DESIGN AND CONSTRUCTION OF A 4-LEGGED ROBOT IN VARIOUS SURFACE ENVIRONMENT

OOI JIAN WEI

BACHELOR OF MECHATRONICS ENGINEERING WITH HONOURS UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND CONSTRUCTION OF A 4-LEGGED ROBOT IN VARIOUS SURFACE ENVIRONMENT

OOI JIAN WEI

A report submitted in partial fulfillment of the requirements for the degree of Bachelor of Mechatronics Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "DESIGN AND CONSTRUCTION OF A 4-LEGGED ROBOT IN VARIOUS SURFACE ENVIRONMENT is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have checked this report entitled "DESIGN AND CONSTRUCTION OF A 4-LEGGED ROBOT IN VARIOUS SURFACE ENVIRONMENT" and in my opinion, this thesis it complies the partial fulfillment for awarding the award of the degree of Bachelor of Mechatronics Engineering with Honours

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATIONS

To my beloved mother and father

ACKNOWLEDGEMENTS

In this section, I would like to express my very great appreciation to my dedicate supervisor, Dr Fariz bin Ali @Ibrahim, who was given me support and guidance throughout the project. Without any guidance and support from him, this project would be difficult to complete.

I would like to show my gratitude to my family, especially my parents, Ooi Aik Piew and Lau Yam Keng for their love and support. They provide a lot morale support and encouragement when I was doing this project. I thank them for believing in me and for helping me to keep my spirits high.

I also want to thank to my friends especially my course mates for assisting me when I need help. They provide a lot of technical advice and mentally support during the journey to accomplish this project. They made a lot of valuable comments suggestions on my paper which gave me an inspiration to improve the quality of the project.

ABSTRACT

This paper presents a study about a 4-legged robot walk in various surface environment with different walking pattern. The main objectives of this paper are designing and constructing a 4-legged walking robot, perform lateral-type and sprawling-type walking pattern on different surface environment. The problems need to solve in this project is to solve the design of the robot that can able to perform both walking pattern. In order to solve this problem, a stable walking algorithm need to be constructed. The first part of this report will be the introduction of the report. In that chapter, the detail of motivation and problem statement will be explained clearly, and the objectives and scope will be stated clearly. Literature review has been done base on previous and latest research which similar to this project. Some of the components had been studied in this part such as the walking pattern of quadruped robot and the degree of freedom (DOF). The third part of this paper will be the methodology which discuss the method used to solve the problem in this project. The software and hardware used in this project will explain in detail. For example, the software used to draw the design of the robot is SolidWorks, and the quadruped robot is programmed by using Arduino IDE. Besides, some of the experiments are carried out to test the accuracy of the robot. Next part of the report will be the result and discussion part. The results from the experiment are discussed in this part to show that the objectives of the research were achieved. The last part of this paper will be the conclusion and recommendation.

ABSTRAK

Makalah ini membentangkan kajian tentang berjalan kaki robot berkaki empat di pelbagai persekitaran permukaan dengan corak berjalan yang berbeza. Objektif utama makalah ini adalah mereka bentuk dan membina robot berkaki empat, melaksanakan corak jenis dan corak jenis lantang pada persekitaran permukaan yang berlainan. Masalah yang perlu diselesaikan dalam projek ini adalah untuk menyelesaikan reka bentuk robot yang mampu melakukan kedua-dua corak berjalan. Untuk menyelesaikan masalah ini, algoritma berjalan yang stabil perlu dibina. Bahagian pertama laporan ini adalah pengenalan laporan. Dalam bab itu, perincian motivasi dan pernyataan masalah akan dijelaskan dengan jelas, dan objektif dan skop akan dinyatakan dengan jelas. Kajian literatur telah dilakukan berdasarkan penyelidikan sebelumnya dan terkini yang serupa dengan projek ini. Beberapa komponen telah dipelajari di bahagian ini seperti pola berjalan robot empat hulu dan tahap kebebasan (DOF). Bahagian ketiga makalah ini akan menjadi metodologi yang membincangkan kaedah yang digunakan untuk menyelesaikan masalah dalam projek ini. Perisian dan perkakasan yang digunakan dalam projek ini akan menerangkan secara terperinci. Sebagai contoh, perisian yang digunakan untuk menarik reka bentuk robot adalah SolidWorks, dan robot empat kali diprogramkan menggunakan Arduino IDE. Selain itu, beberapa eksperimen dijalankan untuk menguji ketepatan robot. Bahagian seterusnya laporan akan menjadi hasil dan perbincangan. Hasil daripada eksperimen dibincangkan di bahagian ini untuk menunjukkan bahawa objektif penyelidikan telah dicapai. Bahagian terakhir dari kertas ini akan menjadi kesimpulan dan cadangan.

