen due to its

rotation angle easy to be control.

3.3 Preview Electronic System and Devices for Quadruped Robot

In this section, a deep research for the electronic system will be done to

understand well for the requirement and constrains of the project. After the research

for electronic system, the microcontroller and other electronic components will be

decided and compile together.

37

3.3.1 Arduino Mega and Arduino Nano

Arduino Mega 2560 is chosen as the microcontroller used in this project. The

reason to choose Arduino Mega 2560 as the microcontroller is because it has more I/O

port compare to Arduino Uno and Arduino Nano. Arduino Mega 2560 is a

microcontroller board based on the ATmega2560. It has 54 digital input/output pins

(of which 15 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware

serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP

header, and a reset button. It contains everything needed to support the

microcontroller; simply connect it to a computer with a USB cable or power it with an

AC-to-DC adapter or battery to get started. he Arduino Nano is a small, complete, and

breadboard-friendly board based on the ATmega328P (Arduino Nano 3.x). It has more

or less the same functionality of the Arduino Duemilanove, but in a different package.

It lacks only a DC power jack, and works with a Mini-B USB cable instead of a

standard one. Figure 3.3 below shown the microcontroller (Arduino Mega 2560) and

Arduino Nano used in this project, and the Table 3.3 shown the technical specification

of the Arduino Mega 2560 and Arduino Nano.

Arduino Mega 2560

Arduino Nano

Figure 3.3 Arduino Mega 2560 and Arduino Nano

Table 3.3 Technical Specification Arduino Mega 2560

Microcontroller ATmega2560 ATmega328

Operating Voltage 5V 5V

Input Voltage

(recommended)

7-12V -

Input Voltage (limit) 6-20V -

Digital I/O Pins 54 (of which 15 provide

PWM output)

22 (6 of which are

PWM)

Analog Input Pins 16 8

38

DC Current per I/O

Pin

20 mA -

DC Current for 3.3V

Pin

50 mA -

Flash Memory 256 KB of which 8 KB used

by bootloader

32 KB of which 2 KB

used by bootloader

SRAM 8 KB 2 KB

EEPROM 4 KB 1 KB

Clock Speed 16 MHz 16 MHz

LED_BUILTIN 13 -

Length 101.52 mm 45mm

Width 53.3 mm 18mm

Weigh 37 g 7 g

3.3.2 Servo Motor

After some research for the actuator, servo motors are chosen to use as the

actuator for this project due to easy control and accuracy of the motor. A servomotor

is a closed-loop servomechanism that controls its motion and final position by using

position feedback. The input to its control is a signal that represents the position

commanded for the output shaft, either analog or digital.

In this project, Power HD-1501MG servo motors are used as the actuator for

the robot. The advantages of using this serv motor as the actuator is because it has high

torque and the accuracy of the servo motors are within ± 10°. Figure 3.4 shows the

structure of the Power HD-1501MG servo motor and Table 3.4 below is the technical

specification of the Power HD-1501MG servo motors.

Figure 3.4 Structure of Power HD-1501MG Servo Motor

39

Table 3.4 Technical Specification of Power HD-1501MG Servo

Motors.

Item Specification

Storage Temperature Range -20°C~60°C

Operating Temperature Range -10°C~50°C

Operating Voltage Range 4.8V-6.0V

Operating speed (at no load) 0.16 sec/60°

Running current (at no load) 400mA

Stall torque (at locked) 15.5 kg-cm

Stall current (at locked) 2300 mA

Idle current (at stopped) 4mA

Limit angle 180° ± 10°

Weight 63 ± 1g

Neutral position 1500 μ sec

3.3.3 Power Supply for Quadruped Robot

Power supply is very important to the quadruped robot because it is used to

power up the microcontroller and also the servo motors. In this project, lithium ion

batteries are used to power up all the electronic components for the robot. Lithium ion

battery are chosen because it is rechargeable, it has more capacity and has a higher

power output. To prevent a noisy power supply to micro controller, 2 separate lithium

ion batteries are used. The lithium ion batteries that are used in this project are

connected in 2 Series 1 Parallel (2S1P). The voltage supply will be 7.4V and the

capacity will be 3000mAh.The charger used to charge lithium ion batteries is T15

Power Plus charger. T15 Power Plus is an innovative multi-function charger with built-

in lithium balancer, designed to maximize charge efficiency using its advanced

charging algorithm with precise digital control of the charging and discharging

process. Since most of the electronic components are power up by 5V, hence a buck

converter is needed to step down the voltage from 7.4V to 5V.

40

Figure 3.5 (i) Buck converter, (ii) T15 Power Plus Battery Charger

(iii) 2S1P Lithium ion battery

3.3.4 nRF24L01 Transceiver Module

In this project, the quadruped robot is controlled by a wireless remote control.

Hence 2 wireless communication modules are needed to transmit and receive data.

nRF24L01 is a single chip radio transceiver for the worldwide 2.4 - 2.5 GHz ISM band.

The transceiver consists of a fully integrated frequency synthesizer, a power amplifier,

a crystal oscillator, a demodulator, modulator and Enhanced ShockBurst™ protocol

engine Output power, frequency channels, and protocol setup are easily programmable

through a SPI interface. Current consumption is very low, only 9.0mA at an output

power of -6dBm and 12.3mA in RX mode. Built-in Power Down and Standby modes

i. Buck converter ii. T15 Power Plus charger

iii. 2S1P Lithium ion

battery

41

makes power saving easily realizable. Figure 3.6 below shows the nRF24L01 chip and

Table 3.5 shows the quick reference data for nRF24L01 chip.

Figure 3.6 nRF24L01 Antenna Wireless Transceiver Module.

Table 3.5 nRF24L01 quick reference data

Parameter Value Unit

Minimum supply voltage 1.9 V

Maximum output power 0 dBm

Maximum data rate 2000 Kbps

Supply current in TX mode @ 0dBm

output power

11.3 mA

Supply current in RX mode @ 2000 kbps 12.3 mA

Temperature range -40 to +85 °C

Sensitivity @ 1000 kbps -85 dBm

Supply current in Power Down mode 900 nA

3.3.5 PS2 Joystick

In this project, the quadruped robot is controlled by a wireless remote control.

The controller that are used in this project is PS2 joystick controller which connect to

the Arduino Nano and transmit the signal through nRF24L01. The reason to choose

this remote control is because it has more button to use and less wire used to talk to

controller. Figure 3.7 below shows the PS2 joystick and the information of the

connector for PS2 joystick and Table 3.6 shows the function for each wire of

connector.

42

Figure 3.7 PS2 Joystick and Information of Connector

Table 3.6 Function for Each Wire of Connector

Brown - Data: This is an open collector output and requires a pull-up

resistor (1 to 10k, maybe more). (A pull-up resistor is

needed because the controller can only connect this line

to ground; it can't actually put voltage on the line).

Orange - Command: Controller.

Grey - Vibration

Motors Power:

6-9V? With no controller connected, this measures about

7.9V, with a controller, 7.6V, most websites say this is

9V (except playstation.txt -> 7.6V), although it will still

drive the motors down around 4V, although somewhat

slower. When the motors are first engaged, almost

500mA is drawn on this line, and at steady state full

power, ~300mA is drawn.

Black - Ground

Red - Power: Many sites label this as 5V, and while this may be true

for Play Station 1 controllers, we found several wireless

brands that would only work at 3.3V. Every controller

tested worked at 3.3V, and the actual voltage measured

on a live PlayStation talking to a controller was 3.4V.

McCubbin says that any official Sony controller should

work from 3-5V. Most sites say there is a 750mA fuse

for both controllers and memory cards, although this

may only apply to PS1's since 4 dual shock controllers

could exceed that easily.

Yellow - Attention: This line must be pulled low before each group of bytes

is sent / received, and then set high again afterwards. In

our testing, it wasn't sufficient to tie this permanently

low--it had to be driven down and up around each set.

Digitan considers this a "Chip Select" or "Slave Select"

line that is used to address different controllers on the

same bus.

43

Blue - Clock: 500kH/z, normally high on. The communication appears

to be SPI bus. We've gotten it to work from less than

100kHz up through 500kHz (500k bits / second, not

counting delays between bytes and packets). When the

guitar hero controller is connected, the clock rate is

250kHz, which is also the rate the PlayStation 1 uses.

White - Unknown

Green - Acknowledge: This normally high line drops low about 12us after each

byte for half a clock cycle, but not after the last bit in a

set. This is a open collector output and requires a pull-up

resistor (1 to 10k, maybe more). playstation.txt says that

the PlayStation will consider the controller missing if

the ack signal (> 2us) doesn't come within 100us.

3.3.6 LCD (Liquid Crystal Display)

LCD (Liquid Crystal Display) is used in this project to preview the mode

chosen by users. Since this robot has 2 walking pattern which are forward and lateral

movement in sprawling, hence a display is needed to show the current walking pattern

set by user. In this display, it will also show the speed level added to the robot and the

height of robot added or minuses by user. The type of LCD used is a basic 16x2 LCD

display A 16x2 LCD means it can display 16 characters per line and there are 2 such

lines. In this LCD each character is displayed in 5x7 pixel matrix. Figure 3.8 below

shows the LCD used in this project and Table 3.7 shows the Pin description for this

LCD.

