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ABSTRACT 

The Rotary Inverted Pendulum is a classic problem of theory. This report focuses on 

the design, stability analysis and modeling of the rotor pendulum inverted. It also 

provides the design steps for the controllers for an inverted rotary motion pendulum 

operated by the rotary servo plant of the SRV 02 Series. A control system is designed 

using classic and modern control methods. The classic root locus method is the design 

of two compensators for the PID controller. The second method of the modern method 

control technique is the Linear Quadratic Regulator (LQR). The linear square regulator 

is thus tested for the upright and swing mode of the pendulum. The mathematical 

derivatives also showed that the designed controller needs to stabilize the pendulum 

system. Simulation studies are conducted to demonstrate the efficiency of the designed 

controller and the result shows that the controller can maintain a stable reverse 

position.  
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ABSTRAK 

 

Pendulum berputar Rotary adalah masalah teori klasik. Laporan ini memberi tumpuan 

kepada reka bentuk, analisis kestabilan dan pemodelan pendulum pemutar terbalik. Ia 

juga menyediakan langkah-langkah reka bentuk untuk pengawal untuk pendulum 

gerakan putar terbalik yang dikendalikan oleh kilang servo putar SRV 02 Series. 

Sistem kawalan direka menggunakan kaedah kawalan klasik dan moden. Kaedah lokus 

akar klasik adalah reka bentuk dua pemampat untuk pengawal PID. Kaedah kedua 

kaedah kawalan kaedah moden ialah Pengatur Kuasa Lajur Linier (LQR). Oleh itu 

pengawal selia persegi linear diuji untuk mod tegak dan swing pendulum. Derivatif 

matematik juga menunjukkan bahawa pengawal yang direka untuk menstabilkan 

sistem pendulum. Kajian simulasi dijalankan untuk menunjukkan kecekapan pengawal 

yang direka dan hasilnya menunjukkan bahawa pengawal boleh mengekalkan 

kedudukan terbalik yang stabil.  
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INTRODUCTION 

This chapter will discuss on the background of the project study, motivation, problem 

statement, objectives and the project scope.  

1.1 Background 

An inverted pendulum is a pendulum with a mass center above the pivot point. It is 

unstable and will decrease without further help. It can be stable by using a control 

system to monitor the pole angle and move the pivot point horizontally back below the 

mass center when it begins to fall. Figure 1.1 (i) shows that the inverted pendulum 

system is motivated by the need to design controllers for rocket balancing during 

vertical takeoff. Similar to the launching rocket, the inverted pendulum requires a 

continuous correction mechanism to remain upright, as the system is unstable in open 

loop configuration [1]. This problem can be compared with the launch rocket, where 

rocket boosters must be fired in a controlled manner to keep the rocket upright.  

                              

                                 Figure 1.1 Inverted Pendulum[1] 
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Rotary inverted pendulum is one of the simple but hard systems to balance the upright 

position. Because the pendulum naturally would fall from the upright vertical position. 

Design of a modified PID controller and Linear Quadratic Regulator (LQR)[2][3] as a 

solution. Mathematical modeling is required to obtain a precise feedback. MATLAB / 

SIMULINK is therefore to be used in this project to control the rotary inverted 

pendulum by mathematical modeling of the modified PID and Linear Quadratic 

Regulator.  

 Figure 1.1 shows the inverted rotary pendulum, consisting of a pendulum that rotates 

in the vertical plane and is attached to a pendulum arm mounted on the servo motor 

shaft. At the end of the pendulum arm, the pendulum is attached to a hinge with an 

encoder [3]. The pendulum arm itself will rotate in horizontal plane and the pendulum 

will always hanging downwards. This type of pendulum, which is rotary inverted 

pendulum is an unstable system and required a controller to be actively balanced in 

order to remain the pendulum in upright vertical position.  

                                     

Figure 1.2 Rotary Inverted Pendulum[2] 
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1.2 Motivation 

The rotary inverted pendulum system was motivated by the design of the controller 

that stabilized the rockets during the vertical take-off, because the rocket was very 

unstable at the start. In order to keep the rocket upright, rocket boosters must be fired 

in a controlled way during the start. Based on the launching process of the rocket, the 

inverted pendulum requires a continuous correction mechanism, as the system is 

unstable in open loop configuration. 

 

1.3 Problem Statement 

Inverted pendulum is one of the key issues in the theory of control. When it comes to 

rotating the pendulum, however, to ensure that the pendulum remains vertically 

upright, it is quite difficult, as it is naturally unstable and has an open loop setup. The 

controllers  used are therefore double-PID and LQR, which must be designed and 

simulated successfully to switch the pendulum up.  

1.4 Objectives   

There are 3 objectives need to be achieved in this project:  

a) To obtain the mathematical model of rotary inverted pendulum in 

transfer function  and in state function.  

b) To design and simulate double Proportional Integral Derivative with 

Linear Quadratic Regulator (double-PID+LQR) and Linear Quadratic 

Regulator (LQR) controller for balancing the  rotary inverted 

pendulum.  

c) To compare the performance of stability between double Proportional 

Integral Derivative with Linear Quadratic Regulator (double-

PID+LQR) and Linear Quadratic Regulator (LQR) controllers.  
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1.5 Scopes of Project 

This project required some scopes that need to achieve the objectives. The scopes of 

work are as follows:  

1. Modeling the system to obtain the mathematical model for rotary inverted  

pendulum system.  

2. The double Proportional Integral Derivative (double-PID) and Linear 

Quadratic Regulator (LQR)  controllers need to be developed after the 

mathematical model have been derived.  

3. The design requirement are Ts < 5 second and %OS < 10%.  

4. The performance of the designed controllers is simulated using MATLAB 

SIMULINK software.  
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LITERATURE REVIEW 

After research has been done, a literature review will be discussed in this 

chapter 2. A literature review can be stated in a number of ways to complete the 

project as a discussion of information.  

 

2.1 Theory and Basic Principle of Rotary Inverted Pendulum 

Figure 2.1 shows Rotary Inverted Pendulum systems an under-actuated system which 

consists of one actuator and double Perpendicular Integral Derivative (double-PID). 

The only one actuator in the system the DC motor. The rotary arm is driven by the DC 

motor where electrical energy is converted into mechanical energy, the torque to move 

it. The angular motion of the rotary arm gives energy to the pendulum to swing up and 

maintain stable at vertical upright position. The pendulum is set to be always 

perpendicular to the rotary arm. When the pendulum is at vertical upright position, the 

system is highly unstable, where a controller is needed to achieve stabilization and 

swing up mechanism of Rotary Inverted Pendulum system. The amplitude of the 

supply voltage to the DC motor is proportional to the magnitude of the angular 

displacement of the rotary arm. Then, the greater the supply voltage to the actuator, 

the greater the angular displacement of the rotary arm. 