TABLE OF CONTENTS

		P.	AGE
DEC	LARATION		
APP	ROVAL		
DED	ICATIONS		
АСК	NOWLEDGEMENTS		2
ABS'	TRACT		3
ABS'	TRAK		4
TAR	LE OF CONTENTS		5
1 167	T OF TABLES		7
			/
LISI	OF FIGURES		9
LIST	SOF APPENDICES		11
CHA 1.1 1.2 1.3 1.4	PTER 1INTRODUCTIONMotivationProblem StatementObjectivesScopes		12 12 13 14 14
СНА	PTER 2 LITERATURE REVIEW		15
2.1	Overview of the System		15
2.2	Degree of Freedom		25
2.3 2.4	Actuator Drive System		26 30
СНА	PTER 3 METHODOLOGY		33
3.1	Project Research		33
3.2	Design of the Structure and Mechanism		35
	3.2.1 Design of Qudruped robot	35	
a a	3.2.2 Design Consideration	36	26
3.3	Preview Electronic System and Devices for Quadruped Robot	27	36
	3.3.1 Arduino Mega and Arduino Nano	3/	
	3.3.2 Servo Molor 2.2.2 Device Supply for Quadruped Datast	38 20	
	2.2.4 nPE24L01 Transcoiver Module	39 40	
	3.3.5 DS2 Jowetick	40	
	3.3.6 I CD (Liquid Crystal Display)	41	
3.4	Mechanical Design	15	44
	3.4.1 SolidWorks Design	44	
	3.4.2 Material Selection	46	

3.5	Electr	onic Design	4	8
3.6	Fabrication		5	0
3.7	Design of Walking Pattern for Quadruped Robot			1
	3.7.1	Angle Calculation for Each Servo Motor	51	
	3.7.2	Design for Sprawling Type and Lateral Walking Pattern	53	
3.8	Progra	aming for Quaduped Robot and Wireless Remote Controller	5	4
3.9	Exper	iments	5	7
	3.9.1	Experiment 1:Test the error exists for servo motor	57	
	3.9.2	Experiment 2: Test the errors occurs for the movement	of	
		Quadruped Robot.	58	
	3.9.3	Experiment 3: Time taken for the robot passthrough differ	rent	
		surface with different walking pattern	59	
CHA	PTER 4	RESULTS AND DISCUSSIONS	6	3
4.1	Introd	uction	6	3
4.2	Result	t for Design and Construction of Quadruped Robot	6	3
	4.2.1	Conceptual Design	63	
	4.2.2	Finalize Design	64	
	4.2.3	Calibration for Quadruped Robot	66	
	4.2.4	Walking Pattern Result	67	
4.3	Exper	iment Results	6	8
	4.3.1	Accuracy test for servo motors for each leg of the quadru	ped	
		robot	68	
	4.3.2	Accuracy test for quadruped robot while walking in differ	rent	
		walking pattern and different movements.	70	
	4.3.3	Speed test for the quadruped robot in different type of walk	ing	
		pattern on different surfaces.	72	
CHA	PTER 5	5 CONCLUSION AND RECOMMENDATIONS	7	4
5.1	Concl	usion	7	4
5.2	Future	e Works	7	4
REFI	ERENC	ES	7	5
APPE	ENDICI	ES	7	8

LIST OF TABLES

Table 3.1 Summary Tasks and Experiments which mapped to Objectives.	34
Table 3.2 Design Consideration of the Quadruped Robot	36
Table 3.3 Technical Specification Arduino Mega 2560	37
Table 3.4 Technical Specification of Power HD-1501MG Servo Motors.	39
Table 3.5 nRF24L01 quick reference data	41
Table 3.6 Function for Each Wire of Connector	42
Table 3.7 Pin Description for LCD	44
Table 3.8 First and Second Design for Femur and Tibia.	46
Table 3.9 The position of leg that needed to be decide for both sprawling and	d
lateral walking pattern.	53
Table 3.10 Data Require in Experiment 1	57
Table 3.11 Data Require in Experiment 2	59
Table 3.12 Data Require in Experiment 3	60
Table 4.1 Walking pattern for 1 cycle for sprawling and lateral walking patter	ern
	67
Table 4.2 Exact angle and error occur on servo motor	68
Table 4.3 The offset distances and angles when quadruped walk through 2 m	1 of
different surface environments.	71
Table 4.4 The offset distances and calculated error for quadruped walk through	ıgh
2 m of different surface environments.	71
Table 4.5 Time taken for sprawling type and lateral type of walking pattern	
walk on different surfaces for 2 meters.	72