Figure 3.8 LCD 16x2 used in this project

44

Table 3.7 Pin Description for LCD

Pin No Function Name

1 Ground (0V) Ground

2 Supply voltage; 5V (4.7V – 5.3V) Vcc

3 Contrast adjustment; through a variable

resistor

VEE

4 Selects command register when low; and

data register when high

Register Select

5 Low to write to the register; High to read

from the register

Read/write

6 Sends data to data pins when a high to low

pulse is given

Enable

7

8-bit data pins

DB0

8 DB1

9 DB2

10 DB3

11 DB4

12 DB5

13 DB6

14 DB7

15 Backlight VCC (5V) Led+

16 Backlight Ground (0V) Led-

3.4 Mechanical Design

3.4.1 SolidWorks Design

This section will show the design of body, joint, femur and tibia of quadruped

robot. This is a very important part for the project because it will affect the stability of

the robot, the coding written for the microprocessor and the size of robot. Hence there

are some consideration need to be concern during the design of robot.

 The first part to design for the robot is the body of the robot. The things

that need to be concern is the size of the robot. The size of robot is decided base on the

size of microcontroller used in this project. The size of Arduino Mega that used in this

project is 10.2cm x 5.3cm, hence width for the body of robot is decided in 15cm to fit

in the microcontroller. In order to simplify the calculation, the body is design in

symmetry which is 15cm x 15cm.

45

(i) First design of robot’s body

(ii) Second design of robot’s body

Figure 3.9 First and Second Design of Robot’s Body.

Figure 3.9 shown that the first and second design of robot’s body. The body of

robot is design in square shape due to easy fabricate and simplify the calculation for

the walking pattern. The four corners of the body are designed to fit in the horns of

servo motor. In the first design, it is less tough and easy to twist. Therefore, second

design is designed by add an I-beam on the frame of body to strengthen up the strength

of body. This can be understood as a body added a bone. Besides, the body is added

some holes to let some wire pass through.

After finishing the design of body, the joint of robot is designed to mount 2

servos in to 1 joint. The thing that need to be concern when design the joint is the size

to fit servo motor. The place to mount servo motor should be almost same dimension

with servo motor so that it will not be too loose or too tight to fit it. Figure 3.10 below

shows the design of joint in solid work.

(i) Right joint

(ii) Left joint

Figure 3.10 Right and Left Joint of Robot.

The next part is the femur of robot. The length of femur is design in 10cm and

in the end to end of femur are also has holes to mount servo motor. The first design of

femur has the same problem as the body design, it will have twisting problem when

during movement. Hence, the second design also added I-beam to strengthen up the

46

strength of femur. For the length of tibia, it is designed in 16cm. The ratio for tibia and

femur is base on golden ratio 1.618. There is also has 2 design for tibia. This is because

the first design is too weak to hold the body weight of the quadruped robot. Therefore,

the thickness of tibia is increased to strengthen the base. Table 3.8 below show the first

and second design for femur and tibia.

Table 3.8 First and Second Design for Femur and Tibia.

Femur

Design

(i) First design

(ii) Second design

Tibia

Design

(i) First design

(ii) Second design

3.4.2 Material Selection

After finishing the design of quadruped robot, it will come to fabrication

process. However, before fabrication, material used to build the robot need to be

decided. There are some choices can use to fabricate quadruped robot, such as acrylic,

carbon fiber, stainless steel and Polylactic Acid (PLA).

There are some considerations need to be concern before select the material.

The first thing to be concern is the prices of material. Since the budget for this project

is limited, hence the price of material needs to be reasonable to distribute the money

evenly for other components such as electronic components and also to prevent the

project overbudget. The next thing to be concern is the strength of the material. The

47

material used to fabricate the robot need to be able to withstand the weight of the body

and tough enough to withstand some impact when the robot falls down. The last thing

to concern before fabricating the robot is difficulty of fabrication by using the material.

Since this project will has some prototyping to finalize the design of robot, hence a

material that is easy to fabricate is very important so that is will not a lot of waste the

time to build the robot.

After some researches are done, Polylactic Acid (PLA) is chosen as the

material used to fabricate the quadruped robot. The first reason is PLA is relatively

cheap compare to acrylic and stainless steel. After the research about the price for

materials, the price for acrylic, carbon fiber and stainless steel are few times expansive

than PLA and that is the reason PLA is chosen. Beside PLA is able to withstand the

weight of the body of robot and tough enough withstand some impact when the robot

falls down. Lastly, PLA is easy to fabricate compare to other materials. PLA is the

material used for 3D printer and it is easy to fabricate the shape of the robot. As long

as the design of the robot come with CAD drawing, then the 3D is able to print out the

part that we design. Compare to other material such as acrylic, carbon fiber and

stainless steel, they need to use milling machine or lathe machine to fabricate the part

of robot, which it will need more effort and time to fabricate it. Therefore, Polylactic

Acid (PLA) is chosen as the material used for the robot. Figure 3.11 shows the part of

quadruped robot that 3D printed by using material Polylactic Acid (PLA).

Figure 3.11 3D Printed Robot’s Part using PLA

48

3.5 Electronic Design

In this section, the design of circuit for the quadruped robot and remote

controller will be shown and explained. The microcontroller used for the quadruped

robot will be Arduino Mega 2560. For the actuators, 12 servo motors are used, which

means each leg will attach 3 servo motors. The robot will communicate with remote

control through a transceiver call nRF24L01.All of these electronic component will

connected togather to a perf board.

The power supply used for this project will be a 2S1P lithium ion battery, which

will provide a 7.4 V for the circuit. However, this voltage is not suitable for the

electronic components. Therefore, a buck conveter is used to step down the voltage

from 7.4 V to 5.0V. The require voltage needed for servo motor is same as the

microcontroller. However servo motor will draw a lot of ampere when the robot is

walking, and it will cause a voltage drop from the power supply. The voltage drop will

cause microcontroller restart affect the performance of robot. Therefore, separate

power supplys are used for microcontroller and servo motors to solve this problem.

Besides quadruped robot, the circuit for remote controller is also important.

The micro processor used for remote controller is Arduino Nano. This is because the

I/O port require for the remote controller si lesser than the robot. Hence a small

microprocessor is enough to use. For the circuit connection, it need a nrRF24L01

transceiver to transmit the data. A PS2 joystick is also connect to Arudino Nano to use

as an input and a LCD display is used to display the current mode and information of

robot. Figure 3.12 below shows the relationship between all circuit for the robot and

remote controller. Figure 3.13 shows the schematic drawing for the circuit of

quadruped robot and remote controller by Fritzing Software.

49

(i) Schematic for Quadruped

Robot.

(ii) Schematic for Remote

Controller

Figure 3.13 Schematic Drawing for The Circuit of Quadruped Robot

and Remote Controller by Fritzing Software

Arduino Nano

PS2 Joystick

nRF24L01

Transceiver

Arduinob Mega

2560

Servo Motor

nRF24L01

Transceiver

5V power

Supply

5V Power

Supply

5V Power

Supply

Figure 3.12 Relationship Between All Circuit for Quadruped Robot and

Remote Controller.

50

3.6 Fabrication

This section will show the fabrication process of quadruped robot. After the

CAD drawing for quadruped robot, the file will save into STL file. Then the STL file

will open in a 3D printing software called CURA software to process the STL file into

G-code file so that 3D printer is able to process the file. In CURA software, it is able

to choose the infill percentage for the part and some other parameter for the 3D printer.

After that, the G-code file need to transfer to 3D printer and insert the PLA filament

to 3D printer and start printing the parts.

Then, the circuit connection for quadruped robot will solder on a perf board.

The circuit should be simplified so that the circuit is easy connect and easy to debug

when problems happen. The wires for live and neutral for all servo motors are

connected together and power up by a 5V power supply. The signal wires from servo

motors will connect to I/O port of Arduino Mega independently. For nRf24L01

transceiver, it will power up by Arduino Mega 5V output and CSN, CE, MOSI SCK

and MISO port for the transceiver will connect to port 48 to port 52.

After the parts of quadruped robot are printed, the part will be assembled with

servo motor and Arduino Mega. Figure 3.14 shows connection of perf board and

Figure 3.15 shows the fabrication process of quadruped robot.

Figure 3.14 Connection of Perf Board.

51

Figure 3.15 Fabrication Process of quadruped robot.

3.7 Design of Walking Pattern for Quadruped Robot

In this section, the calculation of the degree for each servo will be shown and

explained. After the calculation for the angle, the design of walking patterns will be

shown together with explanation.

3.7.1 Angle Calculation for Each Servo Motor

Before the design of walking pattern of quaduped robot, the calculation for the

angle of servo motor is very important, so that it can be easy to code for the

programming part.

The method used to calculate the angle of servo is covertion of cartesian

coordinate to polar coordinate. There are some parameter needed for the calculation

and main parameter are α, β, and γ which are the angle of femur, tibia and joint

respectively. Figure 3.16 below shows the parameters needed to calculate angle of

servo motor.

52

Figure 3.16 Parameters Needed to Calculate Angle of Servo Motor.