The angular displacement of Rotary Inverted Pendulum is indirectly moved by the DC 

motor torque. There are two types of movement mechanism in RIP system, which are 

swing-up mechanism and stabilize mechanism. In this project, swing-up mechanism 

is not discussed, position of Rotary Inverted Pendulum is assumed to be at upright 

position as initial condition. Second type of movement mechanism is stabilization 

mechanism of rotary inverted pendulum system which is the motion maintaining the 

Rotary Inverted Pendulum at vertical upright position and avoiding the pendulum 

falling down in its free fall of nature way.  
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                                  Figure 2.1 Rotary Inverted Pendulum[2]   

2.2 Controller Design   

The important factor of the rotary inverted pendulum system was to develop the control 

techniques to make the pendulum in upright position to maintain the stabilization of 

the system. . There were two techniques in designing the controller which are by using 

Linear Quadratic Regulator (LQR) controller and Proportional, Integral and Derivative 

(PID) cotroller. The function of this controller is to develop linear model to stabilize 

the position of rotary inverted pendulum in upright position. In this paper, the method 

to derive the LQR controller was by using Algebraic Ricatti Equation and for PID 

controller, the Ziegler Nicholas Tuning method was used. [3] 

Meanwhile, there were 3 design of controller technique which comprising in this 

journal [3]. The state space equation is required by deriving the mathematical 

modelling of the rotary inverted pendulum where the inverted pendulum system is 

attached to a servo plant motor and simulation by MATLAB. The alpha represents the 

pendulum angle and theta represents the pendulum arm. 
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2.3 Types of Controllers 

There is 2 types of controller in this project that are:  

 

Table 1 Comparison Between Two Controller 

  Double-PID controller   LQR controller  

i.  

ii. 

iii.  

α depends on β that can detected 
can described by using transfer 
function. Pendulum arm position, 
θ is activated by input voltage, V.  
There are two degrees of freedom 

used to make the speed constant 

and the value of β is zero. The 

other one will be activated by 

following the feedback of α.  

i.  The value of gain, K 

can be calculated by 

lowering a quadratic 

cost function with 

the used of Matlab 

function.  

 

2.3.1 PID Controller 

PID is Proportional-Integrated-Derivative. This is a type of feedback controller whose 

output, a control variable, is generally based on the error between a set point defined 

by the user and a process variable measured. Each PID controller element refers to a 

specific action taken against the error. The basic idea for a PID controller is to examine 

signals from sensors in the system called feedback signals. [2] 

                            

                    

                                        (2.1)                 

𝐾𝑝= Proportional Gain  

𝐾𝑖= Integral Gain  

𝐾𝑑= Di erential Gain                                                                                         (2.2) 
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The error signal is sent to the PID controller and the controller calculates the error 

signal derivative and integral. The signal (u) just past the controller is now equal to the 

proportional gain (𝐾𝑝) times the error magnitude plus the integral gain (𝐾𝑖) times the 

error integral plus the derivative gain (𝐾𝑑) times the error derivative.  

                            

                                                              

                                        (2.3)                 

 The controller takes the new error signal and computes it derivative and integral 

again. This process goes continues and continues.  

                            

                             Figure 2.2 Block Diagaram of PID Controller[2] 

 

2.3.2 LQR Controller  

In order to overcome some problems faced by the PID controller, optimal control can 

be developed for other types of control methods, such as the Linear Quadratic 

Regulator (LQR). LQR is a control system that delivers the best possible performance 

in relation to certain performance measurements. The measurement of performance is 

a quadratic function consisting of state vector and control input.  

Using LQR, the representation of the state space is required where this controller is 

based on the dynamic model that produces a high system response. This controller 

moves the initial pole from right to left in a complex diagram. The aim of this shift is 

to improve the system stability and the damping response.   
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The time response characteristics, such as time increase, settling time and transient 

oscillations, are directly affected by the closed loop pole location where additional 

parameters are used in this project to control all closed loop pole locations. Figure 2.6 

shows the LQR status feedback system.                          

                                 

                                  Figure 2.3 Block Diagram of LQR Controller [3] 

2.4 Application of Inverted Pendulum 

In real life, using pendulum principles, there are many types of applications that are 

pendulum clock, machine crane system and part of the amusement park. In order to 

improve this application, modeling and design control can be described as an important 

factor and can be developed very usefully. [4] 

Figure 2.4 shows the pendulum clock. This pendulum clock was prepared by Christian 

Huygens in 1656, focusing on the pendulum supplied by Galileo Galilei around the 

clock. The function of this pendulum clock is that it is the instrument of decision to 

keep time accurate for a considerable length of time, comprising towards the end of 

the clock the Short free pendulum cheeks developed in 1921 and the Edward Hall 

pendulum clock was said to be the end of the generation of the pendulum check in the 

period as the most solid time keeping standard.  
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                                      Figure 2.4 The clock Pendulum 

A machine crane system where the crane is a mechanical gadget lift consisting of a 

winder, wire ropes and bundles that can be used to lift and carry the material lower and 

can be moved on a horizontal plane Further strengthening makes mechanical good 

fortune, the machine used is one or more straight forward machines and can then move 

steadily. The capacity of this crane machine in the industry is used for the stacking and 

emptying of cargo, in development division it uses the overwhelming supplies for the 

development of materials industry.  

2.5 Review of Previous Case Study 

There were many researchers studied Rotary Inverted Pendulum system from different 

aspects especially in modelling and designing different controller of the system. For 

stabilization and swing-up of Rotary Inverted Pendulum system, numerous designs of 

controller approach have been suggested to achieve better stabilization performance. 

Therefore, the study of research that had been done by other researchers is important 

to get a rough idea of designing controller in this Rotary Inverted Pendulum system. 
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2.5.1 Double-PID of Proportional Inverted Derivative 

 

There are basically divided to classical controller and advanced controller in proposed 

controllers to stabilize the Rotary Inverted Pendulum system. Double Proportional 

Integral Derivative (PID) controller is one of the most widely used controller in field 

of control engineering. As the Rotary Inverted Pendulum system is an under actuated 

and non-linear system, PID controller is common to be designed in the Rotary Inverted 

Pendulum system, as it improves overshoot percentage and steady state error of the 

system with an easy approach. PID controller can be although mathematical model of 

the system is not known. When the mathematical model is known, Ziegler Nichols 

rules can be applied. Ziegler Nichols tuning rules give an educated guess for the 

parameter values and provide a starting point for fine tuning. Thus, from year 2009-

2012, 2DOF PID or Doubled-PID was designed as a controller in the Rotary Inverted 

Pendulum. As a stabilization controller in the Rotary Inverted Pendulum system, the 

controller stabilized the inverted pendulum and as well as the rotary arm. [3][5] 

For advance controller, hybrid strategy was applied on the controllers. Combining two 

types of controller into the Rotary Inverted Pendulum system was considered in 

designing controller procedure. The advanced controllers that were used in hybrid 

strategy in previous works such as Full State Feedback and Linear Quadratic 

Regulator.  

 

2.5.2 Full State Feedback 

 

Figure 2.7 shows a block diagram of the Full State Feedback (FSF) controller in the 

Rotary Inverted Pendulum system. The Rotary Inverted Pendulum was designed in the 

state space model. Poles of the closed loop system may be placed at any desired 

locations by means of the state feedback through an approximate state feedback gain 

matrix K. There are a few approach to tune FSF controller, one of them is by pole 

placement method. According to Md. Akhtaruzzaman, he designed FSF controller by 

placing stable poles of the Rotary Inverted Pendulum, then used Ackermann’s formula 
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and Integral of Time weighted Absolute Error (ITAE) table, state feedback control 

gain matrix, K which is a 4x1 matrix was obtained. FSF controller was considered 

relatively ease of design and effective procedure to obtain the gain matrix K. There are 

some drawbacks of designing FSF controller. It requires successful measurement of 

all state variables or a state observer in the system, where it needs control system 

design in state space model. It also requires experienced researcher to determine the 

desired closed loop poles of the system, especially when the system has a higher order 

system than second and third order.[5][3] 

 

 

 

 

 

 

 

 

 

 

  

 

 

2.5.3 Proportional Integrated Derivative 

A double-PID controller instead of single PID controller, it was because single 

conventional PID controller can control only one variable of the system. So, Rotary 

Inverted pendulum system has one input and two outputs which single PID is incapable 

to control the system. 2DOF PID was arranged calculated. PID arm was to maintain 

the rotary arm as zero. PID pendulum maintained the speed and position of the 

pendulum to remain stable. PID Arm was tuned first the follow by PID Pendulum. 

