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ABSTRACT 

Underwater pipelines are usually used to transport oil and natural gas in huge quantities 

and over long distances. Cracking in underwater pipelines is hard to be detected and 

the cracking had caused a large number of past accidents throughout the world. The 

main problem for detecting the cracking area or location is the poor visibility in 

underwater environment. The objectives of this study are to develop image processing 

method in identifying the cracking area using real underwater pipeline’s images and 

analyse the pipeline cracking area in different types of artificial underwater 

environment. In the proposed system, the images of cracking pipeline were collected 

and undergoes image processing algorithm, which include grayscale image, image 

filtering, image thresholding and edge detection. Then, contour method was used to 

find the coordinates of the cracking area from the processed images. Two experiments 

were designed to fulfil the objectives. The first experiment is to identify the pipeline’s 

crack using the images from real underwater environment, while other experiments are 

to determine the pipeline cracking area using images from artificial underwater 

environment in different conditions. In the first experiment, suitable filter, threshold 

method and edge detector are chosen for the system. The percent error of the proposed 

system is determined in Experiment 2 for different conditions. For the result of 

Experiment 1, the proposed system is including Gaussian filter, simple thresholding 

and Canny edge detection. From Experiment 2, the performance of the proposed 

system is the best in the condition of low turbidity level with high lighting level. The 

condition of high turbidity level with low lighting level had the worst performance as 

the resulted percent error had reached more than 70% and half of the cracking parts 

cannot be found in this condition. Therefore, turbidity and lighting conditions is 

important for image processing. 
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ABSTRAK 

Saluran paip bawah air biasanya digunakan untuk mengangkut sejumlah besar minyak 

dan gas melalaui jarak yang panjang. Bagaimanapun, retakan yang ada pada saluran 

paip bawah air susah untuk dikesan dan retakan tersebut telah menyebabkan 

berlakunya kemalangan yang berjumlah besar dalam seluruh dunia. Masalah yang 

terbesar bagi mengesan retakan tersebut adalah disebabakan penglihatan yang buruk 

ketika berada di bawah air. Tujuan kajian ini adalah untuk mengkaji penggunanaan 

teknik pemprosesan gambar dalam mengesan kawasan retakan pada saluran paip 

bawah air yang sebenar dan menganalisis kawasan retakan pada saluran paip yang 

berada dalam pelbagai keadaan persekitaran bawah air buatan. Dalam sistem yang 

dicadangkan, gambar-gambar retakan paip telah dikumpul dan teknik pemprosesan 

gambar telah dijalankan di mana teknik tersebut merangkumi menukar gambar asal 

kepada gambar skala kelabu, menapiskan gambar, mengambangkan gambar and edge 

detection. Selepas teknik pemprosesan gambar, teknik Contour telah digunakan untuk 

mencari koordinat kawasan retakan daripada gambar yang telah diproseskan. Dua 

eksperimen telah dijalankan untuk memenuhi tujuan kajian ini. Eksperimen pertama 

adalah untuk mengenal pasti retak saluran paip dengan menggunakan gambar dari 

persekitaran bawah air sebenar, manakala eksperimen lain adalah untuk menentukan 

saluran paip kawasan retak menggunakan imej daripada persekitaran bawah air buatan 

dalam keadaan yang berbeza. Dalam eksperimen pertama, penapis, kaedah ambang 

dan edge detector yang sesuai dipilih untuk system tersebut. Peratus kesilapan sistem 

ditentukan dalam Eksperimen 2 untuk keadaan yang berbeza. Untuk hasil Eksperimen 

1, sistem yang dicadangkan termasuk penapis Gaussian, penguncian mudah dan 

Canny edge detection. Dari Eksperimen 2, prestasi sistem yang dicadangkan adalah 

yang terbaik dalam keadaan tahap kekeruhan yang rendah dengan tahap pencahayaan 

yang tinggi. Keadaan paras kekeruhan yang tinggi dengan tahap pencahayaan rendah 

mempunyai prestasi terburuk kerana kesilapan peratus telah mencapai lebih daripada 

70% dan separuh daripada bahagian retak tidak dapat ditemui dalam keadaan ini. Oleh 

itu, tahap kekeruhan dan pencahayaan adalah penting untuk pemprosesan imej. 
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INTRODUCTION 

This chapter describes the motivation and problem statement to give an idea of 

the contribution of the research study. The objectives and scope of the study are also 

described. 

