TWO DEGREE OF FREEDOM (2DOF) MOTION CONTROL OF UPPER LIMB ROBOTIC ARM MECHANISM

ABDUL RAHMAN BIN KHAIRUDDIN

BACHELORS OF MECHATRONICS ENGINEERING WITH HONOURS UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

C Universiti Teknikal Malaysia Melaka

TWO DEGREE OF FREEDOM (2DOF) MOTION CONTROL OF UPPER LIMB ROBOTIC ARM MECHANISM

ABDUL RAHMAN BIN KHAIRUDDIN

A report submitted in partial fulfillment of the requirements for the degree of Bachelor of Mechatronics Engineering with Honours

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this report entitled "Two Degree of Freedom (2DOF) Motion Control of Upper Limb Robotic Arm Mechanism" is the result of my own work except for quotes as cited in the references.

Signature	:	
Author	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Bachelor of Mechatronic Engineering with Honours.

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATION

To my beloved mother and father.

ABSTRACT

The project's main purpose is to plan a controller which can control the yield plot for an upper limb of robotic arm. A structure of mechanical arm of two degree of freedom (2-DOF) designed and optimized. Study is done to explore the controller to be connected on the mechanical arm. PID controller is picked and analysed in term of its execution, for example, rise time, settling time, steady-state error, and overshoot. The experimental setup is carried out. Open loop simulation are first done to acquire the transfer function of each of the motor. Simulation for an uncompensated framework is done to watch the closed loop system characteristics without utilizing the controllers. From that point onward, closed loop simulations are completed for compensated system by utilizing PID controller. Two kinds of trials are done, to be specific point to point direction control and tracking control tests. Investigation is made dependent on the outcomes acquired.

ABSTRAK

Tujuan utama projek ini adalah untuk mereka bentuk pengawal yang dapat mengawal sudut keluaran untuk lengan robot. Struktur lengan robot dua darjah kebebasan (2-DOF) direka dan dioptimumkan. Kajian dijalankan untuk mengkaji jenis pengawal yang sesuai untuk digunakan pada lengan robot. Pengawal PID dipilih dan dikaji dari segi prestasinya seperti kesilapan keadaan mantap, masa penyelesaian, masa meningkat dan 'overshoot'. Persediaan eksperimen dijalankan. Simulasi 'open loop' mula-mula dijalankan untuk mendapatkan fungsi pemindahan setiap motor. Simulasi untuk sistem 'uncompensated' dijalankan untuk memerhatikan ciri sistem 'closed loop' tanpa menggunakan pengawal. Selepas itu, simulasi 'closed loop' dijalankan untuk sistem 'compensated' menggunakan pengawal PID. Dua jenis eksperimen dijalankan, iaitu titik ke arah kawalan trajektori dan eksperimen kawalan penjejakan. Analisis dibuat berdasarkan hasil yang diperoleh.

ACKNOWLEDGEMENTS

I find the relief that my journey cannot be completed without the help of many people. I had accepted many useful assists and guideline from many different persons during the whole performance of my Final Year Project. I love to extent my deepest gratitude and appreciation to these people. Firstly, I felt very fortune to have Dr. Mariam Binti Md Ghazaly, my supervisor who guide me throughout this project. Thank you for expertise and consistent advised.

Furthermore, I must share my special thanks of gratitude to my parents for providing me the opportunity to study at university and giving me finance and mentally support throughout my study life and thee whole period of my FYP. This accomplishment would not have been done or completed without them.

Last but not least, I would resemble my indebtedness to all my course mates for willing to share and help me to complete my FYP with their knowledge and experiences. I perceive my FYP as a huge breakthrough in profession growth. I will make great effort to practice added talents and knowledge and I will endure to effort on the development, in direction to achieve preferred career goals.