In Figure 3.16, it shows that the coordinate of point at (X, Y, Z). These are the

known variables use to calculate the angle of α, β, and γ. Parameter a is the length of

femur and parameter b is the length of tibia. For parameter c and d, they are the offset

values at joint. Paramter h is the length from origin to the point in XY plane. The

fomula to calculate value h is

𝒉 = √(𝒙𝟐 + 𝒚𝟐)

(3-1)

Then calculate value of 𝜃 by using the formula of,

𝜽 = 𝒔𝒊𝒏−𝟏
𝒅

𝒉
 (3-2)

Then, find the value of w and v by,

𝒘 = 𝒉 × 𝒄𝒐𝒔 𝜽 (3-3)

𝒗 = 𝒘 − 𝒄 (3-4)

Then using the cosine rule formula, where

𝒄𝟐 = 𝒂𝟐 + 𝒃𝟐 − 𝟐𝒂𝒃 𝐜𝐨𝐬 𝒄 (3-5)

The value of α and β can be calculated,

∠𝟐 = 𝒄𝒐𝒔−𝟏
𝒂𝟐 + (𝒛𝟐 + 𝒗𝟐) − 𝒃𝟐

𝟐 × 𝒂 × √𝒛 + 𝒗𝟐

(3-6)

∠𝜶 = ∠𝟏 + ∠𝟐

(3-7)

53

∠𝜶 = 𝒕𝒂𝒏−𝟏
𝒛

𝒗
+ 𝒄𝒐𝒔−𝟏

𝒂𝟐 + (𝒛𝟐 + 𝒗𝟐) − 𝒃𝟐

𝟐 × 𝒂 × √𝒛 + 𝒗𝟐

(3-8)

∠𝜷 =
𝒂𝟐 + 𝒃𝟐 + (𝒛𝟐 + 𝒗𝟐)

𝟐 × 𝒂 × 𝒃

(3-9)

Lastly, the value of γ can be calculated by,

∠𝜸 = 𝒕𝒂𝒏−𝟏
𝒚

𝒙
− 𝜽

(3-10)

After all these calculations, all the angles are found and can be used for the

servo motors. These are the methods to transform a cartesian value to polar value.

However, each leg has its own coordinate system, which is calculated independently.

Therefore, every angle that used for the servo motor must be very careful.

3.7.2 Design for Sprawling Type and Lateral Walking Pattern

The design of sprawling type walking pattern and lateral walking pattern will

start by the standing coordinate for each leg. After that, the coordinate of the step of

each leg need to be decide and then to body movement also need to be consider. Table-

3.9 show the table that coordinate needed to decide and record for quadruped robot’s

leg for lateral and sprawling walking pattern.

Table 3.9 The position of leg that needed to be decide for both

sprawling and lateral walking pattern.

Sprawling

type

Coordinate

Default (x, y, z)

Position 1 (x, y, z)

Position 2 (x, y, z)

Step Leg 1 Leg 2 Leg 3 Leg 4

0

1

2

3

4

5

6

Lateral

type
Coordinate

Default (x, y, z)

Position 1 (x, y, z)

Position 2 (x, y, z)

54

Step Leg 1 Leg 2 Step Leg 1

0

1

2

3

4

5

6

3.8 Programing for Quaduped Robot and Wireless Remote Controller

This part will explain about the programming flow chart for the remote

controller and quadruped robot. The microcontrollers used for this project are Arduino

Mega and Arduino Nano. The Arduino language is basically a C/C++ language. After

the coding is done in Arduino Software (IDE), it will compile into C/C++ and upload

to microcontroller.

55

Figure 3.17 Flow chart for wireless remote controller.

No

Yes

No

No

B
Send forward

command
A

Send stand

command

Send Mode 1

Command

Mode

==1?

Send Mode

2 command

Start

Mode

selection
A B

Command

==

forward?

Command

==

forward?

Send forward

command

Yes

Yes

56

Figure 3.18 Flow chart for quadruped robot.

Figure 3.17 and Figure 3.18 shows the flow chart for wireless remote controller

and quadruped robot respectively. Both of the flow chart is similar to each other. For

the wireless controller, it will receive the command trigged by the user and send the

command to quadruped robot to perform the movement that user wanted to perform.

There are 2 choice of mode are available for the quadruped robot. The first mode is

sprawling type walking pattern and the second type is lateral type of walking pattern.

After the user change the mode, it will wait for user trigger the forward signal to call

No

Yes

No

No

B

Perform forward

Sprawling type

walking pattern
A

Perform standing

position and wait

for next command

Ready for sprawling

walking pattern

Mode

==1?

Ready for lateral

walking pattern

Star

t

Receive signal

from remote

controller

Command

== forward?

Command

== forward?

Perform

forward

Lateral type

walking

pattern

Yes

Yes

57

the quadruped robot to perform forward movement, or else it will perform standing

position to wait for the user give the next command.

3.9 Experiments

3.9.1 Experiment 1:Test the error exists for servo motor

Objective: To test the error occur in actual position for each leg.

Material and Apparatus

1. Servo motors

2. Quadruped robot’s leg printed by 3D printer

3. Protractor

4. Arduino board

Procedures:

1. Assembling the legs printed by 3d printer with the servo motors.

2. Connect servos motor to Arduino board.

3. Set the desire angle for the servo motor in the Arduino program and upload

into Arduino board.

4. Power up Arduino board and servo motor by 18650 lithium ion battery.

5. Use protractor to measure the rotated angle of the servo motor.

6. Record the angle and calculate the error between desire angle and real angle

presented by the servo motor.

Table 3.10 Data Require in Experiment 1

Desired

angle

0 10 20 30 40 50 60 70 80 90

Exact

angle

Error

58

Desired

angle

100 110 120 130 140 150 160 170 180

Exact

angle

Error

Figure 3.19 Experiment 1 Set Up

3.9.2 Experiment 2: Test the errors occurs for the movement of Quadruped

Robot.

Objective: To test the movement of the robot see whether it can move as what

we control.

Material and Apparatus

1. Assembled quadruped robot

2. Ruler and protractor

3. Masking tape

Procedures:

1. Select lateral-type walking mode for the quadruped robot.

2. Use masking tape to make a 2 m line on the flat surface ground.

3. Control the quadruped robot move forward along the line.

59

𝜃

4. Measure the distance displace from the robot to the line.

5. Measure the angle between the line and the robot.

6. Calculate the error for the robot.

7. Repeat 1 to 6 for sprawling-type walking pattern for the quadruped robot.

8. Repeat 1 to 7 by changing the flat surface to grass surface.

9. Repeat 1 to 7 by changing the flat surface to tarred surface.

Table 3.11 Data Require in Experiment 2

Walking type

Flat surface Grass surface Tarred surface

Distance

displace (x)

Angle

(𝜃)

Distance

displace (x)

Angle

(𝜃)

Distance

displace (x)

Angle

(𝜃)

lateral type

Sprawling-

type

Figure 3.20 Experiment 2 Set Up

3.9.3 Experiment 3: Time taken for the robot passthrough different surface

with different walking pattern

Objective: To calculate the speed of the robot when walking on the different

tile surface in different walking pattern.

2m

x

v

60

Material and Apparatus

1. Assembled quadruped robot

2. Ruler

3. Masking tape

4. Stopwatch

Procedures:

1. Select lateral type walking mode for the quadruped robot.

2. Use masking tape to make a marker at 2 m from the starting point on the flat

surface ground.

3. Control the quadruped robot move forward and start counting the time when

it started to move.

4. Stop the time when the robot reached the finish point.

5. Calculate the speed for the robot.

6. Repeat 1 to 5 in lateral-type walking for grass surface.

7. Repeat 1 to 5 in lateral-type walking for tarred surface.

8. Repeat 1 to 7 for sprawling-type walking pattern for the quadruped robot.

Table 3.12 Data Require in Experiment 3

Walking type Surface Time (s)

Lateral type Flat

Grass

Tarred surface

61

2m

2m

Sprawling-type Flat

Grass

Tarred surface

a)

b)

c)

d)

2m

2m

62

2m

2m

e)

f)

Figure 3.21 Experiment 3 Set Up

63

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, the result of this project will be shown, and the result from the

experiments is analyzed and discussed. Basically, the results shown will be the final

design for the quadruped robot, the fabricated quadruped robot, the calibration of

quadruped robot before experiment, the result of walking pattern design and the

experiment results mention in methodology.

4.2 Result for Design and Construction of Quadruped Robot

This is the section to shows the conceptual design and the finalize design of the

quadruped robot. The comparison between conceptual design and finalize design will

be discussed and the calibration for the quadruped robot will be shown before carrying

out the experiments in this project.

4.2.1 Conceptual Design

Figure 4.1 Design of quadruped robot by using hand drawing.

64

Figure 4.1 shows the draft design of quadruped robot which drawn by hand

draft. The draft shows the robot consist of 12 servo motor, and it is controlled by a

joystick controller. The communication between the joystick controller and the

quadruped robot is either Bluetooth or Wi-Fi. Since this robot need to perform

mammal-type and sprawling-type walking pattern, hence the main part of the robot

will be the servo motor 1,4,7, and 10. If the robot wants to perform mammal-type

walking pattern, servo motor 1 and 7 need to turn for 180°, while servo motor 4, and

10 need to turn for 0°. When the robot wants to perform a sprawling-type waking

pattern, the servo motor 1 and 7 need to turn for 135°, while servo motor 4 and 10 need

to turn for 45°. The microprocessor of the robot is Arduino, which is commonly used

and easy to program since it is open source. It will connect to Bluetooth or Wi-Fi

module to communicate with the joystick controller. On the other hand, joystick

controller can change the mode for walking pattern by clicking a button. It can also

add other mode for the robot since the joystick controller has many button to set

different command.

4.2.2 Finalize Design

Figure 4.2 Final design of quadruped robot in SolidWorks.

65

Figure 4.3 Fabricated quadruped robot.

Figure 4.2 and Figure 4.3 show the finalize design for the quadruped robot. The

fabricate hardware result is very close to the finalize design of the quadruped robot.