Root locus analysis was used to tune the both PID.  

Arm Angle 

Arm Speed 

Pendulum Angle 

Pendulum Speed 

 

K [4X1] 

2.5 Block Diagram of Full State Feedback  
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The paper [3][1]describes how to stabilize the pendulum and how to increase the 

pendulum and arm rotation speed. This paper uses the Euler-Lagrange equation to 

derive the rotary pendulum system's mathematical model. The paper also presents how 

to design a controller using both the pendulum and the arm with a PID controller and 

pole placement method. This paper proposed two methods to increase the pendulum 

and arm rotation speed, which is one loop and two closed. The result shows that the 

PID controller is better than a pole positioning method for both the pendulum and the 

arm in terms of overflow and transient response. The result also shows that a closed 

loop method has a greater advantage in speeding up the speed of rotation without 

reducing its stability  

In the final paper [2], it shows how to model the physical structure of the inverted 

rotary pendulum according to its basic principle. It also presents in this paper how to 

design a balancing controller with a PID controller. The difference from other papers 

is that the electrical and dynamic part of the system is derived by circuit analysis and 

a free body diagram. The block diagram is then constructed using SIMULINK in 

MATLAB based on these equations. The systems are closed to the actual system 

because it is a non - linear model.  

 

2.5.4 Linear Quadratic Regulator (LQR) 

In this project [5][6][17]LQR was used to control the dc motor on the PIC 

microcontroller. This controller's main objective is to minimize the variation in DC 

motor speed. The driving voltage of DC motor speed is controlled. The higher the 

voltage, the higher the engine speed. The motor speed specifies that the motor input 

voltage is the motor and that the output is compared to the input. The output therefore 

has to be the same or about the same as the input voltage. The LQR algorithm has been 

implemented on the PIC microcontroller in this project. Before implementing the PIC, 

the space of the dc motor status must be derived. Then, from the state space, the LQR 

controller can be designed using the MATLAB software. The stable system is achieved 

by adjusting the Q and R values that the simulation. DC Motor Controller Linear 

Quadratic Regulator (LQR) Implementation of the PIC Algorithm.  
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In this research [3][7], the two modern control techniques used to stabilize the inverted 

rotary pendulum system were mainly discussed. The controls used are the Full State 

Feedback (FSF) and Linear Quadratic Regulator (LQR) controllers. The researcher 

tested the FSF and LQR controllers in this paper for the pendulum upright and swing-

up mode. A discrete 2DOF (two degrees of freedom) PID controller was designed to 

digitize the plant using root locus technology. The system was then simulated using 

MATLAB and the result shows that the LQR controller is better suited for switching 

the pendulum up to its vertical position and for balancing the pendulum at the unstable 

balance point. However, both FSF and LQR controllers can keep the inverted rotary 

pendulum stable effectively.  

 

2.5.5 Artificial Neural Network (ANN) 

This paper [8] presents the physical structure, the dynamic model of the rotary inverted 

pendulum system and the method by which an artificial neural network (ANN) 

controls this system. The paper states the problem of controlling the inverted pendulum 

so that it can maintain its state of balance when directed upwards. The researcher 

proposed an ANN controller because this controller has many advantages, such as that 

controller can be implemented for nonlinear objects and can be adapted to any change 

of system parameters. Based on the SIMULINK simulation in MATLAB, the ANN 

controller keeps the pendulum stable vertically and upwards. The controller also 

manages to adjust well when the system parameters change. The paper therefore 

concludes that ANN can be applied to real physical systems with high nonlinearity 

and, in particular, physical systems with the center of gravity on the rotation axis, such 

as rockets, spacecraft, and skyscrapers.  

 

2.5.6 Lyapunov 

In this study [9], you will find out how to stabilize the Rotary Inverted Pendulum 

system by using Lyapunov. The building of Lyapunov function is the key to the design 

of control laws using Lyapunov control method. The Lyapunov function is built on the 

algorithmic function and theoretically compared to the usual quadratic function. The 

legislation on design control is justified by experiments to determine the efficiency of 
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the control law. This is compared to the LQR controller, which is based on the square 

function. To determine the system's robustness, the system is analyzed if the system 

parameters contain uncertainties under the designed control legislation. The 

comparative results show that the built logarithmic function has greater numerical 

precision and faster convergence speed usual quadratic feature. The researcher 

therefore concluded that the Lyapunov control method applies to nonlinear systems 

such as rotary pendulum inverted.   

 

2.5.7 Particle Swarm Optimization (PSO) 

In this study [10], an optimal approach is presented to design a rotary inverted 

pendulum system using a Particle Swarm Optimization (PSO) control. The goal is to 

balance the pendulum to the upright position and minimize the absolute system angle 

error. The solution to this task is to stabilize the system using a state feedback 

controller. Based on the results of SIMULINK in MATLAB simulated, the researcher 

concludes that the PSO method is a promising way for the nonlinear control system in 

general, since the pendulum can be efficiently stabilized.  

 

 

2.5.8 LQG / LTR (Linear Quadratic Gauss Ian / Loop Transfer Recovery) 

This research [11] is a rigid connection of pendulum that rotates in a upright position. 

The rigid connection is connected to a pivot arm that is attached on a DC motor load 

shaft. The pivot arm can be rotated in the horizontal plane by the DC motor. A 

potentiometer inspires by the DC motor. In addition, a potentiometer is also mounted 

to measure the angle of the pendulum on the pivot arm. The main objective of this 

experiment is to balance the pendulum in upright position. Since the plant has two 

degrees of freedom but only one actuator, the system is under actuated and shows 

considerable nonlinear behavior during large pendulum excursions. The aim is to 

design a robust controller to control the pendulum position in real - time using a 

Quanser PC board and power module and the appropriate real - time Win Con 
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software. A well-known robust method called LQG / LTR (Linear Quadratic Gauss 

Ian / Loop Transfer Recovery) is used for controller design.  

 

2.6 Summary of Literature Review 

Based on the previous work review, there are a lot of different method which 

implemented in rotary inverted pendulum system such as fuzzy-logic control, linear 

quadratic regulator (LQR), full state feedback (FSF) control, Proportional Integral 

Derivative (PID), Lyapunov algorithm etc. In addition, there are many different types 

of tuning methods for each control technique discussed in the review. Based on the 

results of the previous paper, the controllers manage to keep the pendulum upright. 

However, for each control technique, the output system response in terms of overflow, 

adjustment time and stable state error is different. Although there is a lot of advance 

controller, the pendulum position PID controller can adjust to have less overflow, no 

stable state error, faster settling and increasing rising time. It can also stabilize the 

motor arm to rotate in the desired position while keeping the pendulum in the desired 

position with the help of the LQR controller. Therefore, based on the previous 

research, it shows that the PID and LQR controller have been selected because this 

controller can fulfill the rotating inverted pendulum requirement.  
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METHODOLOGY 

This chapter discusses mathematical modeling and the design of the controller. 

Furthermore, the methodologies followed to obtain a better result using the flowchart. 

Research has been done to ensure the success of the project. This includes research on 

the design and the method used to model and control the inverted rotary pendulum. 

This project uses the methodology and approaches to study the theories and the concept 

of balancing the rotary inverted pendulum with double-PID and LQR. The 

mathematical modeling based on the inverted rotary pendulum must be verified. 