TABLE OF CONTENTS

DEC	CLARATION	
APP	ROVAL	
DEI	DICATION	
ABS	TRACT	i
ABS	STRAK	ii
ACH	KNOWLEDGEMENTS	iii
TAE	BLE OF CONTENTS	iv
LIS	Г OF FIGURES	viii
LIS	Г OF TABLES	xii
LIS	Γ OF SYMBOLS AND ABBREVIATIONS	xiv
LIS	Γ OF APPENDICES	xv
CHA	APTER 1 INTRODUCTION	1
1.1	Motivation	1
1.2	Problem Statement	2
1.3	Objective	2
1.4	Scope and Limitation	3

CHA	APTER 2 LITERATURE REVIEW	4
2.1	Introduction	4
2.2	Robotics	4
2.3	Upper limb robotic arm	5
2.4	Motor	8
2.5	Controllers	10
2.6	Summary	15
CHA	APTER 3 METHODOLOGY	16
3.1	Introduction	16
3.2	Research Methodology	16
	3.2.1 Project Methodology	17
	3.2.2 Experiment Methodology	17
3.3	Structure of Robotic Arm	17
3.4	Equipment usage	20
	3.4.1 12V DC Geared Motor with Hall Effect Encoder by Cytron	20
	3.4.2 Micro-Box 2000/2000C (xPC Target Machine)	21
	3.4.3 Motor Driver Circuit	22
3.5	System Overview	23
3.6	Calibration of Encoder for DC Geared Motor	24
3.7	Open Loop Control	24

v

3.8	System Identification Tools	27
3.9	Development of Closed Loop System	28
	3.9.1 Development of Uncompensated Closed Loop System	28
	3.9.2 Controller Design	30
	3.9.3 Design and Development of Compensated Closed Loop System wit Proportional-Integral-Derivative (PID) Controller	h 30
	3.9.4 Tuning Methods	32
	3.9.5 Trial and Error Method	32
	3.9.6 Ziegler-Nichols Method	33
СНА	PTER 4 RESULTS AND DISCUSSION	34
4.1	Introduction	34
4.2	Open Loop Test	35
	4.2.1 Linearity	50
4.3	Uncompensated System	52
	4.3.1 Point to Point Trajectory Control for Uncompensated System	52
	4.3.2 Tracking Control for Uncompensated System	56
4.4	Compensated System with PID controller	60
	4.4.1 Point to Point Trajectory Control with PID controller	60
	4.4.1.1 Trial and Error	60
	4.4.1.2 Ziegler Nichols	68
	4.4.2 Tracking Control with PID controller	76

4.5	Summary	82
СНА	PTER 5 CONCLUSION AND RECOMMENDATION	83
5.1	Conclusion	83
5.2	Recommendation	85
REF	ERENCES	87
APP	APPENDICES	

vii

LIST OF FIGURES

Figure 2.1: Robotic Mechanism	5
Figure 2.2: Illustration of an Upper Appendage of Automated Arm with (2DOF)) [8] 6
Figure 2.3: Type of Control Methods for Robotic Arm	10
Figure 2.4: Different Arm Movement [23]	11
Figure 2.5: Comparison of Three Controllers for RMS Error. Bar Charts Repre Mean Values for Twenty Two Motions and Error Bars represent Maximum Minimum Values [23].	sent and 12
Figure 2.6: Comparison of Three Controllers for Correlation Factors [23]	12
Figure 2.7: Comparison of Three Controllers for Mean Absolute Error [23]	13
Figure 2.8: Experiment result in the upper displacement zone [24]	14
Figure 3.1: Drawing of the Robotic Arm Mechanism	18
Figure 3.2: Structure of first link (a) Front view, (b) Back view, (c) Side view Top view, (e) Bottom view	, (d) 18
Figure 3.3: Structure of second link (a) Top view, (b) Bottom view, (c) Back v (d) Side view	iew, 19
Figure 3.4: Structure of robotic after assemble all the parts	19
Figure 3.5: DC Geared Encoder Motor and its Detachable Cover	21
Figure 3.6: Components of Micro-Box Module	23