Table 4.6 The speed calculated for sprawling type and lateral type of walkingpattern walk on different surfaces for 2 meters.73

LIST OF FIGURES

Figure 2.1Morphology of four-legged robot.	27		
Figure 2.2Schematic walking pattern for various walk.28			
Figure 2.3Event sequence for different gaits. The limbs: LF, left forelimb;	RF,		
right forelimb; LH, left hindlimb; RH, right hindlimb. Dark col	our		
indicates that the foot is in contact with the ground.[18]	29		
Figure 2.4The gait is developed as a function of time. Each presented fram	e is		
taken at a gait event. Solid circles denote a foot in ground conta	act.		
White circles denote the placing event of one leg and dashed ci	rcles		
denote the lifting event.[18]	30		
Figure 2.5Picture of HYQ leg prototype with hydraulic cylinder, without			
compliant element and foot.[16]	31		
Figure 2.6 A mammal-type quadruped robot with electrical actuators. 31			
Figure 2.7 A sprawling-type quadruped robot with electrical actuators.	32		
Figure 3.1: Methodology of Design and Construction	34		
Figure 3.2 Design of Four-Legged Robot in SolidWorks	35		
Figure 3.3 Arduino Mega 2560 and Arduino Nano	37		
Figure 3.4 Structure of Power HD-1501MG Servo Motor	38		
Figure 3.5 (i) Buck converter, (ii) T15 Power Plus Battery Charger (iii) 2S	1P		
Lithium ion battery	40		
Figure 3.6 nRF24L01 Antenna Wireless Transceiver Module.	41		
Figure 3.7 PS2 Joystick and Information of Connector	42		
Figure 3.8 LCD 16x2 used in this project	43		
Figure 3.9 First and Second Design of Robot's Body.	45		

Figure 3.10 Right and Left Joint of Robot.	45
Figure 3.11 3D Printed Robot's Part using PLA	47
Figure 3.12 Relationship Between All Circuit for Quadruped Robot and	
Remote Controller.	49
Figure 3.13 Schematic Drawing for The Circuit of Quadruped Robot and	
Remote Controller by Fritzing Software	49
Figure 3.14 Connection of Perf Board.	50
Figure 3.15 Fabrication Process of quadruped robot.	51
Figure 3.16 Parameters Needed to Calculate Angle of Servo Motor.	52
Figure 3.17 Flow chart for wireless remote controller.	55
Figure 3.18 Flow chart for quadruped robot.	56
Figure 3.19 Experiment 1 Set Up	58
Figure 3.20 Experiment 2 Set Up	59
Figure 3.21 Experiment 3 Set Up	62
Figure 4.1 Design of quadruped robot by using hand drawing.	63
Figure 4.2 Final design of quadruped robot in SolidWorks.	64
Figure 4.3 Fabricated quadruped robot.	65
Figure 4.4 Calibration of quadruped robot's legs.	66
Figure 4.5 Sprawling type and lateral type of walking pattern.	68
Figure 4.6 Graph of error occur (%) against the desire angle.	69
Figure 4.7 The experiment carried out on different surface.	70

LIST OF APPENDICES

APPENDIX A	GANTT CHART	78
APPENDIX B	CODING FOR QUADRUPED ROBOT.	80

CHAPTER 1

INTRODUCTION

1.1 Motivation

Robot is an actuated mechanism programmable in two or more axes with a degree of autonomy, moving within its environment, to perform intended tasks. Autonomy in this context means the ability to perform intended tasks based on current state and sensing, without human intervention.

Robot can be categorized into 2 main types which are "industrial robot" and "service robot". A service robot is a robot that perform tasks for humans or equipment excluding industrial automation application. Mobile robot can be defined as an automatic machine that is capable to move around in its environment and is not fixed to one physical location.

A quadruped robot can be categorized as a mobile service robot since it can move around in its environment and help human to complete the task given. A quadruped robot is used to carry the object and deliver it to a target places which human is not able to enter due to its flexibility and mobility. Although quadruped robot always used to compare with wheeled robots, however it is well known that legged robots are superior to wheeled robots due to legged robots have better performance on discontinuous terrain than that of wheeled robots and thus quadruped robot will be focus in this research.