Simulink and MATLAB are used to develop the rotary inverted pendulum block 

diagram and simulate the output.  

 

3.1 Project Flow Chart 

Flow chart is used to make sure that the project will be done successfully without any 

overlapping of works occurs. For the first step to do this project is to studies about the 

suitable mathematical modelling and also need to research from the other sources such 

as journals, books and internet about double-PID and also LQR controller. Next, to 

model the block diagram of rotary inverted pendulum using two controllers that is 

double-PID and LQR. Next, after finish model the block diagram the model needs to 

simulate using MATLAB/Simulink. If the system was functioning, the next step need 

to design two controllers that is double-PID and LQR and after that the results need to 

analyze and compare their stability.  

 

 

 



30 

 

 

 

No 
 

 

  

 

 

 

 

 

 

 

    

 

 

 

No 

Ye

s 

Studies about the project title, studies suitable 

mathematical modelling and studies about 

double-PID AND LQR controllers 

 

Comparison between 

double-PID and LQR 

Controller 

End 

Design the controllers 

Design double-PID 

Controller 
Design LQR Controller 

Analyze the result 
Analyze the result 

Star

trt 

Modelling the block diagram of 

Rotary Inverted Pendulum 

Simulate the function 

Yes 

Figure 3.1 Flowchart of double-PID and LQR Controller 
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3.2 Mathematical Modelling of Rotary Inverted Pendulum 

There is state space equation and transfer function must be used for this project. The 

transfer function in this project is very important parameters, such as gravity and mass, 

and the transfer function must also be correct to ensure that the objective was achieved.   

                                

Figure 3.2 Arm Rotational Direction and Free Body Diagram of The Pendulum [9] 

Figure 3.2 shows the direction of rotation of the inverted pendulum arm and the 

pendulum as a lump at half the length of the pendulum. The pendulum is displaced 

with an angle, α while in the x-direction of this illustration the direction of illustration. 

The mathematical model can be derived by checking the speed of the center of the 

pendulum mass.  

The following assumptions are important in modeling of the system:  

i) The system starts in a state of equilibrium meaning that the initial 

conditions are therefore assumed to be zero.  

ii) The pendulum does not move more than a few degrees away from the 

vertical to satisfy a linear model.  

iii) A small disturbance can be applied on the pendulum. 

As the requirement of the design, the settling time (Ts) is less than 5 seconds. The 

system overshoot value of the system most 10%. The following table is the 

terminology list used in model system derivation.   
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Table 2 Symbol and Description of the parameters 

 

3.3 Physical Analysis  

              

Figure 3.3 Free Body Diagram of Arm and Pendulum [5][6]                              

There are two components for the velocity of the pendulum lumped mass. So,  

𝑉𝑝𝑒𝑛.𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠 = −(𝛼 ̇ )�̂� − 𝐿𝑠𝑖𝑛𝛼(𝛼 ̇)𝑦 ̂     

 

                                         (3.1) 

The pendulum arm also moves with the rotating arm at a rate of,  

SYMBOL  DESCRIPTION  

  Length to Pendulum's Center of Mass  

  Mass of Pendulum Arm  

  Rotating Arm Length   

  Servo load gear angle (radians)  

  Pendulum Arm Deflection (radians)  

  Distance of Pendulum Center of mass 

from ground  

𝐽𝑐𝑚  Pendulum Inertia about its center of mass  

𝑉𝑥  Velocity of Pendulum Center of mass in 

the x-direction  

𝑉𝑦  Velocity of Pendulum Center of mass in 

the y-direction  
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 𝑉𝑎𝑟𝑚 = 𝑟�̇�̇                                                                                                           

 

                                        (3.2) 

The equations (3.1) and (3.2) can solve the x and y velocity components as,  

𝑉𝑥 = 𝑟�̇�̇ − (𝛼̇)        

𝑉𝑥 = −(𝛼̇)                                                                                                                    

 

                                            (3.3) 

                                        

                                            (3.4) 

3.4 Deriving the system dynamic equations 

Having the velocities of the pendulum, the system dynamic equations can be obtained 

using the Euler-Lagrange formulation 

 Potential Energy: The only potential energy in the system is gravity. 

So,  

𝑉 = 𝑃. 𝐸𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = 𝑚𝑔ℎ = 𝑚𝑔𝐿𝑐𝑜𝑠𝛼                                                            

 

                                                  (3.5) 

Kinetic Energy: The kinetic energy in the system originates from the moving hub, the 

speed of the point mass in the x-direction, the speed of the mass in the y direction and 

the rotating pendulum around its center of mass.  

𝑇 = 𝐾. 𝐸𝐻𝑢𝑏 + 𝐾. 𝐸𝑉𝑥 + 𝐾. 𝐸𝑉𝑦 + 𝐾. 𝐸𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚                                              

                                                                 

                            (3.6) 

The moment of inertia of a rod about its center of mass is,  

𝐽𝑐𝑚 = (
1

12
)𝑀𝑅2 

                                                        

                                                 (3.7) 

Since L is defined as the half of the pendulum length, R=2L. Therefore, the moment 

of inertia of the pendulum about its center of mass is,  



34 

𝐽𝑐𝑚 = (
1

12
)𝑀𝑅2 = (

1

12
)𝑀(2𝐿)2 = (

1

3
)𝑀𝐿2 

                                                            

(3.8) 

T= (
1

2
)𝐽𝑒𝑞�̇�̇

2 +

(
1

2
)𝑚((𝑟𝜃̇ − 𝐿 cos 𝛼(𝛼))2 + (

1

2
)𝑚(−𝐿 sin 𝛼(�̇�))2 + (

1

2
)𝐽𝑐𝑚𝛼2̇̇̇

 

 

(3.9) 

 After expanding the equation and collecting terms, the Lagrangian can be formulated 

as,  

 

                                       

                                     

(3.10) 

 The two generalized co-ordinates are θ and α. So, another two equations are,  

 

                                                                                                                                                 

                                               (3.11) 

 

 

                                               (3.12) 

 Solving the equations and linearizing about α = 0 equations become,    

(𝐽𝑒𝑞 + 𝑚𝑟2)𝜃̇  − 𝑚𝐿𝑟𝛼  = 𝑇𝑜𝑢𝑡𝑝𝑢𝑡𝐵𝑒𝑞�̇�̇                                                          

 

                                                  (3.13) 

 

 

 

 

 

 

 

                                       (3.14) 

 

 

                                       (3.15) 
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Non linear Dynamic Model 

 

The non linear dynamic model describes the system by giving the exact relationships 

among all the variables involved. The parameters of corresponding symbols represent, 

the dynamic model with the pendulum, with motor torque characteristic, in the upright 

position is: 

                                           [𝐴] [
𝛼 
𝛽 
] = [𝐷]𝑢 − [𝐵] [

�̇�
�̇�
] − [𝐶]                                     (3.16)                                          

Matrix A is inertia matrix of the system, matrix B represents Corolis and gyroscopic 

of the system. While Matrix C represents gravity terms in Cartesian space of the 

system, and Matrix D is the torque on the end-effector of the pendulum. Thus, the 

Rotary Inverted Pendulum system nonlinear state space model is: 

                                  [
𝑎 𝑏
𝑐 𝑑

] [
𝛼 
𝛽 
] = [

𝑗
0
] 𝑢 − [

𝑒 𝑓
𝑔 ℎ

] [
�̇�
�̇�
] − [

0
𝑖
]                                  (3.17)                            