The 3D printed body of quadruped robot is able to withstand the weight of itself. This

is the result that achieve the expectation and can perform lateral and sprawling type

walking pattern.

However, there has a problem of hardware that affect the performance of

quadruped robot which is the servo motors and servo motor horns. The contact

between servo motors and servo motor horns are not tight enough and cause the shaky

problem when external force applies to the quadruped robot. Besides that, one of the

servo motors is not stable in its performance. Sometime this servo motor malfunction

and sometimes it can work very well. To prevent these problems, happen, replace the

old servo motors horn and replace the servo motor that has problem.

66

4.2.3 Calibration for Quadruped Robot

Figure 4.4 Calibration of quadruped robot’s legs.

Figure 4.4 shown the method to calibrate the legs of quadruped robot. After the

quadruped robot is assembled, the calibration process is a must before carrying out any

experiments. This is because error may happen to mechanical connection during the

installation. Therefore, quadruped robot needs to go through calibration process to

make sure the accuracy of the quadruped robot.

 The way to calibrate is give a reference coordinate for the legs and run

the “Adjust” code written in Arduino. Then, measure the real coordinate for each leg

and key in the value that measured in to the coding. After that run the “verify” code

written in Arduino, then the microprocessor will calculate the error and calibrate it to

the desire coordinate. Lastly, measure the coordinate for the calibrated quadruped

robot’s legs. If the result is close to the desire coordinate, that means the calibration is

successful, or else carry out the calibration process until successful.

67

4.2.4 Walking Pattern Result

Table 4.1 Walking pattern for 1 cycle for sprawling and lateral

walking pattern

Sprawling

type

Coordinate

Default (110, 0, -140)

Position 1 (110, 80, -140)

Position 2 (110, 160, -140)

Step Leg 1 Leg 2 Leg 3 Leg 4

0 Position 1 Position 1 Default Default

1 Position 1 Position 1 Default Position 2

2 Default Position 2 Position 1 Position 1

3 Default Default Position 1 Position 1

4 Position 2 Default Position 1 Position 1

5 Position 1 Position 1 Position 2 Default

6 Position 1 Position 1 Default Default

Lateral

type

Coordinate

Default (0, 40, -160)

Position 1 (0, 60, -160)

Position 2 (0,120, -160)

Step Leg 1 Leg 2 Step Leg 1

0 Position 1 Position 1 Default Default

1 Position 1 Position 1 Default Position 2

2 Default Position 2 Position 1 Position 1

3 Default Default Position 1 Position 1

4 Position 2 Default Position 1 Position 1

5 Position 1 Position 1 Position 2 Default

6 Position 1 Position 1 Default Default

Sprawling type

68

Lateral type

Figure 4.5 Sprawling type and lateral type of walking pattern.

Table 4.1 shows the walking pattern for 1 cycle for both sprawling and lateral

walking pattern. The cycle for each leg is similar for both walking pattern. The main

different between these two types of walking pattern is the position of the leg. For

sprawling type waling pattern, its standing surface area is bigger than lateral type

walking pattern. However, the height of the quadruped robot in lateral type walking

pattern is higher than sprawling type. By comparing the differences, it can be

concluded that sprawling type walking pattern is a more stable walking pattern

compare to lateral type of walking pattern. This is because sprawling type walking

pattern has a larger base and lower center of gravity (CG).

4.3 Experiment Results

4.3.1 Accuracy test for servo motors for each leg of the quadruped robot

Table 4.2 Exact angle and error occur on servo motor

Desired

angle

0 10 20 30 40 50 60 70 80 90

Exact

angle

0 10 20 30 40 50 59 68 78 85

Error 0% 0% 0% 0% 0% 0% 1.67% 2.86% 2.5% 5.56%

Desired

angle

100 110 120 130 140 150 160 170 180

Exact

angle

95 105 115 125 133 140 150 160 170

Error 5% 4.55% 4.17% 3.85% 5% 6.67% 6.25% 5.88% 5.56%

69

Table 4.2 shown the error that occur on servo motors. The error is calculated

by the different between desired angle and the exact angle measured divide by desired

angle multiply by 100%.

𝑬𝒓𝒓𝒐𝒓 =
𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒂𝒏𝒈𝒍𝒆 − 𝒆𝒙𝒄𝒂𝒕 𝒂𝒏𝒈𝒍𝒆

𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒂𝒏𝒈𝒍𝒆
× 𝟏𝟎𝟎%

(4-1)

The received result is used to plot the graph in Figure4.6 below.

Figure 4.6 Graph of error occur (%) against the desire angle.

Base on the calculated error, it shows that the error of servo motors is below

10%, which is similar to the result in the data sheet given. The accuracy of servo

motors below 40° is 100%. The errors occur when the servo motor rotate more than

40° and the peak error occur when the servo motor rotate to 150° which is 6.67% of

error. Through this experiment, the expected result for the error occur for walking

pattern will be around 10 % since the accuracy of the quadruped robot is depend on

the accuracy of servo motors.

-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 20 40 60 80 100 120 140 160 180

Error

70

4.3.2 Accuracy test for quadruped robot while walking in different walking

pattern and different movements.

This experiment will calculate the error occur on the robot while it is walking

in different walking pattern and different movement. Figure 4.6 below shows the

experiment carryout on different surfaces.

Tarred surface

Grass surface

Flat surface

Figure 4.7 The experiment carried out on different surface.

71

Table 4.3 The offset distances and angles when quadruped walk

through 2 m of different surface environments.

Walking

type

Flat surface Grass surface Tarred surface

Offset

displace (x/

cm)

Angle

(𝜃)

Offset

displace (x/

cm)

Angle

(𝜃)

Offset

displace (x/

cm)

Angle

(𝜃)

lateral type 26 7.4° Fail - 39 11.03°

Sprawling-

type

15 4.28° 63 17.48° 28 7.97°

Table 4.3 show the offset distances and angles when quadruped walk through

2 m of different surface environments. The angle is calculated by using the formula

𝒂𝒏𝒈𝒍𝒆(𝜽) = 𝒕𝒂𝒏−𝟏
𝒐𝒇𝒇𝒔𝒆𝒕 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒙)

𝟐𝟎𝟎𝒄𝒎

(4-2)

The offset distance (x) is then used to calculate the error by the formula below,

𝑬𝒓𝒓𝒐𝒓 =
𝒐𝒇𝒇𝒔𝒆𝒕 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝒙)

𝟐𝟎𝟎𝒄𝒎
× 𝟏𝟎𝟎%

(4-3)

Table 4.4 The offset distances and calculated error for quadruped

walk through 2 m of different surface environments.

Walking type

Flat surface Grass surface Tarred surface

Offset

displace (x/

cm)

Error

(%)

Offset

displace (x/

cm)

Error

(%)

Offset

displace (x/

cm)

Error

(%)

lateral type 26 13 Fail - 39 19.5

Sprawling-

type

15 7.5 63 31.5 28 14

Base on the result on Table 4.4, it shows that the error occurs for sprawling

type walking pattern is relatively smaller than a lateral type walking pattern. The error

72

occurs in flat surface for sprawling type of walking pattern is 7.5%, and the error

occurs in flat surface for lateral walking pattern is 13%. However, the error increased

for both type of walking pattern on grass surface. The error occur for sprawling type

walking pattern is 31.5% and the lateral type of walking pattern cannot complete the

task on grass surface. For the tarred surface the error for sprawling type walking pattern

is 14% while lateral type walking pattern is 19.5%.

Based to the result, both type of walking pattern can perform well in a flat

surface and error occur is below 15%, The error start to increase for both walking

pattern when walking a tarred surface. This is because the friction on a tarred surface

is higher than flat surface. The worst result for both walking pattern is walking on grass

surface. This is because grass surface is an uneven surface and the quadruped robot is

trapped by some grass when walking on grass. Lateral walking pattern cannot

complete the task on grass surface because the centre of gravity (CG)is higher in this

walking pattern and the surface area of its base is smaller. It was fall down when

perform a few step movements on the grass surface.

4.3.3 Speed test for the quadruped robot in different type of walking pattern

on different surfaces.

Table 4.5 Time taken for sprawling type and lateral type of walking

pattern walk on different surfaces for 2 meters.

Walking type Surface Time (s)

Sprawling-type

Flat 37.7

Grass 59.8

Tarrred surface 48.5

Lateral type Flat 39.2

Grass -

Tarred surface 50.4

73

Table 4.5 shown the time taken for sprawling type and lateral type of walking

pattern walk on different surfaces for 2 meters. The result is then use for calculating

the speed for both type of walking pattern on different surfaces. The formula to

calculate the speed is,

𝑺𝒑𝒆𝒆𝒅 =
𝟐𝒎

𝒕𝒊𝒎𝒆

(4-4)

Table 4.6 The speed calculated for sprawling type and lateral type of

walking pattern walk on different surfaces for 2 meters.

Walking type Surface Time (s) Speed (m/s)

Sprawling-type

Flat 28.4 0.070

Grass 48.5 0.041

Rock surface 37.7 0.053

Lateral type Flat 39.2 0.051

Grass - -

Rock surface 50.4 0.040

The calculated speed for both sprawling type and lateral type of walking pattern

on different surfaces is shown on the Table 4.6. In general, the speed for sprawling

type walking pattern is higher than lateral type walking pattern. This is because the

step for lateral type walking pattern is smaller than sprawling type walking pattern.