This project is motivated by some motivation to start up the research of quadruped robot. The first motivation is from the Sasago Tunnel collapse accidents happen in japan in 2012. This accident caused nine people died and two were injured, making it the deadliest Japanese roadway accident in history[1]. Besides the disaster such as earthquake also cause a lot of people died and injured. If a quadruped robot is well developed, it can help the rescue team go inside the disaster area to search for the survivors.

The second motivation is come from the quadruped robot designed by Bostan Dynamics. It is a high technology research and development company that develop

quadruped robot. The most famous product from this company is the robot called "BigDog"[2]. BigDog was funded by the Défense Advanced Research Projects Agency (DARPA) in the hopes that it will be able to serve as a robotic pack mule to accompany soldiers in terrain too rough for conventional vehicles. Besides, these machines only need a discrete number of isolated footholds, their mobility in unstructured environments can be much higher than their wheeled counterparts, which require a more or less continuous path of support.

Through these motivations, the research about quadruped robot is done in this project and through this research, it can be helpful in the development in quadruped robot in future.

1.2 Problem Statement

In this research project, there are few knowledges are required to study which are robotics, programming, electric circuits and the quadruped motion. These knowledges can help to solve the problems that will faced during the research.

In robotics, the knowledge of kinematic is studied, which is a branch of classical mechanics that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that caused the motion. For the electric circuit knowledge, the connection between the microprocessor and the other electric components are learnt. Programming knowledge help to design the program needed and import it to the microprocessor. For quadruped motion, it is helps to study the terrestrial locomotion in animals using four limbs or legs.

The main problem that need to solve in this project is to decides the motion for the quadruped robot. There are few types of gaits in quadruped motion which are mammal-type and sprawling-type[3]. A mammal-type means the robot which locates its foot vertically downward from the base of the leg as a standard posture. A sprawling-type means the robot whose first leg segment (thigh) is in horizontal direction and second leg segment (shank) is in vertical direction as a standard posture. For both types of quadruped motion, they have their own pros and cons and it must be understood before decides which motion is suitable for the quadruped robot to move on various surface environment.

The next problem is to solve the design of the robot. After decides the motion of the robot, the next step is to design the shape and size of the robot, so it can

perform the motion chosen. The design of the robot must concern about the center of the gravity and also the kinematic of the robot so that the robot can be balance and move.

The other problems are the electric components that required to use such as motors, microprocessor. The microprocessor must decide first so that the other components can fit the microprocessor. After programmed the microprocessor and connected to other electric components, the power must be calculated so that it can use as a reference to choose the required battery capacity and others specification.

1.3 Objectives

The objectives of this project are:

- i. To design and construct a 4-legged walking robot controlled by using remote controller.
- ii. To design various movements for the robot to move on flat, tarred and grass surface environments.
- iii. To analyse the walking pattern of the robot.

1.4 Scopes

- i. Use 3 degree of freedom for each leg.
- ii. Walking on flat, tarred and grass surface environment.
- iii. Control the movement by using a controller.
- iv. It should perform 2 type of walking pattern.
- v. Using Arduino Mega as the microprocessor
- vi. Use 12 servo motors as actuators
- vii. Can perform forward movement on both walking pattern
- viii. Can perform backward movement on both walking pattern
- ix. Can perform rotational movement on sprawling-type walking pattern

CHAPTER 2

LITERATURE REVIEW

2.1 Overview of the System

Category	Ty Studied articles		
	Journal 1 [4]	Journal 2 [5]	
Title	A geometric approach to solving the stable workspace of a hand- foot-integrated quadruped walking robot.	Design of one degree-of-freedom quadruped robot based on mechanical link system: Cheetaroid-II	
Aim of this paper	Solving the robot's workspace, including searching steady condition of operation of the robot.	A five-bar linkage mechanism is proposed to emulate the locomotive motion of a leg of a quadruped robot with the reduced number of actuators. (to reduce the weight of robot)	
Method	Geometric method of kinematic analysis	Experimental method by observing the locomotion of a dog	
Software used	MATLAB, VB and SolidWorks software programs.	MATLAB, Fmincon.m	
Walking pattern	Sprawling type	Mammal type	
Degree of freedom (each leg)	3	1	
Actuator drive system	Servo motor	a Brushless DC (BLDC) motor, a gearing system	
Structure and mechanism	Parallel and serial mechanism	five-bar mechanical link system	