1.1 Motivation 

Nowadays, fluids such as water, oil, natural gas and carbon dioxide have been 

moved in huge quantities and long distances using pipelines. Pipelines system are 

generally divided into two: onshore pipelines (land pipelines) and offshore pipelines 

(underwater pipelines) [1]. For the underwater pipeline, financial losses in term of fluid 

losses and environmental problems may be occurred due to poor maintenance of the 

pipeline and safety issues [2]. From 2003 to 2018, there is a large number of 

underwater pipeline accidents that occurred throughout the world.  

The British Petroleum (BP) company owns the largest offshore deepwater oil 

field, Thunder Horse field in Gulf of Mexico, that processes 200 million cubic feet of 

natural gas and 250 thousand barrels of oil per day [3,4]. After the occurrence of 

Hurricane Dennis in July 2005, Thunder Horse platform was found leaning badly. 

When the platform was being repaired, it was discovered that the underwater pipelines 

of platform are brittle and full of cracks due to poor welding job [5]. 

PETRONAS gas pipeline explosion in Sarawak, Malaysia occurred early in the 

morning of 10 June 2014. The location of the incident was in the district of Lawas, 

Sarawak. The people in Lawas town were shocked seeing the fireball that burned for 

almost 2 hours. The RM4 billion project (Sabah-Sarawak interstate gas pipeline) 

owned by PETRONAS had been temporarily stopped after the explosion occurred. 

Fortunately, there were no lives lost in the incident [6]. This incident is caused by the 

cracking pipeline due to soil movement [7]. 

In 2015, an underwater pipeline under Moscow’s Moskva River in Russia that 

used to transport oil, exploded due to cracks in the pipeline. The flames and smoke 
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could be seen 16 km away from the explosion site. Three bystanders, including a child 

were being admitted to the hospital for respiratory problems caused by the plumes of 

black smoke and there was no occurrence of death in this accident [8,9].  

An oil spill from the Poplar pipeline into the Yellowstone River just upstream 

of Glendive, Montana was discovered on Jan 2015. More than 30 thousand gallons of 

Bakken crude oil was spilled into the Yellowstone River due to the cracked pipeline. 

The incident had affected the quality of drinking water near Glendive and the 

surrounding towns. The oil cleanup on Yellowstone River took a few months to 

complete since the ice on the river prevented the cleanup [10,11]. 

Alaska’s Cook Inlet is well known for its marvelous mountain view and the 

habitat of the endangered beluga whales. In Feb 2017, a Hilcorp helicopter noticed that 

bubbles of natural gas were floating at the surface of Cook Inlet. The natural gas was 

bubbling up from the cracked underwater pipeline which used to transport natural gas 

to the offshore oil drilling platforms. It was then found out that the leakage was started 

a few months earlier in Dec 2016. 210,000 to 310,000 cubic feet of the natural gas had 

been leaked into the watershed every day and posed a toxic threat to the people and 

marine life of Cook Inlet [12,13]. 

On July 24, 2018, an oil spill occurred in Cliff Head Alfa platform, Perth. 

Australia-based Triangle Energy confirmed the incident and reported that the main 

cause of the incident was the small crack in the pipeline. Fortunately, there were no 

people or wildlife harmed since the oil spill was in the range of 0 to 10,000 litres [14]. 

In conclusion, the cracking of underwater pipeline is the main reason causing 

most of the incidents mentioned above. The incidents had caused financial losses and 

human life or marine life losses. This has motivated me to do the research on the 

identification of underwater pipeline cracking area. 