The performance of quadruped robot in a flat surface is the best for both sprawling

type and lateral type of walking pattern. The speed on a flat surface for sprawling and

lateral type of walking pattern are 0.070m/s and 0.051m/s respectively. For the rock

surface, the speed of sprawling type walking pattern is 0.053m/s while lateral type

walking pattern is 0.040m/s. The performance is on grass surface is the worst for both

walking pattern. Sprawling type walking pattern only reach the speed on 0.041m/s

when walking on grass surface, while lateral type walking pattern totally cannot

complete the task.

74

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, this design and construction of a 4-legged robot in various

surface environment is success because all the objectives are achieved. The first

objective is design and construct a quadruped robot, and it is successfully been

develop. The quadruped is able to control by a wireless remote controller and is able

to perform 2 walking patterns which are sprawling type and lateral type of walking

pattern. This is another objective that achieved in this project. The last objective is to

analyze the walking pattern of the quadruped robot. The quadruped robot is analyzed

in the accuracy and the speed for both sprawling and lateral type of walking pattern.

5.2 Future Works

There are some issues that needed to be concern for the project. The first thing

is the design of the quadruped robot. The dimension of the servo motor needs to be

measured properly so that the 3D printed part for the robot can fit the servo motors.

Besides the circuit of the robot also need to be design properly, so that the servo motors

have enough power to power up all 12 servo motors. Then the calibration of robot

needs to be done before carrying out the experiments. It is a very important part for

quadruped robot, because it will affect the accuracy of robot.

75

REFERENCES

[1] C. Hilary Whiteman, “Japan officials: Missing bolts may have caused tunnel

collapse,” CNN. [Online]. Available:

https://edition.cnn.com/2012/12/03/world/asia/japan-tunnel-collapse-

bolts/index.html.

[2] R. P. Marc Raibert, Kevin Blankespoor, Gabriel Nelson, “BigDog, the Rough-

Terrain Quadruped Robot Marc,” Proc. 17th IFAC World Congr., pp. 1–8,

2008.

[3] S. Kitano, S. Hirose, A. Horigome, and G. Endo, “TITAN-XIII: sprawling-

type quadruped robot with ability of fast and energy-efficient walking,”

ROBOMECH J., vol. 3, no. 1, pp. 1–16, 2016.

[4] L. Wang, W. Du, X. Mu, X. Wang, G. Xie, and C. Wang, “A geometric

approach to solving the stable workspace of quadruped bionic robot with

hand-foot-integrated function,” Robot. Comput. Integr. Manuf., vol. 37, pp.

68–78, 2016.

[5] B. Na and K. Kong, “Design of a One Degree-of-Freedom Quadruped Robot

Based on a Mechanical Link System: Cheetaroid-II,” IFAC-PapersOnLine,

vol. 49, no. 21, pp. 409–415, 2016.

[6] I. Gonzalez-Luchena, A. G. Gonzalez-Rodriguez, A. Gonzalez-Rodriguez, C.

Adame-Sanchez, and F. J. Castillo-Garcia, “A new algorithm to maintain

lateral stabilization during the running gait of a quadruped robot,” Rob. Auton.

Syst., vol. 83, pp. 57–72, 2016.

[7] M. Li, Z. Jiang, P. Wang, L. Sun, and S. S. Ge, “Control of a quadruped robot

with bionic springy legs in trotting gait,” J. Bionic Eng., vol. 11, no. 2, pp.

188–198, 2014.

[8] M. C. García-López, E.Gorrostieta-Hurtado, E. Vargas-Soto, J. M. Ramos-

Arreguín, A. Sotomayor-Olmedo, and J. C. M. Morales, “Kinematic analysis

for trajectory generation in one leg of a hexapod robot,” Procedia Technol.,

vol. 3, pp. 342–350, 2012.

76

[9] V. G. Loc, I. M. Koo, D. T. Tran, S. Park, H. Moon, and H. R. Choi,

“Improving traversability of quadruped walking robots using body movement

in 3D rough terrains,” Rob. Auton. Syst., vol. 59, no. 12, pp. 1036–1048, 2011.

[10] H. C. Shamsudin, M. A. Ayob, W. N. Wan Zakaria, and M. F. Zakaria,

“Modeling and Simulation for One Leg of Quadruped Robot Trajectory,”

Appl. Mech. Mater., vol. 826, no. February, pp. 140–145, 2016.

[11] H. Nakashima, M. Tokuda, H. Yamamoto, and M. Funakoashi, “Load

Distribution and Body Angle Measurement in Static Walking of a Quadruped

Walking Robot,” IFAC Proc. Vol., vol. 33, no. 29, pp. 95–99, 2000.

[12] T. Zielinska and J. Heng, “Mechanical design of multifunctional quadruped,”

Mech. Mach. Theory, vol. 38, no. 5, pp. 463–478, 2003.

[13] L. C. Hale, Principles and Techniques for Designing Precision Machines, no.

February. 1999.

[14] C. D. Remy et al., “Walking and crawling with ALoF: a robot for autonomous

locomotion on four legs,” Ind. Robot An Int. J., vol. 38, no. 3, pp. 264–268,

2011.

[15] G. S.Sukhatme, “The Design and Control of a Prototype Quadruped

Microrover,” Robot. Res. Lab. Dep. ofComputer Sci. Inst. Robot. Intell. Syst.,

vol. 220, p. 25, 1997.

[16] C. Semini, N. G. Tsagarakis, B. Vanderborght, Y. Yang, and D. G. Caldwell,

“HyQ – Hydraulically Actuated Quadruped Robot Hopping Leg

Prototype.pdf,” 2nd Bienn. IEEE/RAS-EMBS Int. Conf. Biomed. Robot.

Biomechatronics, pp. 593–599, 2008.

[17] M. H. Raibert, “Legged robots,” Commun. ACM, vol. 29, no. 6, pp. 499–514,

1986.

[18] C. P. Santos and V. Matos, “Gait transition and modulation in a quadruped

robot: A brainstem-like modulation approach,” Rob. Auton. Syst., vol. 59, no.

9, pp. 620–634, 2011.

[19] R. B. Mcghee and A. A. Fkask, “On the Stability Properties of Quadruped

77

Creeping Gaits,” Math. Biosci. 3, vol. 351, pp. 331–351, 1968.

[20] K. Inagaki and H. Kobayashi, “A Gait Transition for Quadruped Walking

Machine,” Proceeding ofthe 1993 IEEE/RSJ Int. Conf. Intell. Robot. Syst., vol.

00, no. c, pp. 525–531, 1993.

[21] F. Hardarson, “Stability analysis and synthesis of statically balanced walking

for quadruped robots,” Royal Institude of Technology, KTH, 2002.

[22] M. Buehler, R. Playter, and M. Raibert, “Robots Step Outside,” Int. Symp.

Adapt. Motion Anim. Mach., no. September 2005, 2005.

[23] R. Playter, M. Buehler, M. Raibert, and B. Dynamics, “BigDog,” Proc. SPIE

6230, pp. 896-901, no. April 2006, 2006.

78

APPENDICES

APPENDIX A GANTT CHART

Activity

WEEK

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Briefing

Registration

Gantt Chart

Literature Review

Introduction

Objective

Scope

Problem Statement

Methodology

Preliminary Result

Ready for Slide

Finish Slide

Presentation

Plan FYP 2

79

Activity

WEEK

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Technical Drawing

Circuit Diagram

Fabrication

Assemble

Programming

Testing

Analysis

Technical Report

Presentation

80

APPENDIX B CODING FOR QUADRUPED ROBOT.

#include <FlexiTimer2.h>

#include <SPI.h>

#include <nRF24L01.h>

#include <printf.h>

#include <RF24.h>

#include <RF24_config.h>

#include <EEPROM.h>

#include <Servo.h>

/* Have a serial monitor to check error*/

//#define SERIAL_PRINT

//#define SERIAL_PRINT_WIFI

//#define SERIAL_PRINT_WALKING

/* Installation and Adjustment ---*/

//#define INSTALL //uncomment only this to install the robot

//#define ADJUST //uncomment only this to adjust the servos

//#define VERIFY //uncomment only this to verify the adjustment

const float adjust_site[3] = { 160, 160, 120 };

const float real_site[4][3] = { { 183, 153, 65 }, { 164.5, 159, 109 }, { 165.5, 157.5,

95 }, { 165, 169, 89 }};

/*servos ---*/

Servo servo[4][3];

//define servos ports

const int servo_pin[4][3] = {{25, 23, 27}, {31, 29, 33}, {37, 39, 35} , {43, 45, 41}};

/* Wireless communication --*/

//dfine RF24 for nRF24l01

RF24 radio(48, 49); //CNS,CE

//define RF24 transmit address

const byte address[6] = "00001";

81

/* Size of the robot ---*/

const float length_a = 100;

const float length_b = 160;

const float length_c = 35.5;

const float length_d = 10;

const float length_side = 66;

const float z_absolute = -45;

/* Constants for movement --*/

const float z_default_1 = -140, z_default_2 = -140, z_default_3 = -160;

const float z_boot = z_absolute, z_up_1 = -10, z_up_2 = -90, z_up_3 = -90;

const float x_default_1 = 110, x_default_2 = 110, x_default_3 = 0, x_offset = 0;

const float y_start_1 = 0, y_start_2 = 0, y_start_3 = 40;

const float y_step_1 = 80 , y_step_2 = 80, y_step_3 = 60, y_offset = 30;