Where,  

  𝑎 = 𝑗0 +𝑚1𝑙0
2 +𝑚1𝑙1

2𝑠𝑖𝑛2𝛽                      𝑓 = −𝑚1𝐿0𝑙1�̇�𝑠𝑖𝑛𝛽 +
1

2
𝑚1𝑙1

2�̇�𝑠𝑖𝑛2𝛽 

  𝑏 = −𝑚1𝐿0𝑙1𝑐𝑜𝑠𝛽                                     𝑔 = −
1

2
𝑚1𝑙1

2�̇�𝑠𝑖𝑛2𝛽 

   𝑐 = −𝑚1𝐿0𝑙1𝑐𝑜𝑠𝛽                                     ℎ = 𝐶1 

𝑑 = 𝐽1 +𝑚1𝑙1
2                                               𝑖 = 𝑚1𝑔𝑙1𝑠𝑖𝑛𝛽 

𝑒 = 𝐶0 +
𝐾𝑡𝐾𝑏

𝑅𝑎
+

1

2
𝑚1𝑙1

2�̇�𝑠𝑖𝑛2𝛽                     𝑗 =
𝐾𝑡𝐾𝑢

𝑅𝑎
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Linearized Rotary Inverted Pendulum Model 

The model is then linearized by expanding the non linear model into a Taylor Series 

about the operating point and retention of only the linear terms. The model is linearized 

about the upright position of the pendulum, whereby the pendulum is at static, angle 

and velocity of the pendulum, 𝛽 and �̇� are zero and the rotary arm is not moving as 

well, velocity of arm �̇� is zero.  

[
 
 
 
�̇�
𝛼 
𝛽

𝛽 

̇

]
 
 
 
=

1

𝑎𝑓 − 𝑐2

[
 
 
 
0 𝑎𝑓 − 𝑐2 0 0
0 −𝑑𝑓 𝑐ℎ −𝑐𝐶1
0 0 0 −𝑐2

0 −𝑐𝑑 𝑎ℎ −𝑎𝐶1]
 
 
 

[

𝛼
�̇�
𝛽

�̇�

] +
1

𝑎𝑓 − 𝑐2
[

0
𝑒𝑓
0
𝑐𝑒

] 𝑢 

Where,  

𝑎 = 𝐽0 +𝑚1𝐿0
2                                           𝑑 = 𝐶0 +

𝐾𝑡𝐾𝑏

𝑅𝑎
                            ℎ = 𝑚1𝑔𝑙1 

 𝑏 = 𝑚1𝑙1
2                                                 𝑒 =

𝐾𝑡𝐾𝑢

𝑅𝑎
 

𝑐 = 𝑚1𝑙0𝑙1                                               𝑓 = 𝐽1 +𝑚1𝑙1
2 

  

 By having values of all the parameters the quation is rearranged: 

   [

α̇
β 

α̇
β 

] = [

0 0 1 0
0 0 0 1
0 5.98 −0.05267 0
0 57.68 −0.04514 0

] [

α
β
α̇
β̇

] + [

0
0

28.84
24.72

] u                                       (3.18)                             

𝑦 = [0 1 0 0] [ 
𝛼
𝛽] + [0]𝑢 

Equation 3.16 shows the mathematical state space model of Rotary Inverted Pendulum 

system        
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3.5 LQR Design   

Five steps to design LQR 

 Develop Linear model of system dynamic 

 Specified by adjusting Q and R 

 Running LQR in Matlab 

 Simulate the system 

 Adjust Q and R if necessary 

The values of gain are represented by K1, K2, K3 and K4. The system must be checked 

to determine the controllability by checking the controllability matrix, Q indicated 

Appendix A. By calling the function   

K = lqr (A, B, Q, R) 

                                                  

                                                    (3.16) 

Where A and B are state representation matrix and desired pole contains the desired 

closed loop poles. The controllability matrix Q must not be equal to zero for the Pole 

Placement method where the value of Q can be checked by the formula controllability 

matrix, Q = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵] by using at command MATLAB .  
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RESULTS AND DISCUSSIONS 

In this chapter, the pendulum arm and the angle of the pendulum must be transferred 

to the state-space. The step response performance is performed by using MATLAB. 

This chapter is divided into two controllers that is double-PID Controller and also LQR 

Controller.  

 

Table 3 Parameters of Rotary Inverted Pendulum 

SYMBOL  DESCRIPTION  VALUE  

𝑚1 Mass of Arm 0.01826 

𝑚2 Mass of Pendulum 0.01826 

𝑙1  Length of Arm 0.16 

𝑙2 Length of Pendulum  0.16 

𝑐1  Distance to Centre of Arm Mass 0.08 

𝑐2 Distance to Centre of Pendulum Mass 0.08 

𝐽1 Inertia of Arm 0.00215058 

𝐽2  Inertia of Pendulum 0.00018773 

𝑔 Gravitational Acceleration 9.81 

𝛼 Angular Position of Arm - 

 �̇� Angular Velocity of Arm - 

𝛽 Angular Position of Pendulum - 

�̇� Angular Velocity of Pendulum - 

𝐶1 Viscous Friction Coefficient of Arm 0 

𝐶2 Viscous Friction Coefficient of Pendulum 0 

𝐾𝑡 Motor Torque Constant 0.01826 

𝐾𝑏 Motor Back-Emf Constant 0.01826 

𝐾𝑢 Motor Driver Amplfier Gain 850 

𝑅𝑚 Armature Resistance 2.56204 

𝐿𝑚 Armature Inductance 0.0046909 
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4.1 Simulation without Controller 

Rotary inverted pendulum in state space equations is shown at below:    

                                                  (4.1) 

Parameters of the Rotary Inverted Pendulum were defined in m-file script. The step 

response was found in the appendix A using MATLAB code. From the step response, 

it found that the systems are not stable and therefore the value of state-space A, B, C 

and D in the MATLAB is obtained.  

[

�̇�
𝜷 

�̇�
𝜷 

] = [

𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏
𝟎 𝟓. 𝟗𝟖 −𝟎. 𝟎𝟓𝟐𝟔𝟕 𝟎
𝟎 𝟓𝟕. 𝟔𝟖 −𝟎. 𝟎𝟒𝟓𝟏𝟒 𝟎

] [

𝜶
𝜷
�̇�
�̇�

] + [

𝟎
𝟎

𝟐𝟖. 𝟖𝟒
𝟐𝟒. 𝟕𝟐

]                                 (4.2) 

𝒚 = [𝟎  𝟏  𝟎  𝟎 ] [ 
𝜶
𝜷] + [𝟎]𝒖 

Based on the above state space equation it is possible to derive the following two 

transfer functions. 

𝛼

𝑢
=

28.84𝑠2 − 2.562𝑒−14𝑠 − 1516

𝑠4 + 0.05267𝑠3 − 57.68𝑠2 − 2.768𝑠
 

 

                          (4.3) 

 

𝛽

𝑢
=
24.72𝑠2 + 0.0001648𝑠 + 5.734𝑒−14

𝑠4 + 0.05267𝑠3 − 57.68𝑠2 − 2.768𝑠
 

 

                          (4.4) 

By applying root locus equation from 4.3 and 4.4, it can get the value of Ki, Kd and 

Kp.  
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4.2 Designing Proportional Integral Derivative (PID) Controller by using 

Root Locus technique  

4.2.1 Pendulum’s arm and Pendulum’s 

 

Pendulum’s arm 

 

In order to design the controller, the pendulum’s arm of transfer function is obtain   

 

𝛼

𝑢
=

28.84𝑠2 − 2.562𝑒−14𝑠 − 1516

𝑠4 + 0.05267𝑠3 − 57.68𝑠2 − 2.768𝑠
 

                                                   

                                (4.5) 

The design requirement of plant system must have 5s of settling time and maximum 

5% overshoot. It means that pendulum’s arm must be stable in vertical position which 

0 degrees and in 5s it can be oscillate but in less oscillation.  