1.2 Problem Statement 

Currently, pipelines are an effective medium to transport oil and natural gas in 

the underwater environment. After the pipeline has been used for years, failures may 

occur. The failures are generally due to inherent defects, external damage or old-aged 

pipelines. Underwater pipeline accidents have been increased occasionally because of 

the cracking in the pipelines [1]. There are some problems being faced when the 

cracking detection is carried out in underwater environment. 
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The main problem is the poor visibility in underwater environment. Visibility 

is commonly defined as the distance at which an object can been seen. The degree of 

visibility in underwater environment mainly depends on the light penetration and 

turbidity level. Light penetration depends on light level, incidence angle of light rays 

and roughness of water surface. Light level is low in cloudy or rainy day causing poor 

visibility in underwater environment. Water can absorb wavelength of light rays to 

different degree making the colour shift in the water. The characteristic coloration of 

the water will also cause the light level in the water drops. For the incidence angle, the 

higher the distance from equator of earth, the lower the incidence angle, more light 

being reflected, making less light enter the water. As an example, the seawater near 

the coast of New Jersey is more cloudy that that of Bonaire ocean which located near 

the equator. In the case of water surface’s roughness, ocean with choppy waves will 

have poor underwater visibility since it reflects more light rays compared to calm 

ocean. Turbidity means the cloudiness of a fluid caused by the large number of 

suspended particles that absorb and scatter the light, and hence reduce the fluid 

visibility. Turbidity may be affected by decomposed plant and animal matter, algae, 

silt or clay. Tides, heavy rain, storm, urban run-off, landslide and bank erosion can 

also increase the number of suspended particles and affect the turbidity level. Sea with 

choppy waves in stormy day stirs up the sediments from the sea bottom, causing high 

underwater turbidity level. Runoff has caused almost 240 million tons of topsoil 

washed from Mississippi River to the Gulf of Mexico every year. The high turbidity 

level in underwater environment makes poor visibility and increases the difficulty in 

detecting the cracks and repairing work [15,20,21,22]. 

Secondly, the use of inspection tools may have some errors when remoting the 

pipelines’ conditions. Crack detection and repair works are done by divers or 

inspection tools such as remotely operated vehicles (ROV) and pipeline inspection 

gauges (PIG). By comparing to divers, inspection tools can be operated in greater depth 

of water and longer time, however they may have some weakness such as expensive, 

vulnerable to failure, uncontrollable and hard to adapt to changes in pipeline direction 

and diameter [18,19]. Inspection tools also face problem when they lose connection 

from the server system. The result of underwater pipeline survey cannot be received if 

the connection between the inspection tools and server system. Furthermore, fatal 

accidents may occur in underwater environment. In oil and gas industry, saturation 
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diver is the one who go to the seabed to do maintenance and reparation on underwater 

pipelines. The most dangerous thing for the divers is the differential pressure. The 

pressure differences are due to different depth where water rushes to a body with great 

force. The force can be hundred pounds per square inch making divers in high risk of 

drowning. When diving to any depth, divers are breathing pressurized air. Those inert 

gases in the pressurized air are compressed and dissolve in the blood and body tissues. 

If the gases do not diffuse out after the diver come out from the water, the gases will 

form bubbles and become millions of tiny explosives in the body of the diver. 

Decompression sickness may occur and cause fatality. The longer the time taken for 

diving, the higher the risk for the divers [16,17].  

Due to the problems stated, an underwater pipeline cracking area identification 

system will be developed. 

1.3 Objectives 

The objectives of the research study are as follows: 

a) To develop image processing algorithm to identify the cracking area in 

underwater pipeline from actual images. 

b) To analyse the pipeline cracking area in different types of artificial underwater 

environment. 