Figure 3.7: System Concept
Figure 3.8: Block Diagram of Open Loop System
Figure 3.9: The Open Loop System Model Block Diagram
Figure 3.10: Real Time Simulation and Experimental Block Diagram27
Figure 3.11: System Identification Tools
Figure 3.12: The Block Diagram of the Uncompensated Closed Loop System for the Robotic Arm
Figure 3.13: The Uncompensated Closed System Block Diagram in Simulink29
Figure 3.14: Block diagram of a typical PID controller
Figure 3.15: Compensated Closed Loop System with PID Controller using MATLAB Simulink
Figure 4.1: Simulation and experiment flow
Figure 4.2: Input voltage and Output Angle Versus Times Graph, (2V)40
Figure 4.3: Input voltage and Output Angle Versus Times Graph, (3V)41
Figure 4.4: Input voltage and Output Angle Versus Times Graph, (4V)42
Figure 4.5: Input voltage and Output Angle Versus Times Graph, (5V)43
Figure 4.6: Input voltage and Output Angle Versus Times Graph, (6V)44
Figure 4.7: Input voltage and Output Angle Versus Times Graph, (7V)45
Figure 4.8: Input voltage and Output Angle Versus Times Graph, (8V)46
Figure 4.9: Input voltage and Output Angle Versus Times Graph, (9V)47
Figure 4.10: Input voltage and Output Angle Versus Times Graph, (10V)
Figure 4.11: The Error of the Output Angle from the Voltages Applied (2V-10V)49
Figure 4.12: Error of the output angle when 5V is applied as input (lowest error) 50
Figure 4.13: Graph of output angles against input voltages

Figure 4.14: The performance of the robotic arm for 15° of reference angle
Figure 4.15: The performance of the robotic arm for 30° of reference angle54
Figure 4.16: The performance of the robotic arm for 60° of reference angle
Figure 4.17: Results of tracking error experiment for an uncompensated system with input angle of 15°
Figure 4.18: Results of tracking error experiment for an uncompensated system with input angle of 30°
Figure 4.19: Results of tracking error experiment for an uncompensated system with input angle of 60°
Figure 4.20: Result of Point to Point Trajectory Control Experiment for PID Control with Input Angle of 15° and Kp value of 30
Figure 4.21: Result of Point to Point Trajectory Control Experiment for PID Control with Input Angle of 30° and Kp value of 30
Figure 4.22: Result of Point to Point Trajectory Control Experiment for PID Control with Input Angle of 60° and Kp value of 30
Figure 4.23: Result of Point to Point Trajectory Control Experiment for PID Control with Input Angle of 15° and Kp value of $30 \ Kd$ value is 1
Figure 4.24: Result of Point to Point Trajectory Control Experiment for PID Control with Input Angle of 30° and Kp value of $30 \ Kd$ value is 1
Figure 4.25: Result of Point to Point Trajectory Control Experiment for PID Control with Input Angle of 60° and Kp value of $30 \ Kd$ value is 1
Figure 4.26: Results of Point to Point Trajectory Control Experiment for a PID Control System with input angle 180° and Kp value of 120
Figure 4.27: Results of Point to Point Trajectory Control Experiment for a PID Control System with input angle 180° and Kp value of 120 (reduced scale)71
Figure 4.28: Point-to-Point Trajectory Control Experiment Results for a 15 ° Input Angle PID Control System, 72 <i>Kp</i> and 0.88992 <i>Kd</i> value73
Figure 4.29: Point-to-point trajectory control experiment results for a 30 ° input-angle PID control system, 72 <i>Kp</i> and 0.88992 <i>Kd</i> value

Figure 4.30: Point-to-point trajectory control experiment results for a 60 $^{\circ}$ input-angle PID control system, 72 <i>Kp</i> and 0.88992 <i>Kd</i> value
Figure 4.31: Performance of PID controller designed by using Trial and Error method with Sine Wave Signal for 15° at 0.1 Hz
Figure 4.32: Performance of PID controller designed by using Trial and Error method with Sine Wave Signal for 30° at 0.1 Hz
Figure 4.33: Performance of PID controller designed by using Ziegler's Nichols method with Sine Wave Signal for 15° at 0.1 Hz80
Figure 4.34: Performance of PID controller designed by using Ziegler's Nichols method with Sine Wave Signal for 30° at 0.1 Hz