 

Table 4 Values of zero and pole gain 

Zero Gain  Pole Gain  

7.2494 0  

-7.2494 7.5924 

0  -7.5971 

0  -0.0480 

To design PID controller, PD and PI controller need to obtain. The transfer function 

of PID controller is shown in equation 4.5 and 4.6. 

𝐺𝑃𝐼(𝑠) = 𝐺𝑃𝐷 × 𝐺𝑃𝐼                                                                         

(4.6)                                         

 

                                       

(4.7) 

First damping ratio, ζ need to be calculated from the overshoot. The formula of 

damping ratio is   

 

 

                                                  

(4.8) 
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Where:  OS = Overshoot  

𝜁 = 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜    

Value of requirement overshoot is 5% which is 0.05. Hence the value of damping ratio, 

ζ        

 

                                              

(4.9) 

Next, to find the natural frequency, 𝜔𝑛 is calculated using equation 4.9 below. The 

value of settling time is 5second.  

 
 

𝜔𝑛 =
4

(5)(0.69)
= 1.1594  

 

                              

                                               (4.10) 

Where:   Ts = Rise Time  

                 𝜔𝑛 = Natural Frequency  

Dominant pole can be obtained from the equation 4.11 below  

 

 

  𝐷. 𝑃 = −(0.69)(1.1594) ± √1 − (0.69)2
1.1594

 

𝑫.𝑷 =  −𝟎. 𝟖 ± 𝒋𝟎. 𝟖𝟑𝟗                                                                               

(4.11) 

     

                                                                            0.839          

 

 

           -7.5971    -7.2494  -0.8       -0.0480      0             7.2494    7.5924                                                  

 

 

ζωn 
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For zero angle efficiency, 𝜃̇𝑧 it can be calculated as below  

𝜃̇𝑍1 = 180° − 𝑡𝑎𝑛−1 (
0.839

8.0494
) = 174.0495 

                                                                        

(4.12) 

𝜃̇𝑍2 = 𝑡𝑎𝑛−1 (
0.839

6.4494
) = 7.4120 

                                  (4.13) 

 

For pole efficiency, 𝜃̇𝑝 it can be calculated as below  

 

𝜃̇𝑝1 = 180°−𝑡𝑎𝑛−1 (
0.839

8.3924
) = 174.2910 

                                      

(4.14) 

𝜃̇𝑝2 = 180°−𝑡𝑎𝑛−1 (
0.839

0.8
) = 133.6369 

                                (4.15) 

𝜃̇𝑝3 = 180°−𝑡𝑎𝑛−1 (
0.839

0.752
) = 131.870 

(4.16) 

𝜃̇𝑝4 = 𝑡𝑎𝑛−1 (
0.839

6.7971
) = 7.0367 

(4.17) 

In order to locate the zero for PD Controller, 𝜃̇𝑧𝑒𝑟𝑜 the angle deficiency of for pole zero 

is calculated as below  

∑ 𝜃̇𝑧𝑒𝑟𝑜𝑒𝑠 − ∑ 𝜃̇𝑝𝑜𝑙𝑒𝑠 = −180˚                                                                                                                                    

(4.18) 

(174.0495+ 7.4120+ 𝜃̇𝑧) − 

(174.2910+133.6369+131.8700+7.0367) = −180   

                        (4.19) 

𝜃̇𝑧 = 85.3731      (4.20) 

 

Where:  ∑ 𝜃̇𝑧𝑒𝑟𝑜𝑒𝑠 = total of zero angle deficiency  

                  ∑ 𝜃̇𝑝𝑜𝑙𝑒𝑠 = total of pole angle deficiency  

                𝜃̇𝑧 = Zero Compensator  

Zero compensator can be calculated as below:  
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85.3731 = 𝑡𝑎𝑛−1 (
0.839

𝑧𝑐 − 0.8
) 

                                             (4.21) 

𝑧𝑐 = 0.8679                                               (4.22) 

Hence the transfer function of PD controller is:  

(𝑠) = (𝑠 + 0.8679)                                                                                                    

 

                                          (4.23) 

In order to find zero compensator of PI Controller an open loop pole placed at the 

origin and the pole must be nearest to origin. To find the constant gain, K the value 

must be calculated using equation 4.25 below   

 

 

                                      (4.24) 

In order to get the value for each hypotenuse for pole and zero, it can be obtained by 

calculation below  

𝐿𝑃1 = √(7.5924 + 0.8)2 + (0.839)2 = 8.4342 

                                

(4.25) 

𝐿𝑃2 = √(0.8 − 0.0480)2 + (0.839)2 = 1.1267 

 

                          (4.26) 

𝐿𝑃3 = √(7.5971 − 0.8)2 + (0.839)2 = 6.848 

                                              

(4.27) 

𝐿𝑧1 = √(7.2494 + 0.8)2 + (0.839)2 = 8.0930 

                                              

(4.28) 

𝐿𝑧2 = √(7.2494 − 0.8)2 + (0.839)2 = 6.5037 

 

(4.29) 

0.839 

-0.8 𝑧𝑐 
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𝐿𝑧𝑐 = √(0.8679 − 0.8)2 + (0.839)2 = 0.8417 

 

(4.30) 

So, to find gain from equation  

𝐾 =
∑𝑝𝑜𝑙𝑒𝑠

∑ 𝑧𝑒𝑟𝑜𝑠
=
8.4342 × 1.1267 × 6.8487

8.0930 × 6.5037 × 0.8417
= 1.4690 

 

(4.31) 

Hence the transfer function of PID Controller is  

𝐺𝑃𝐼𝐷(𝑠) =
1.4690(𝑠 + 0.001)(𝑠 + 0.8417)

𝑠
 

 

(4.32) 

𝐺𝑃𝐼𝐷(𝑠) = 1.4690𝑠 + 1.2379 +
0.0012

𝑠
 

 

(4.33) 

Finally, based on the equation of 4.41 the gain of PID Controller for 𝐾𝑃, 𝐾𝑖 and 𝐾𝐷 is 

1.4690, 1.2379 and 0.0012 
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Pendulum’s 

In order to design the controller, the pendulum of transfer function is obtain   

               
𝜷

𝒖
=

𝟐𝟒.𝟕𝟐𝒔𝟐+𝟎.𝟎𝟎𝟎𝟏𝟔𝟒𝟖𝒔+𝟓.𝟕𝟑𝟒𝒆−𝟏𝟒

𝒔𝟒+𝟎.𝟎𝟓𝟐𝟔𝟕𝒔𝟑−𝟓𝟕.𝟔𝟖𝒔𝟐−𝟐.𝟕𝟔𝟖𝒔
                                                       

 

(4.34) 

 

Table 5 Values of zero and pole gain 

Zero Gain  Pole Gain  

-0.6666 0 

0 -7.5971 

  -0.0480 

 

                                                         

                                                                                              0.839          

 

 

                    -7.5971               -0.8 -0.6666  -0.0480        0                  7.5924     

For zero angle efficiency, 𝜃̇𝑧 it can be calculated as below  

     𝜃̇𝑍1 = 180° − 𝑡𝑎𝑛−1 (
0.839

0.1334
) = 99.0343                                                    

 

(4.35) 

For pole efficiency, 𝜃̇𝑝 it can be calculated as below  

𝜃̇𝑝1 = 180°−𝑡𝑎𝑛−1 (
0.839

8.3924
) = 174.2910 

                    