1.4 Scopes 

The scopes of the research study are: 

a) The image processing algorithm is used to identify the crack area, not to detect 

the crack. 

b) The pipeline cracks are identified in four different types of water environment: 

which are  

• low turbidity level with high lighting level 

• low turbidity level with low lighting level 

• high turbidity level with high lighting level  

• high turbidity level with low lighting level 

b) The technique used are image processing method including grayscale image, 

image filter, thresholding, edge detection  
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c) Area is determined using contour method. 

d) The images from real underwater environment may not mention the light and 

turbidity level. 

e) OpenCV-Python is used for the image processing algorithm. 

f) SJCAM SJ4000 Wi-Fi Action Camera is the only used camera for Experiment 

2. 

g) For Experiment 2, the cracked PVC pipes’ images are captured at the water 

height of 20 cm. 

h) For Experiment 2, the distance between the lenses and cracked PVC pipes is 

about 8cm. 

1.5 Thesis Outline 

This report and project is about an underwater pipeline cracking area 

identification system. In this report, motivation for developing this system is covered 

in Chapter 1. Besides, the objectives and scope of the system are also stated in this 

chapter. In the following chapter, the review of previous related work of the 

environment mapping is discussed. In Chapter 2 also, some basic principles and 

theories are defined and stated. The experiment setup and type of the experiment is 

discussed in Chapter 3. In Chapter 4, the results are analysed and discussed, followed 

by a conclusion in Chapter 5. 
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LITERATURE REVIEW 

This chapter describes the background of underwater pipeline system and 

different types of cracking pipeline. Next, related works on cracking pipeline detection 

methods are discussed. Lastly, the advantages and limitations of each method are 

discussed and summarized. 

2.1 Underwater Pipeline System 

Pipelines are the most suitable method to transport oil and natural gas in 

underwater environment as pipelines can be constructed at the water depths that more 

than 1000m. The installation of underwater pipeline system includes several 

components such as well heads, risers and subsea manifolds. Figure 2.1 has shown the 

installation of the underwater pipeline system for oil production purpose [23]. 

The oldest underwater pipeline in the world was the outfalls that was built in 

19th century. For oil industry, the earliest underwater pipeline was short and long 

loading pipelines. The pipelines were built on shore and linking them into the water. 

The first underwater pipeline for petroleum industry was constructed in Gulf of 

Mexico (1947), which is located 17km from the land and 6m into the water. 

Underwater pipelines in earlier stage were constructed within the depth that reachable 

for the divers, almost 300m deep. Nowadays, the underwater pipelines are mostly 

placed in the depth more than 1000m. There are several projects that having the 

pipeline placed between 1500m and 2500m in the water. For example, pipelines in 

Black Sea was installed up to almost 2200m [1]. 

In [23], the lifespan of a pipeline is mentioned can be over 40 years. Failure 

incidents are counted as a part of life for the pipeline. Inherent effects mainly cause 

post-commissioning failure per unit time increased. The design of pipeline generally 

depends on the following criteria: stress-related principles, material selection and 

welding requirement and lastly internal and external pressures. These criteria may 

affect indirectly affect the lifespan of a pipeline. Besides, failure incidents may also 
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cause by external damage like storms and anchors. Therefore, the pipeline design may 

also need to consider many other issues such as the age-related issues, seabed type and 

condition, temperature, tidal currents, waves and submarine landslide. 

 

Figure 2.1 A Seafloor Oil Production Facility with A Number Of 

Components [23] 

2.2 Types of Crack in Underwater Pipeline 

Cracks weaken the structural integrity of pipeline. Cracking may happen due 

to the factors: base material of pipeline, welding work, heat affected zone (HAZ) and 

dents or defects. There are several types of cracking in underwater pipelines and four 

of them are discussed in this section. 

2.2.1 Stress Corrosion Cracking (SCC) 

Stress corrosion cracking (SCC) is a crack formed from corrosive environment. 