LIST OF TABLES

Table 2.1: The Type and Characteristic for Automated Arms [7]	7
Table 2.2: Comparison of Multiple Motor Types in Terms of Their Pros and Cons	[26] 9
Table 3.1: Specification of Motor	20
Table 3.2: Micro-Box Components	22
Table 3.3: Open Loop Simulation Parameters	26
Table 3.4: Parameters of Transient Response and the Effects Caused by Manipul (P), (I), and (D) values	ating 32
Table 3.5: Controller Parameters of Ziegler-Nichols Step Response Method	33
Table 4.1: System Identification Results for DC Motor ($Vin = 2V$)	40
Table 4.2: System Identification Results for DC Motor ($Vin = 3V$)	41
Table 4.3 System Identification Results for DC Motor ($Vin = 4V$)	42
Table 4.4: System Identification Results for DC Motor ($Vin = 5V$)	43
Table 4.5: System Identification Results for DC Motor ($Vin = 6V$)	44
Table 4.6: System Identification Results for DC Motor ($Vin = 7V$)	45
Table 4.7: System Identification Results for DC Motor ($Vin = 8V$)	46
Table 4.8: System Identification Results for DC Motor ($Vin = 9V$)	47
Table 4.9 System Identification Results for DC Motor ($Vin = 10V$)	48
Table 4.10: Data of output angle obtained when voltage is applied to the motor.	51

Table 4.11: Parameters for Point to Point Trajectory Control Experiments	53
Table 4.12: Parameters for Tracking Control Experiment	56
Table 4.13: Parameters for Point to Point Experiments using PID Controller	60
Table 4.14: Performance of Robotic Arm with PID Controller for Experime with Kp value of 30	ntal 63
Table 4.15: Performance of Robotic Arm with PID Controller for Simulation with value of 30	Кр 64
Table 4.16: Performance of Robotic Arm with PID Controller for Experimental w Kp value of 30 and Kd value is 1	vith 67
Table 4.17: Performance of Robotic Arm with PID Controller for Simulation with value 30 and Kd value is 1	Кр 68
Table 4.18: Point to Point Experiments Parameters using PID controller	69
Table 4.19: Parameters of PID controller obtained from simulation results	72
Table 4.20: Parameters for Point-to-Point Experiments using PID controller	73
Table 4.21: Performance of Robotic Arm with PID Controller for Experimental w Kp value of 72 and Kd value of 0.88992	with 75
Table 4.22: Performance of Robotic Arm with PID Controller for Simulation with	Кр

76

value of 72 and *Kd* value of 0.88992

LIST OF SYMBOLS AND ABBREVIATIONS

DOF	-	Degree of Freedom
Кр	-	Proportional Gain
Ki	-	Integral Gain
Kd	-	Derivative Gain
Ku	-	Ultimate Gain
Ti	-	Integrator Time Constant
Ти	-	Ultimate Period
Τd	-	Derivative Time Constant
Tr	-	Rise Time
Ts	-	Settling Time
Ess	-	Steady State Error
0S	_	Overshoot

xiv

LIST OF APPENDICES

APPENDIX A PROJECT RESEARCH METHODOLOGY IN FLOW CHART	91
APPENDIX B EXPERIMENT METHODOLOGY FLOW CHART	92
APPENDIX C PROJECT'S GANTT CHART	93

xv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Robots are progressively being incorporated into working undertakings to supplant people particularly to play out the monotonous assignment .These robots are right now utilized in numerous fields of uses including office, military errands, healing center tasks, hazardous condition and farming [13]. In this manner, the control of the robot ought to be planned so as to give fitting execution to a nonlinear, multivariable, nonstationary framework [14].

The motivation for this undertaking is to enhance the movement for a robotic arm utilizing position control and dissect the execution of the controllers as far settling time, rise time, and steady-state state error.

1.2 Problem Statement

Improper motion control may result in wounds and casualty. It is critical to improve the capability of a robotic arm along these lines. For movement control of automated arm, it is required to be in is required to be in high precision, high efficiency, low in error for the output which empower it to decide the correct direction and the torque expected to accomplish a focused on result.

To achieve precise motion control, there are difficulties to obtain the desired output due to the sensitivity of the controller. For example, the parameters for PID controller are rather difficult to estimate in noisy environment while fuzzy logic does not required noise-free environment [1].

1.3 Objective

The main objectives of this project are:

- 1. To design and optimize the mechanism of 2DOF robotic arm
- 2. To derive each motor's transfer function by running the open loop test.
- 3. To design and develop controller to control the position for 2DOF upper limb robotic arm.
- 4. To analyze and compare the performance of the controller in terms of steadystate error, settling time and rise time.