(4.36) 

𝜃̇𝑝2 = 180°−𝑡𝑎𝑛−1 (
0.839

0.8
) = 133.636 

 

(4.37) 

𝜃̇𝑝3 = 180°−𝑡𝑎𝑛−1 (
0.839

0.752
) = 131.8700 

 

(4.38) 

 

ζωn 
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𝜃̇𝑝4 = 𝑡𝑎𝑛−1 (
0.839

6.7971
) = 7.0367 

 

(4.39) 

In order to locate the zero for PD Controller, 𝜃̇𝑧𝑒𝑟𝑜 the angle deficiency of for pole zero 

is calculated as below  

∑ 𝜃̇𝑧𝑒𝑟𝑜𝑒𝑠 − ∑ 𝜃̇𝑝𝑜𝑙𝑒𝑠 = −180˚                                                                                                 

 

(4.40) 

(99.0343+𝜃̇𝑧)− (174.2910+133.6369+131.8700+7.0367) = −180      

𝜃̇𝑧 = 167.8003 

 

(4.41 

Where:  ∑ 𝜃̇𝑧𝑒𝑟𝑜𝑒𝑠 = total of zero angle deficiency  

                  ∑ 𝜃̇𝑝𝑜𝑙𝑒𝑠 = total of pole angle deficiency  

            𝜃̇𝑧 = Zero Compensator  

Zero compensator can be calculated as below: 

 

 

 

 

85.3731 = 𝑡𝑎𝑛−1 (
0.839

𝑧𝑐 − 0.8
) 𝑧𝑐 = 0.8679    

                                                                            

(4.42) 

Hence the transfer function of PD controller is:  

(𝑠) = (𝑠 + 0.8679)                 

 

                                          (4.43) 

0.839 

-0.8 𝑧𝑐 
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In order to find zero compensator of PI Controller an open loop pole placed at the 

origin and the pole must be nearest to origin. To find the constant gain, K the value 

must be calculated using equation 4.25 below   

         

 

                                           (4.44) 

In order to get the value for each hypotenuse for pole and zero, it can be obtained by 

calculation below  

𝐿𝑃1 = √(7.5924 + 0.8)2 + (0.839)2 = 8.4342 

 

                           

(4.45) 

𝐿𝑃2 = √(0.8 − 0.0480)2 + (0.839)2 = 1.1267 

                       

(4.46) 

𝐿𝑃3 = √(7.5971 − 0.8)2 + (0.839)2 = 6.8487 

 

(4.47) 

𝐿𝑧1 = √(0.8 − 0.6666)2 + (0.839)2 = 0.8495 

 

(4.48) 

𝐿𝑧𝑐 = √(0.8679 − 0.8)2 + (0.839)2 = 0.8417 

 

(4.49) 

So, to find gain from equation  

K =
∑poles

∑ zeros
=
8.4342 × 1.1267 × 6.8487

0.1334 × 0.8495
= 574.3030 

 

                   

(4.50)                   

Hence the transfer function of PID Controller is  

GPID(s) =
574.3030(s + 0.001)(s + 0.8417)

s
 

 

                      (4.51) 

GPID(s) = 574.3030s + 0.8427 +
0.00084

s
 

 

                      (4.52) 
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Finally, based on the equation of 4.41 the gain of PID Controller for 𝐾𝑃, 𝐾𝑖 and 𝐾𝐷 is 

574.3030, 0.8427 and 0.00084. 

Figure 4.1 shows the block diagram of double-PID controller and the calculation have 

been calculated to get the value of gain Kp, Ki and Kd using root locus method. There 

are two systems that need to control that is pendulum (α) and pendulums arm (β).  

The main target is to maintain pendulum angle alpha, α as zero so that the rotary 

inverted pendulum will be stable. One will maintain the speed and position of beta 

while other controller will function based on the feedback of alpha. Alpha and beta 

indicates the plant of model of alpha and theta output while there is have two PID 

compensators that represent to PID Alpha and PID Beta. 

                 

Figure 4.1 Block Digram of double-PID Controller [16] 

It is basically a test and error method where the damping ratio and frequency values 

must sometimes be higher than the calculated one in order to meet the desired 

requirements. A small program is written using the Root Locus algorithm where the 

program takes the damping ratio and frequency value to calculate both compensators. 

Kp= 1.4690, Ki= 1.2379 and Kd= 0.0012 and Kp= 574.3030, Ki= 0.8427 and Kd= 

0.00084 are the calculated gains for alpha beta. 

To analyze the behavior of the output response to the angle position of the pendulum 

when implementing the PID controller. The gain is 574.3030, 0.8427 and 0.00084 for 

Kp, Ki and Kd. The results of the pendulum angular position response for each initial 

position are shown in Figure 4.3, 4.4, 4.5 and 4.6. First, the pendulum is tested at the 
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initial position at 180 degrees and the pendulum result is stable as it stops at the angle 

of 0 degrees with 4,300 for ascending time and 7,762 for settling time. This is because 

the pendulum needs to swing up the pendulum from its hanging position to the upright 

position of 0 degree when the initial angle position is too large for the pendulum. 

However, this experiment is involve PID controller as balancing controller.   

The PID controller for the pendulum is varied in order to analyze the output response 

for the pendulum as the design of the controllers gives the best system performance 

result. The pendulum gain value is Kp= 574.3030, Ki= 0.8427 and Kd= 0.00084 and 

the arm angle value is Kp= 1.4690, Ki= 1.2379 and Kd= 0.0012 based on the design. 

Table 5 and Table 6 show the gain value being tuned using the manual tuning method 

to assess how different gain value affects the behavior of the rotary inverted pendulum 

system in terms of overshoo, rise time and settling time. 

 

Table 6 Tuning Arm Angle (Alpha) 

 P I D 

Calculated 1.4690 1.2379 0.0012 

Tuning 0.000042 0.0000015 0.00001 

 

Table 7 Tuning Pendulum Angle (Beta) 

 P I D 

Calculated 574.3030 0.8427 0.00084 

Tuning 0.000042 0.0000015 0.00001 
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Figure 4.2 Simulink of Block Diagram of  Double-PID+LQR controller for rotary 

inverted pendulum 

 

 

Figure 4.3 Step Response of Arm Angle (Alpha) in double-PID+LQR 
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Figure 4.4 Step Response of Arm Speed (Alpha Dot) in double-PID+LQR 

 

 

Figure 4.5 Step Response of Pendulum Angle (Beta) in double-PID+LQR 
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Figure 4.6 Step Response of Pendulum Speed (Beta Dot) in double-PID + LQR 

 

4.3 System Without Controller  

By inserting the value of state space that have been calculated in order to obtain the 

result of simulation. The block diagram of the rotary inverted pendulum system is 

shown in figure 4.7 below 

 

Figure 4.7 Block diagram simulation of Rotary Inverted Pendulum without controller 
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Figure 4.8 shows the graph of step response of rotary inverted pendulum without 

controller. The graph is not stable because the pendulum does not swing up. The x-

axis represent time in second while the y-axis represents the angle of the pendulum. 