It has a marked loss of mechanical stress with small amount of metal loss. It is a 

hazardous and fatal mechanism and may cause majority of subsea disaster. The 

vulnerability to SCC is affected by applied stress level, material of the pipeline and 

environmental conditions. Most of the underwater pipelines are made of steel. SSC 

happens due to the anodic reaction of the steel with the corrodents such as chloride ion 

(Cl-), oxidants, hydrogen sulphide (H2S) and oxidants like elemental sulphur present 

in the water. The synergistic action of H2S in acidic solution is known as sulphide 
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stress corrosion. Sulphide stress corrosion is resulted from localized alloy 

embrittlement by hydrogen atom [1,24,25,26].  

There are three basic mechanisms of SCC which are active path dissolution, 

hydrogen embrittlement and film-induced cleavage. The most active path for the 

accelerated corrosion is the gain boundary where segregation of impurity element can 

trouble the passivation of a material. The gain boundary corrosion can occur without 

the presence of stress where the crack walls is still passivated. The presence of applied 

stress is to open up the cracks and faster the corrosion rate. The maximum crack growth 

rate for active path corrosion is 10-2 mm/s but the usual rate is 10-8 mm/s. In the case 

of hydrogen embrittlement, hydrogen is small enough to dissolve in all materials. 

Region of high triaxial tensile stress will attract hydrogen to it when the metal structure 

destroyed. The dissolved hydrogen will assist in the fracture of metal and then lead to 

metal embrittlement. The cracking of this mechanism may be intergranular or 

transgranular and the maximum crack growth rate is 1 mm/s. For film-induced 

cleavage, ductile material is generally passivated with brittle film. The crack that 

formed by corrosion in the brittle film can propagate the ductile material. De-alloyed 

layer is the brittle film that lead to film-induced cleavage. Transgranular cracking is 

expected from the film-induced cleavage process [26]. 

2.2.2 Hydrogen Induced Cracking (HIC) 

Hydrogen induced cracking (HIC) is one of the cracking that occurs in the steel 

underwater pipelines. The occurrence of HIC is due to metallurgical (strength, alloying 

element, microstructure, etc.) and environmental factors (pH, temperature, aggressive 

ions, etc.). Underwater pipeline is used to transport crude oil and natural gas. The 

formation of HIC is when the hydrogen sulphide (H2S) in the crude oil reacts with the 

water and hydrogen is formed. At the same time, hydrogen is also formed when H2S 

reacts with the iron in the steel pipeline. The hydrogen atom is small enough to diffuse 

through the wall of pipeline and cause embrittlement. The more the hydrogen being 

trapped in the space of pipe wall, the higher the hydrogen pressure. This causes the 

stress in the steel pipeline greater than its tensile strength. Steel is a ductile material 

and high stress may cause lamination. When the laminations are formed near to each 

other, stresses will force the lamination to join to form HIC. HIC’s cracks are usually 
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positioned parallelly to the rolling plane. HIC may also occur during welding process 

[27,28,29]. 

2.2.3 Stress Oriented Hydrogen Induced Cracking (SOHIC) 

Stress oriented hydrogen induced cracking (SOHIC) is like HIC but the 

lamination is formed on the top of each other. Formation of HIC is usually the initial 

step for the formation of SOHIC; however, SOHIC also can be formed in the HIC-

resistant material. High pressure stresses of hydrogen will force the formation of crack 

instead of plastic deformation. Individual HIC cracks are formed as vertically stacked 

array and the array runs perpendicular to the applied stress. Significant through-

thickness crack which is SOHIC is formed when the run through the thickness of the 

pipeline. For a non-ductile material, SOHIC usually formed adjacent to the heat 

affected zone (HAZ) of weld. SOHIC can be divided into two types: Type I and II. 

Type I is the traditional SOHIC with in-plane and linking cracks while Type II is 

SOHIC with no obvious in-plane cracks. For the formation of Type I SOHIC, in-plane 

cracks are initially formed and crack propagation rate of linking cracks is low, thus 

form the Type I SOHIC. Otherwise, it is the formation of Type II SOHIC [27,29,30]. 