/* variables for movement --*/

volatile float site_now[4][3]; //real-time coordinates of the end of each leg

volatile float site_expect[4][3]; //expected coordinates of the end of each leg

float temp_speed[4][3]; //each axis' speed, needs to be recalculated before

each movement

float move_speed; //movement speed

float speed_multiple = 1; //movement speed multiple

float x_default = x_default_1;

float y_start = y_start_1;

float y_step = y_step_1;

float z_up = z_up_1;

float z_default = z_default_1;

const float spot_turn_speed = 2;

const float leg_move_speed = 3;

const float leg_trot_speed = 4;

const float body_move_speed = 1.5;

const float stand_seat_speed = 1;

volatile int rest_counter; //+1/0.02s, for automatic rest

const int wait_rest_time = 3 * 50; //3s*50Hz, the time wait for automatic rest

//functions' parameter

82

const float KEEP = 255;

//define PI for calculation

const float pi = 3.1415927;

/* Constants for turn --*/

//temp length

const float temp_a = sqrt(pow(2 * x_default + length_side, 2) + pow(y_step, 2));

const float temp_b = 2 * (y_start + y_offset + y_step) + length_side;

const float temp_c = sqrt(pow(2 * x_default + length_side, 2) + pow(2 * y_start +

y_offset + y_step + length_side, 2));

const float temp_alpha = acos((pow(temp_a, 2) + pow(temp_b, 2) - pow(temp_c, 2))

/ 2 / temp_a / temp_b);

//site for turn

const float turn_x1 = (temp_a - length_side) / 2;

const float turn_y1 = y_start + y_offset + y_step / 2;

const float turn_x0 = turn_x1 - temp_b * cos(temp_alpha);

const float turn_y0 = temp_b * sin(temp_alpha) - turn_y1 - length_side;

/* ---*/

/* Data receive from controller ---*/

int M = 1;

struct package {

 int mode = 1;

 int leg = 0;

 // int servo_value[4][3] = {{90, 90, 90}, {90, 90, 90}, {90, 90, 90}, {90, 90, 90}};

 int z_axis = 0;

 int Mode_1_CMD = 0; // 0 = stand, 1 = forward, 2 = backward, 3 = turn_left, 4 =

turn_right;

 int Move_speed = 0; // add move speed of the robot

 int Mode_2_CMD = 0; // 0 = stand, 1 = forward, 2 = backward, 3 = turn_left, 4 =

turn_right;

 int Mode_3_CMD = 0; // 0 = stand, 1 = forward, 2 = backward

};

typedef struct package Package;

Package data;

83

void setup() {

 Serial.begin(9600);

#ifdef INSTALL

 //initialize all servos

 for (int i = 0; i < 4; i++)

 {

 for (int j = 0; j < 3; j++)

 {

 servo[i][j].attach(servo_pin[i][j]);

 delay(100);

 }

 }

 Serial.print("Installation Complete");

 while (1);

#endif

#ifdef ADJUST

 adjust();

 Serial.println("Adjust done");

 while (1);

#endif

#ifdef VERIFY

 verify();

 Serial.println("Verify done");

 while (1);

#endif

 Serial.println("Robot ready to start!!!");

 radio.begin();

 radio.openReadingPipe(0, address);

 radio.setPALevel(RF24_PA_HIGH);

 radio.startListening();

 Serial.println("Radio listening started");

 //initialize default parameter

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_boot);

84

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_boot);

 set_site(2, x_default + x_offset, y_start + y_offset, z_boot);

 set_site(3, x_default + x_offset, y_start + y_offset, z_boot);

 for (int i = 0; i < 4; i++)

 {

 for (int j = 0; j < 3; j++)

 {

 site_now[i][j] = site_expect[i][j];

 }

 }

 //start servo service

 FlexiTimer2::set(20, servo_wifi_service);

 FlexiTimer2::start();

 Serial.println("Servo service started");

 //initialize servos

 for (int i = 0; i < 4; i++)

 {

 for (int j = 0; j < 3; j++)

 {

 servo[i][j].attach(servo_pin[i][j]);

 delay(100);

 }

 }

 Serial.println("Servos initialized");

 Serial.println("Robot initialization Complete");

 stand(data.z_axis);

 Serial.println("Robot Standing");

}

void loop()

{

#ifdef INSTALL

 while (1);

#endif

85

#ifdef ADJUST

 while (1);

#endif

#ifdef VERIFY

 while (1);

#endif

 if (data.mode == 1)

 {

 x_default = x_default_1;

 y_start = y_start_1;

 y_step = y_step_1;

 z_up = z_up_1;

 z_default = z_default_1;

 Serial.println("Mode 1");

 if (M != 1)

 {

 sit();

 move_speed = stand_seat_speed;

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_boot);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_boot);

 set_site(2, x_default + x_offset, y_start + y_offset+ y_step, z_boot);

 set_site(3, x_default + x_offset, y_start + y_offset+ y_step, z_boot);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset, z_boot);

 set_site(3, x_default + x_offset, y_start + y_offset, z_boot);

 wait_all_reach();

 M = 1;

 }

 switch (data.Mode_1_CMD)

 {

 case 0:

 stand(data.z_axis);

 break;

86

 case 1:

 Serial.println("Step forward");

 step_forward(1, data.z_axis, data.Move_speed);

 break;

 case 2:

 Serial.println("Step backward");

 step_back(1, data.z_axis, data.Move_speed);

 break;

 case 3:

 Serial.println("Turn left");

 turn_left(1, data.z_axis, data.Move_speed);

 break;

 case 4:

 Serial.println("Turn right");

 turn_right(1, data.z_axis, data.Move_speed);

 break;

 }

 }

 else if (data.mode == 2)

 {

 x_default = x_default_2;

 y_start = y_start_2;

 y_step = y_step_2;

 z_up = z_up_2;

 z_default = z_default_2;

 Serial.println("Mode 2");

 if (M != 2)

 {

 sit();

 move_speed = stand_seat_speed;

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_boot);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_boot);

 set_site(2, x_default + x_offset, y_start + y_offset+ y_step, z_boot);

87

 set_site(3, x_default + x_offset, y_start + y_offset+ y_step, z_boot);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset, z_boot);

 set_site(3, x_default + x_offset, y_start + y_offset, z_boot);

 wait_all_reach();

 M = 2;

 }

 switch (data.Mode_2_CMD)

 {

 case 0:

 Serial.println ("Stand");

 stand(data.z_axis);

 break;

 case 1:

 Serial.println("Step forward");

 step_forward_M2(1, data.z_axis, data.Move_speed);

 break;

 case 2:

 Serial.println("Step backward");

 step_backward_M2(1, data.z_axis, data.Move_speed);

 break;

 case 3:

 Serial.println("Turn left");

 turn_left_M2(1, data.z_axis, data.Move_speed);

 break;

 case 4:

 Serial.println("Turn right");

 turn_right_M2(1, data.z_axis, data.Move_speed);

 break;

 }

 }

 if (data.mode == 3)

 {

88

 x_default = x_default_3;

 y_start = y_start_3;

 y_step = y_step_3;

 z_up = z_up_3;

 z_default = z_default_3;

 Serial.println("Mode 3");

 if (M != 3)

 {

 sit();

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_boot);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_boot);

 set_site(2, x_default + x_offset, y_start + y_offset+ y_step, z_boot);

 set_site(3, x_default + x_offset, y_start + y_offset+ y_step, z_boot);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset, z_boot);

 set_site(3, x_default + x_offset, y_start + y_offset, z_boot);

 wait_all_reach();

 M = 3;

 }

 switch (data.Mode_3_CMD)

 {

 case 0:

 // Serial.println ("Stand");

 stand(data.z_axis);

 break;

 case 1:

 Serial.println("Step forward");

 step_forward_M3(1, data.z_axis, data.Move_speed);

 break;

 case 2:

 Serial.println("Step backward");

 step_backward_M3(1, data.z_axis, data.Move_speed);

 break;

89

 // case 3:

 // Serial.println("Turn left");

 // turn_left_M3(1, data.z_axis, data.Move_speed);

 // break;

 // case 4:

 // Serial.println("Turn right");

 // turn_right_M3(1, data.z_axis, data.Move_speed);

 // break;

 }

 }

 else

 {

 Serial.print("Stand height");

 Serial.println(data.z_axis);

 stand(data.z_axis);

 }

}

void adjust(void)

{

 //initializes eeprom's errors to 0

 //number -100 - +100 is map to 0 - +200 in eeprom

 Serial.println("start adjust");

 for (int i = 0; i < 4; i++)

 {

 for (int j = 0; j < 3; j++)

 {

 EEPROM.write(i * 6 + j * 2, 100); //write 100 to fit the calculation in polar

to servo

 EEPROM.write(i * 6 + j * 2 + 1, 100); //write 100 to fit the calculation in polar

to servo

 }

 }

 //initializes the relevant variables to adjustment position

90

 for (int i = 0; i < 4; i++)

 {

 set_site(i, adjust_site[0], adjust_site[1], adjust_site[2] + z_absolute);

 for (int j = 0; j < 3; j++)

 {

 site_now[i][j] = site_expect[i][j];

 }

 }

 //start servo service

 FlexiTimer2::set(20, servo_wifi_service);

 FlexiTimer2::start();

 //initialize servos

 for (int i = 0; i < 4; i++)

 {

 for (int j = 0; j < 3; j++)

 {

 servo[i][j].attach(servo_pin[i][j]);

 delay(100);

 }

 }

}

void verify(void)