                        

Figure 4.8  Graph step response of rotary inverted pendulum without controller 

 

4.4 LQR Controller 

Matrix Q is obtained using the method of testing and error. Linear Quadratic Regulator 

is an optimal controller used with minimal control effort and time to achieve the 

desired target value. Q and R weigh matrices that allow individual state variables and 

individual control inputs to be weighed relatively. In MATLAB, the [K]= lqr (A, B, 

Q, R) command calculates the optimal feedback matrix K to minimize the cost function 

subject to the state equation constraint. The system's response to different set of state 

gain matrix feedback is determined by varying Q values, keeping R= 1 and choosing 

the one that gives the best performance. LQR controller can be considered as robust 

controller. The simulation result for pendulum position and arm position for controller 

are shown in figure. 
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                                    𝑄 = [

50 0 0 0
0 26.9 0 0
0 0 55 0
0 0 0 0

]                                               (4.53) 

𝑅 = [1 ] 

K =[−0.435 10.752 −0.577 1.350]                                                                         (4.54) 

Rotary inverted pendulum system need controller to make sure that the pendulum 

move in upward position. After the calculation have been calculate using MATLAB 

(coding in Appendix) to get the value of gain. The Simulink must be build and the 

parameters need to be insert in the system. Figure 4.9 shows that the simulation of 

LQR.  

Figure 4.10, 4.11, 4.12 and 4.12 shows that the result of rotary inverted pendulum 

using MATLAB. Rotary inverted pendulum system need controller to make sure that 

the pendulum move in upward position. After the calculation have been calculate using 

MATLAB (coding in Appendix) to get the value of gain.  

Since the controllability matrix is 4x4, the matrix rank must be 4, using the MATLAB 

command ctrb to generate the controllability matrix and the MATLAB command rank 

to test the matrix rank. The following output will be generated by adding the following 

additional commands to m-file and running in the MATLAB command window. 

Controllability = 4 

After verifying that the system can be controlled, the state-feedback gain control 

matrix K was then determined. The LQR MATLAB function allows two parameters 

R and Q to be selected to balance the relative importance of the control effort and error 

in the cost function that needs to be optimized. The simplest case is that the diagonal 

matrix is assumed by R=1 and Q. The cost function corresponding to this R and Q 

places equal importance on the variables of control and status that output the angle of 

the arm and angle of the pendulum. The attempt and error diagonal Q matrix is used 

to observe Q's structure. 
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Figure 4.9 Simulink Diagram of LQR Controller 

 

Figure 4.10 Step Response of Arm Angle (Alpha) in LQR Controller 
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Figure 4.11 Step Response of Arm Speed (Alpha Dot) in LQR Controller 

 

Figure 4.12 Step Response of Pendulum Angle (Beta) in LQR Controller 
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Figure 4.13 Step Response of Pendulum Speed (Beta Dot) in LQR Controller 

 

LQR tries to maintain the system stability. In the practical case the controller is capable 

to maintain the pendulum vertically up but not robust. The other controller that is 

double-PID+LQR can be considered as robust. For both controllers double-PID+LQR 

and LQR, comparative simulated results of alpha, alpha dot, theta and theta dot sre 

shown in figure 4.15, 4.16, 4.17 and 4.18. As shown in figure below, the maximum 

overshoot of LQR is larger than double-PID+LQR controller. Furthermore, double-

PID+LQR have a faster response, which can be seen from rising and settling time. 

Table 5 shows the comparison between two controllers. The rising time and settling 

time of LQR is more than twice of double-PID+LQR controller, which suggest that 

the double-PID+LQR controller has a faster transient response. Besides, the LQR has 

an advantage over double-PID+LQR in maximum overshoot. 
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4.5 Comparison Between double-PID+LQR and LQR Controller 

 

Figure 4.14 Simulation Diagram of double-PID+LQR and LQR 

 

Figure 4.15 Comparative results of Arm Angle (Alpha) 
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Figure 4.16 Comparative results of Arm Speed (Alpha Dot) 

                

 
 

Figure 4.17 Comparative results of Pendulum Angle (Beta) 
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Figure 4.18 Comparative results of Pendulum Speed (Beta Dot)                        

From table 8 shows that the comparison between two methods that be used in order to 

maintain the pendulum in upright position. 

 

Table 8 Comparison Between 2 Methods 

Controllers Rise Time Setling Time Overshoot Peak Value 

Double-PID+LQR 0.160 5.342 99% 0.0274 

LQR 0.131 2.342 55% 0.0294 

 

From figure above it is clearly seen that for both outputs such as alpha, alpha dot, beta 

and beta dot, double-PID+LQR controller shows the better result where rising time, 

settling time, overshoot and peak value are more acceptable than LQR controller. On 

observing above figures, double-PID+LQR controller is better to settle the response 

with in less time than LQR and double-PID+LQR controller is better in reducing the 

overshoot of the system. However by proper choice of weighing matrices Q and R, 

LQR response can further improved and is more dominant than LQR controller. The 

gain matrix K chosen LQR is almost perfect for stabilizing the pendulum. It is always 

not easy to obtain the gain matrix LQR. But in the case of LQR controller the gain 

matrix K can be tuned easily to obtain desired response.  
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LQR control methods are discussed for the stabilization of Rotary Inverted Pendulum 

system. From the simulation results, it is found that both double-PID+LQR and LQR 

method are efficient in satisfying the design requirements and robust to the parameter 

variations. The double-PID+LQR control shows better results in minimizing the steady 

state value compared to LQR while double-PID+LQR method is better to improve 

transient response of the system. Both double-PID+LQR and LQR controllers are 

capable of maintaining the pendulum in its upright position.  
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CONCLUSION AND RECOMMENDATIONS  

In this chapter 5, the project will be concluded, and the suggestion and 

recommendation will be discussed. The suggestion is needed to make sure that there 

is some improvement of this projects 

5.1 Conclusion 

The application of concept of Rotary Inverted Pendulum system has become wider in 

the industry, robotics and field of research due to its simplicity of system setup with 

highly unstable and underactuated characteristics. To achieve the first objective 

previous researches are studied, the stabilization controller of LQR and Double-

PID+LQR is proposed to be the stabilization controller to maintain upright position of 

Rotary Inverted Pendulum. Lagrange’s equation is one of the suggested approaches to 

model the Rotary Inverted Pendulum system. With the consideration of kinetic energy 

and potential energy of the Rotary Inverted Pendulum system, a mathematical model 

of Rotary Inverted Pendulum is obtained. Without a controller, a Rotary Inverted 

Pendulum cannot be stable at upright position. The second objective, To design and 

simulate double Proportional Integral Derivative Double-PID and Linear Quadratic 

Regulator (LQR) controller for balancing the  rotary inverted pendulum. Designing of 

double-PID+LQR controller and LQR controller is carried out respectively. Double-

PID controller is designed by using root locus method while LQR controller is 

designed by using optimal gain characteristics. After designing, the comparison the 

performance of stability between double-PID+LQR controller and LQR controller 

need to figure out.  The stabilization performance is evaluated and analyzed. As 

conclusion,  the double-PID+LQR controller has improved the stabilisation 

performance of the rotary inverted pendulum compared to LQR. 
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5.2 Future Works 

From the repeatability test on the stabilization performance of Rotary Inverted 

Pendulum system, it showed the long control time affected the result of stabilization 

performance. Shorter control time and longer time interval between each attempt in 

repeatability test can result a better stabilization performance. There are many idea to 

suggest for improvement the control of rotary inverted pendulum. For future work and 

development, another controller can be used instead of 2DOF-PID and LQR that have 

been used in this research. PSO algorithm method can solved and tuning the controller 

parameters more efficiently. For future research to utilize other controller and must 

improving the performance of real time.    
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APPENDICES 

APPENDIX A CODE IN MATLAB TO OBTAIN THE VALUE OF GAIN 
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APPENDIX B THE CONTROLLABILITY MATRIX Q AND THE VALUE OF 

GAIN 
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APPENDIX C GHANT CHART 

 

 