2.2.4 Hook Crack 

Hook crack occurs during pipeline manufacturing or welding process. The 

occurrence of hook crack is due to non-metallic inclusions. Hook crack is formed when 

inclusion is turned out from the metal which gives the crack’s appearance as “hook” 

or “J” shape. Hook cracks are small and always follow the weld flow lines. If there are 

too many hook cracks, it may open up the surface of the pipeline. Hook cracks will 

possibly pass the initial hydrotest; however, the cracks will later fail as fatigue-induced 

cracking [30,31]. 

2.3 Related Works On Cracking Pipeline Detection Methods 

There are several methods that can be used to detect the cracks on the pipeline 

(either onshore or offshore pipeline) such as image processing, ultrasonic sensors, 
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negative pressure wave method, infrared thermography and others. Two out of these 

methods, which are usually used for detecting the defects, are discussed in this section. 

2.3.1 Image Processing 

Image processing method is mostly used to detect and identify the cracking 

pipeline. Visual inspection is carried out by trained divers or inspection tools to obtain 

the images of cracking pipelines [20]. Various researches on the image processing 

have been carried out. 

The authors in [18] had developed an image processing protocol for the 

pipeline inspection. The protocol was claimed to be used for variety situations that can 

affect the imaging conditions and finally successfully to be demonstrated in Cork 

harbour, Ireland. The protocol is set up with two cameras to allow the photograph can 

be taken from different viewpoints simultaneously. The speciality of the protocol is 

the stereo imaging-based 3D shape recovery systems. The system is potentially to 

recover the full 3D information of the pipeline. The protocol tends to retain enough 

brightness and focus the enough of subject while minimizing the noise of the image. 

[32] had introduced a vision-based quality inspection system to detect the 

defection for tube-sheet welding. The system contains welding robot, vision sensor 

and a control computer. Image processing, which is the most important part in this 

system, consists of two parts: image pre-processing and detection of the defect.  In 

image pre-processing part, median filter is used to remove the noise of the image that 

captured by vision sensor. Otsu algorithm performs image segmentation automatically 

while morphological technology is used to make sure the continuity of edge. Region 

of interest (ROI) is then selected. Unlike the stereo imaging-based 3D shape recovery 

systems in [18], the system in [32] uses sum intensity for the defect detection. 

Accuracy of determining a defect and its location are determined using the sum 

intensity for the pipe tube. The results in [32] have shown the high accuracy of the 

vision-based quality inspection system. 

An image-based model for predicting pipeline’s cracks had been proposed in 

[33]. Firstly, colour images are taken and converted into grayscale images (black and 

white) using MATLAB software. Next, image segmentation is carried out using 

threshold method while image enhancement is done using erosion and dilation 

operators. Then, the cracks are enhanced by applying Laplacian filter to the images. 



23 

The method used for detecting the edges is Canny edge detection. After edge detection, 

the crack width and length and the pixel resolution are calculated. Finally, the levels 

of cracks are classified by using fuzzy logic with crack width, crack length and number 

of pixels. The model proposed in [33] has the accuracy of 90% in detecting the cracks. 

The procedure of the vision inspection system that introduced by [34] is similar 

to the one proposed in [33]. Both of system in [33] and [34] pre-process the pipeline 

images using image processing technique and then segment those images using 

thresholding. However, morphological method is also used in [34] for image 

segmentation. The additional thing of the system in [34] is the damage type of the 

pipeline can be identified using two recognitions: statistics recognition and back 

propagation neural network (BPNN) recognition. By using both recognitions, drainage 

pipelines can be detected and the damage situation of the inner wall of pipeline can 

also be identify. 