Dimension	Length of hip: 67.5mm	N/A
of Robot	Length of tight: 232mm	
	Length of shank: 359mm	
	Length of body: 276mm	
	Width of body: 325mm	
	Mass of body: 8681g	
	Mass of thigh: 1471g	
	Mass of working arm: 1359g	
Design of the robot	<image/>	<image/> <image/>

Category	Studied articles		
	Journal 3 [6]	Journal 4 [7]	
Title	A new algorithm to maintain lateral stabilization during the running gait of quadruped robot	Control of a quadruped robot with bionic springy legs in trotting gait	
Aim of this paper	i. Calculating the lateral position and speed of the fore swinging leg when it next makes contact with the ground.	 This paper addresses the problem of trotting control of a quadruped robot with bionic springy legs. The goals are to enhance the robustness of trotting of a quadruped robot and to see 	

	ii. Controlling the roll angle	if the quadruped running
	by mean of inertia forces	could be smoother and
	using the stance leg.	more stable by introducing
		certain biological
		characteristics.
		ii. The robot reaches the
		highest speed of 2.0 m·s–1
		and keeps balance under
		250 Kg·m·s−1 lateral
		disturbance in the
		simulations.
		iii. The effectiveness of these
		approaches is also verified
		on a prototype robot which
		runs to $0.83 \text{ m} \cdot \text{s} - 1$ on the
		treadmill.
Method	Kinetic Momentum Management Algorithm (KMMA)	Robot kinematic analysis
Software used	ADAMS and MATLAB	co-simulation of ADAMS and Matlab/Simulink.
Walking pattern	Mammal type (running gait)	Mammal type
Degree of freedom (each leg)	3	6 Degrees of Freedom (DOF) on torso and 5 DOF on each leg.
Actuator	Brushed DC motors	i. Each leg has four active
drive		joints driven by four
system		identical hydraulic
		cylinders, as well as a
		passive prismatic spring.
		ii. The robot has 41 sensors
		including displacement

		sensors and load cells on	
		the hydraulic cylinders and	
		springs, 3-component	
		force sensors in feet and an	
		Inertial Measurement	
		Units (IMU) on torso.	
Structure and mechanism	Uncoupled leg mechanism (three sequentially arranged four-bar mechanism)	N/A	
Dimension	Mass: 43 kg	Mass: 67 kg	
OI KODOL	Length: 0.68 m	Length: 0.63 m	
	Width: 0.9 m	Width: 0.3 m	
		Height: 0.85 m	
		Thigh length: 0.233 m	
		Shank length: 0.31 m	
		Foot length with spring in normal position: 0.31 m	
Design of the robot	<image/> <image/> <image/> <caption><text></text></caption>	<image/> <caption><caption></caption></caption>	

Category	Studied articles		
	Journal 5 [3]	Journal 6 [8]	
Title	TITAN-XIII: sprawling-type quadruped robot with ability of fast and energy-efficient walking	Kinematic analysis for trajectory generation in one leg of a hexapod robot.	
Aim of this paper	Development of a sprawling- type quadruped robot named TITAN-XIII which is capable of high speed and energy efficient walking	Kinematic analysis of a single leg of a hexapod robot is introduced and the trajectory generation is implemented.	
Method	 i. Calculate cost of transport (COT) to get the energy efficiency ii. Forward kinematic 	kinematic and dynamic	
Software used	N/A	VRML 2.0, open GL	
Walking pattern	Sprawling type	 3-types: i. Front disposal (Reptilian type) ii. Sagittal disposal (Mammal type) iii. Circular disposal 	
Advantage / Disadvantage of walking pattern	 <u>Mammal-type</u> Walk faster than a sprawling-type quadruped robot by utilizing two actuators (e.g., hip and knee) in each leg. Required small torque on each isoint by 	N/A	

	straightening its leg	
	or a significant of the second	
	especially when the	
	robot stands.	
iii.	Because of the its small	
	footprint, the robot can	
	walk through narrow	
	space or side of a cliff	
	like a mountain goat	
	doing.	
Spraw	ling-type	
i	High stability because	
1.	the robot con locate its	
	centre of gravity at low	
	position and have a	
	wider supporting leg	
	polygon.	
ii.	Wide range of motion	
	because of its proximal	
	vaw axis	
	yuw unis	
iii.	Since its centre of	
	gravity is low, even if the	
	robot falls down, the	
	damage to the robot is	
	considered to be	
	relatively small.	
iv.	The sprawling first	
	segment, the proximal	
	nitch avis always has to	
	pricili axis always lias to	
	generate the torque to	
	support its own weight,	
	therefore its energy	