{

 //calculate correct degree

 float alpha0, beta0, gamma0;

 cartesian_to_polar(alpha0, beta0, gamma0, adjust_site[0], adjust_site[1],

adjust_site[2] + z_absolute);

 //calculate real degree and errors

 float alpha, beta, gamma;

 float degree_error[4][3];

 for (int i = 0; i < 4; i++)

 {

91

 cartesian_to_polar(alpha, beta, gamma, real_site[i][0], real_site[i][1],

real_site[i][2] + z_absolute);

 degree_error[i][0] = alpha0 - alpha;

 degree_error[i][1] = beta0 - beta;

 degree_error[i][2] = gamma0 - gamma;

 }

 //save errors to eeprom

 for (int i = 0; i < 4; i++)

 {

 for (int j = 0; j < 3; j++)

 {

 EEPROM.write(i * 6 + j * 2, (int)degree_error[i][j] + 100);

 EEPROM.write(i * 6 + j * 2 + 1, (int)(degree_error[i][j] * 100) % 100 + 100);

 }

 }

 //initializes the relevant variables to adjustment position

 for (int i = 0; i < 4; i++)

 {

 set_site(i, adjust_site[0], adjust_site[1], adjust_site[2] + z_absolute);

 for (int j = 0; j < 3; j++)

 {

 site_now[i][j] = site_expect[i][j];

 }

 }

 //start servo service

 FlexiTimer2::set(20, servo_wifi_service);

 FlexiTimer2::start();

 //initialize servos

 for (int i = 0; i < 4; i++)

 {

 for (int j = 0; j < 3; j++)

 {

 servo[i][j].attach(servo_pin[i][j]);

92

 delay(100);

 }

 }

}

void servo_wifi_service(void)

{

 sei();

 if (radio.available())

 {

 radio.read(&data, sizeof(data));

 }

#ifdef SERIAL_PRINT

 Serial.println("adjusted angle");

#endif

 static float alpha, beta, gamma;

 for (int i = 0; i < 4; i++)

 {

 for (int j = 0; j < 3; j++)

 {

 if (abs(site_now[i][j] - site_expect[i][j]) >= abs(temp_speed[i][j]))

 site_now[i][j] += temp_speed[i][j];

 else

 site_now[i][j] = site_expect[i][j];

 }

#ifdef SERIAL_PRINT

 Serial.print("Leg:");

 Serial.println(i);

#endif

 cartesian_to_polar(alpha, beta, gamma, site_now[i][0], site_now[i][1],

site_now[i][2]);

 polar_to_servo(i, alpha, beta, gamma);

 }

 // rest_counter++;

93

}

/*

 - set one of end points' expect site

 - this founction will set temp_speed[4][3] at same time

 - non - blocking function

 ---*/

void set_site(int leg, float x, float y, float z)

{

 float length_x = 0, length_y = 0, length_z = 0;

 if (x != KEEP)

 length_x = x - site_now[leg][0];

 if (y != KEEP)

 length_y = y - site_now[leg][1];

 if (z != KEEP)

 length_z = z - site_now[leg][2];

 float length = sqrt(pow(length_x, 2) + pow(length_y, 2) + pow(length_z, 2));

 temp_speed[leg][0] = length_x / length * move_speed * speed_multiple;

 temp_speed[leg][1] = length_y / length * move_speed * speed_multiple;

 temp_speed[leg][2] = length_z / length * move_speed * speed_multiple;

 if (x != KEEP)

 site_expect[leg][0] = x;

 if (y != KEEP)

 site_expect[leg][1] = y;

 if (z != KEEP)

 site_expect[leg][2] = z;

}

void cartesian_to_polar(volatile float &alpha, volatile float &beta, volatile float

&gamma, volatile float x, volatile float y, volatile float z)

{

 //calculate w-z degree

 // Serial.print(length_a);

 // Serial.print(",");

 // Serial.print(length_b);

94

 // Serial.print(",");

 // Serial.println(length_c);

 float v, w, h;

 float theta, delta;

 h = (x >= 0 ? 1 : -1) * (sqrt(pow(x, 2) + pow(y, 2)));

 theta = asin(30 / h);

 w = h * cos(theta);

 v = w - length_c;

 alpha = atan2(z, v) + acos((pow(length_a, 2) - pow(length_b, 2) + pow(v, 2) +

pow(z, 2)) / 2 / length_a / sqrt(pow(v, 2) + pow(z, 2)));

 beta = acos((pow(length_a, 2) + pow(length_b, 2) - pow(v, 2) - pow(z, 2)) / 2 /

length_a / length_b);

 //calculate x-y-z degree

 gamma = (w >= 0) ? atan2(y, x) - theta : atan2(-y, -x) + theta;

 //trans degree pi->180

 alpha = alpha / pi * 180;

 beta = beta / pi * 180;

 gamma = gamma / pi * 180;

 theta = theta / pi * 180;

#ifdef SERIAL_PRINT

 Serial.println("expected angle");

 Serial.print(alpha);

 Serial.print(",");

 Serial.print(beta);

 Serial.print(",");

 Serial.print(gamma);

 Serial.print(",");

 Serial.println(theta);

 delay (1000);

#endif

}

void polar_to_servo(int leg, float alpha, float beta, float gamma)

{

95

 float alpha_error = EEPROM.read(leg * 6 + 0) - 100 + ((float)EEPROM.read(leg *

6 + 1) - 100) / 100;

 float beta_error = EEPROM.read(leg * 6 + 2) - 100 + ((float)EEPROM.read(leg *

6 + 3) - 100) / 100;

 float gamma_error = EEPROM.read(leg * 6 + 4) - 100 + ((float)EEPROM.read(leg

* 6 + 5) - 100) / 100;

#ifdef SERIAL_PRINT

 Serial.println("Read eeprom memory");

 Serial.print("leg:");

 Serial.println(leg);

 Serial.print(alpha_error);

 Serial.print(",");

 Serial.print(beta_error);

 Serial.print(",");

 Serial.println(gamma_error);

#endif

 alpha += alpha_error;

 beta += beta_error;

 gamma += gamma_error;

 if (leg == 0)

 {

 alpha = 90 - alpha;

 beta = beta;

 gamma = 180 - gamma;

 // gamma = (gamma >= 180 ? 180 : gamma);

 }

 else if (leg == 1)

 {

 alpha = alpha + 90;

 beta = 180 - beta;

 gamma = gamma;

 // gamma = (gamma <= 0 ? 0 : gamma);

 }

96

 else if (leg == 2)

 {

 alpha = 90 - alpha;

 beta = beta;

 gamma = 180 - gamma;

 // gamma = (gamma >= 180 ? 180 : gamma);

 }

 else if (leg == 3)

 {

 alpha = alpha + 90;

 beta = 180 - beta;

 gamma = gamma;

 // gamma = (gamma <= 0 ? 0 : gamma);

 }

#ifdef SERIAL_PRINT

 Serial.print(alpha);

 Serial.print(",");

 Serial.print(beta);

 Serial.print(",");

 Serial.println(gamma);

 delay (1000);

#endif

 servo[leg][0].write(alpha);

 servo[leg][1].write(beta);

 servo[leg][2].write(gamma);

}

void wait_reach(int leg)

{

 while (1)

 if (site_now[leg][0] == site_expect[leg][0])

 if (site_now[leg][1] == site_expect[leg][1])

 if (site_now[leg][2] == site_expect[leg][2])

 break;

97

}

/*

 - wait one of end points move to one site

 - blocking function

 ---*/

void wait_reach(int leg, float x, float y, float z)

{

 while (1)

 if (site_now[leg][0] == x)

 if (site_now[leg][1] == y)

 if (site_now[leg][2] == z)

 break;

}

/*

 - wait all of end points move to expect site

 - blocking function

 ---*/

void wait_all_reach(void)

{

 for (int i = 0; i < 4; i++)

 wait_reach(i);

}

/*

 - sit

 - blocking function

 ---*/

void sit(void)

{

 move_speed = stand_seat_speed;

 for (int leg = 0; leg < 4; leg++)

 {

 set_site(leg, KEEP, KEEP, z_boot);

 }

98

 wait_all_reach();

}

/*

 - stand

 - blocking function

 ---*/

void stand(int z_val)

{

 move_speed = stand_seat_speed;

 for (int leg = 0; leg < 4; leg++)

 {

 set_site(leg, KEEP, KEEP, z_default - z_val);

 }

 wait_all_reach();

}

void step_forward(unsigned int step, int z_val, int M_speed)

{

 move_speed = leg_move_speed + M_speed;

 while (step-- > 0)

 {

 if (site_now[3][1] == y_start + y_offset)

 {

 Serial.println ("Part 1");

 //leg 3&1 move

 set_site(3, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 wait_all_reach();

 move_speed = body_move_speed + M_speed / 2;

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

99

 set_site(1, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 set_site(2, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(3, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 move_speed = leg_move_speed + M_speed;

 set_site(1, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 else

 {

 Serial.println ("part 2");

 //leg 0&2 move

 set_site(0, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 wait_all_reach();

 move_speed = body_move_speed + M_speed / 2;

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(2, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 move_speed = leg_move_speed + M_speed;

 set_site(2, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

100

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 }

}

void step_back(unsigned int step, int z_val, int M_speed)

{

 move_speed = leg_move_speed + M_speed;

 while (step-- > 0)

 {

 if (site_now[2][1] == y_start + y_offset)

 {

 Serial.println ("Part 1");

 //leg 2&0 move

 set_site(2, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 wait_all_reach();

 move_speed = body_move_speed + M_speed / 2;

 set_site(0, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(2, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(3, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 move_speed = leg_move_speed + M_speed;

 set_site(0, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

101

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 else

 {

 Serial.println ("Part 2");

 //leg 1&3 move

 set_site(1, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 wait_all_reach();

 move_speed = body_move_speed + M_speed / 2;

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(3, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 wait_all_reach();

 move_speed = leg_move_speed + M_speed;

 set_site(3, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 }

102

}

void turn_left(unsigned int step, int z_val, int M_speed)

{

 move_speed = spot_turn_speed + M_speed / 2;

 while (step-- > 0)

 {

 if (site_now[2][1] == y_start + y_offset)

 {

 //leg 2&1 move

 set_site(2, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(1, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(2, turn_x0 + x_offset, turn_y0, z_up);

 set_site(3, turn_x1 + x_offset, turn_y1, z_default - z_val);

 wait_all_reach();

 set_site(2, turn_x0 + x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(1, turn_x0 + x_offset, turn_y0, z_default - z_val);

 set_site(2, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(3, turn_x1 - x_offset, turn_y1, z_default - z_val);

 wait_all_reach();

 set_site(1, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(1, x_default + x_offset, y_start + y_offset, z_up);

 set_site(2, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(3, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

103

 else

 {

 //leg 0&3 move

 set_site(0, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, turn_x0 + x_offset, turn_y0, z_up);

 set_site(1, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(2, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(3, turn_x0 - x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x0 + x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(1, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(2, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(3, turn_x0 + x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(3, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(3, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 }

}

void turn_right(unsigned int step, int z_val, int M_speed)

{

 move_speed = spot_turn_speed + M_speed / 2;

 while (step-- > 0)

104

 {

 if (site_now[3][1] == y_start + y_offset)

 {

 //leg 3&0 move

 set_site(3, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(1, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(2, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(3, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(3, turn_x0 + x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x0 + x_offset, turn_y0, z_default - z_val);

 set_site(1, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(2, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(3, turn_x0 - x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_up);

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(2, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(3, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 else

 {

 //leg 1&2 move

 set_site(1, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

105

 set_site(0, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(1, turn_x0 + x_offset, turn_y0, z_up);

 set_site(2, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(3, turn_x1 - x_offset, turn_y1, z_default - z_val);

 wait_all_reach();

 set_site(1, turn_x0 + x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(1, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(2, turn_x0 + x_offset, turn_y0, z_default - z_val);

 set_site(3, turn_x1 + x_offset, turn_y1, z_default - z_val);

 wait_all_reach();

 set_site(2, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(2, x_default + x_offset, y_start + y_offset, z_up);

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 }

}

void step_forward_M2(unsigned int step, int z_val, int M_speed)

{

 move_speed = leg_trot_speed + M_speed;

 while (step-- > 0)

 {

 if (site_now[3][1] == y_start + y_offset)

 {

 Serial.println ("Part 1");

 //leg 3&1 move

106

 set_site(3, x_default + x_offset, y_start + y_offset + y_step, z_up - 10);

 delay(100);

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(1, x_default + x_offset, y_start + y_offset, z_up + 10);

 set_site(2, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(3, x_default + x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 }

 else

 {

 Serial.println ("part 2");

 //leg 0&2 move

 set_site(0, x_default + x_offset, y_start + y_offset + y_step, z_up + 30);

 delay(150);

 set_site(1, x_default + x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(2, x_default - x_offset, y_start + y_offset, z_up + 20);

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 }

}

void step_backward_M2(unsigned int step, int z_val, int M_speed)

{

 move_speed = leg_trot_speed + M_speed;

 while (step-- > 0)

 {

 if (site_now[2][1] == y_start + y_offset)

 {

107

 Serial.println ("Part 1");

 //leg 2&0 move

 set_site(2, x_default + x_offset, y_start + y_offset + y_step, z_up + 20);

 delay(100);

 set_site(0, x_default + x_offset, y_start + y_offset, z_up + 20);

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(3, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(2, x_default + x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 }

 else

 {

 Serial.println ("Part 2");

 //leg 1&3 move

 set_site(1, x_default + x_offset, y_start + y_offset + y_step, z_up);

 delay(100);

 set_site(0, x_default + x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(3, x_default - x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 }

}

void turn_left_M2(unsigned int step, int z_val, int M_speed)

{

 move_speed = leg_trot_speed + M_speed / 2;

 while (step-- > 0)

 {

108

 if (site_now[2][1] == y_start + y_offset)

 {

 //leg 2&1 move

 set_site(2, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(1, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(2, turn_x0 + x_offset, turn_y0, z_up);

 set_site(3, turn_x1 + x_offset, turn_y1, z_default - z_val);

 wait_all_reach();

 set_site(2, turn_x0 + x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(1, turn_x0 + x_offset, turn_y0, z_default - z_val);

 set_site(2, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(3, turn_x1 - x_offset, turn_y1, z_default - z_val);

 wait_all_reach();

 set_site(1, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(1, x_default + x_offset, y_start + y_offset, z_up);

 set_site(2, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(3, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 else

 {

 //leg 0&3 move

 set_site(0, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, turn_x0 + x_offset, turn_y0, z_up);

109

 set_site(1, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(2, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(3, turn_x0 - x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x0 + x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(1, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(2, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(3, turn_x0 + x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(3, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(3, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 }

}

void turn_right_M2(unsigned int step, int z_val, int M_speed)

{

 move_speed = leg_trot_speed + M_speed / 2;

 while (step-- > 0)

 {

 if (site_now[3][1] == y_start + y_offset)

 {

 //leg 3&0 move

 set_site(3, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

110

 set_site(0, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(1, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(2, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(3, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(3, turn_x0 + x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x0 + x_offset, turn_y0, z_default - z_val);

 set_site(1, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(2, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(3, turn_x0 - x_offset, turn_y0, z_default - z_val);

 wait_all_reach();

 set_site(0, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_up);

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(2, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(3, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 else

 {

 //leg 1&2 move

 set_site(1, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, turn_x1 + x_offset, turn_y1, z_default - z_val);

 set_site(1, turn_x0 + x_offset, turn_y0, z_up);

 set_site(2, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(3, turn_x1 - x_offset, turn_y1, z_default - z_val);

 wait_all_reach();

 set_site(1, turn_x0 + x_offset, turn_y0, z_default - z_val);

111

 wait_all_reach();

 set_site(0, turn_x1 - x_offset, turn_y1, z_default - z_val);

 set_site(1, turn_x0 - x_offset, turn_y0, z_default - z_val);

 set_site(2, turn_x0 + x_offset, turn_y0, z_default - z_val);

 set_site(3, turn_x1 + x_offset, turn_y1, z_default - z_val);

 wait_all_reach();

 set_site(2, turn_x0 + x_offset, turn_y0, z_up);

 wait_all_reach();

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(2, x_default + x_offset, y_start + y_offset, z_up);

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 }

}

void step_forward_M3(unsigned int step, int z_val, int M_speed)

{

 move_speed = leg_move_speed + M_speed;

 while (step-- > 0)

 {

 if (site_now[3][1] == y_start + y_offset)

 {

 Serial.println ("Part 1");

 //leg 3&1 move

 set_site(3, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

112

 wait_all_reach();

 move_speed = body_move_speed + M_speed / 2;

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(1, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default - z_val

- 10);

 set_site(2, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(3, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 move_speed = leg_move_speed + M_speed;

 set_site(1, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val - 10);

 wait_all_reach();

 }

 else

 {

 Serial.println ("part 2");

 //leg 0&2 move

 set_site(0, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 wait_all_reach();

 move_speed = body_move_speed + M_speed / 2;

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val -

10);

 set_site(2, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

113

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 move_speed = leg_move_speed + M_speed;

 set_site(2, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 }

}

void step_backward_M3(unsigned int step, int z_val, int M_speed)

{

 move_speed = leg_move_speed + M_speed;

 while (step-- > 0)

 {

 if (site_now[2][1] == y_start + y_offset)

 {

 Serial.println ("Part 1");

 //leg 2&0 move

 set_site(2, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(2, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 wait_all_reach();

 move_speed = body_move_speed + M_speed / 2;

 set_site(0, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 set_site(1, x_default + x_offset, y_start + y_offset, z_default - z_val - 10);

 set_site(2, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

114

 set_site(3, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 wait_all_reach();

 move_speed = leg_move_speed + M_speed;

 set_site(0, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(0, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

 }

 else

 {

 Serial.println ("Part 2");

 //leg 1&3 move

 set_site(1, x_default + x_offset, y_start + y_offset, z_up);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(1, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default - z_val

- 10);

 wait_all_reach();

 move_speed = body_move_speed + M_speed / 2;

 set_site(0, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val);

 set_site(1, x_default - x_offset, y_start + y_offset + y_step, z_default - z_val -

10);

 set_site(2, x_default + x_offset, y_start + y_offset, z_default - z_val);

 set_site(3, x_default + x_offset, y_start + y_offset + 2 * y_step, z_default -

z_val);

 wait_all_reach();

 move_speed = leg_move_speed + M_speed;

 set_site(3, x_default + x_offset, y_start + y_offset + 2 * y_step, z_up);

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset, z_up);

115

 wait_all_reach();

 set_site(3, x_default + x_offset, y_start + y_offset, z_default - z_val);

 wait_all_reach();