Another image processing method mentioned in [35] is used to detect the 

cracks in the long-distance natural gas pipeline’s inner wall. The algorithm is also 

divided into two parts which are image pre-processing and crack recognition. Image 

pre-processing part consists of converting images to grayscale images, median 

filtering, non-linear graying and binarization. Crack recognition algorithm involves 

the steps of partitioning the images, calculating the inflection point of images, 

analysing the centre point and radius minimum circle field where the image is and 

lastly judge the cracks using fuzzy judgement. By comparing to the accuracy in [33], 

the recognition rate of this algorithm has resulted more than 92% by testing on natural 

gas pipelines with different specifications [35]. 

Dou-edge evaluation (DEE) can be used as a computer vision algorithm for 

detecting the thin cracks on the pipeline automatically. DEE has advantages of 

extracting cracks from complicated and noisy environment when being compared to 

other edge filters such as Laplacian filter in [33]. The DEE algorithm is started by 

applying Sobel filter to the grayscale image to get a binary image. Morphological filter 

is then applied to the binary image to remove noise and fill objects; thus, a skeleton 

image will be obtained. The widths of the objects in the image is evaluated and then 

the objects other than the cracks will be filter out from the image. Lastly, random noise 

is removed by applying threshold filter to the image. The limitation of this DEE 

algorithm is cracks in different sizes’ range cannot be detected at the same time [36]. 
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2.3.2 Acoustic/Ultrasonic Sensor 

Acoustic sensors’ nodes are generally installed on the outer pipeline surface. 

The pressure in a pipeline is always in a balance condition. When there is a leak, the 

pressure will be imbalance and the frequency of acoustic signal generated (noise) will 

exceed the audible range. Those acoustic sensors are used to collect the noise [2,15]. 

Ultrasonic sensors are used to emit and receive ultrasonic waves that travel through 

the pipeline’s wall. A detailed mapping of the pipeline’s wall will be obtained. There 

are two important information in the received waves, which are the time taken between 

emission and reception and the amplitude. The time taken can be used to determine 

the distance of the pipeline using Time-of-Flight (TOF). Then, by operating the 

ultrasonic sensor point-to-point through a region, the cracking area and location will 

be detected [24,36].   

[37,38,39] have mentioned two types of networks using acoustic sensor for 

underwater pipelines: Underwater Acoustic Sensor Networks (UASN) and Integrated 

Underwater Acoustic Sensor Networks. UASN has a limitation where each node can 

only communicate with a few of neighbouring nodes, therefore there will be an error 

in information transmission to the control station. In Figure 2.2, only two out of all 

acoustic sensors is linked to a buoy which has the radio communication system that 

can communicate with the control station. This means that all the nodes have to transfer 

the signal to the neighbouring nodes until the signal reaches the node that connected 

to the buoy. Integrated UASN has overcome the problem of UASN by connecting each 

node to a wireless acoustic transceiver and a wired network interface. The status of 

each node can be checked periodically and maintenance can be carried out 

immediately. Faulty nodes may cause link breaks. With wider transmission range 

using wireless links with multiple nodes, the connectivity will remain even though 

there are several link breaks on several segments as shown in Figure 2.3. 

[40] proposed a system to monitor the pipeline wall for oil and gas station. The 

system is adopted by multi-crystal ultrasonic wave sensors. These sensors are used to 

monitor the thickness of the pipelines in circumferential direction. The sensors are 

used with 14 internal ultrasonic crystal in the system designed for the measurement of 

thickness.  After the sensors have gathered the data, tendency analysis is operated to 
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give the tendency information. The different time periods analysed from the data 

tendency is then used for the prediction of pipeline crack area’s location. 

 

Figure 2.2 Underwater Acoustic Sensor Networks (UASN) [38] 

 

 

Figure 2.3 Integrated Underwater Acoustic Sensor Networks [38] 

Similar to [40], [41] introduced a system for measuring the thickness of wall 

using ultrasonic multisensor. The proposed system has four main parts: tube 

transmission line for transporting pipes in constant speed, ultrasonic wave 

continuously detection equipment for acquire signals of the detection of steel pipe wall 

thickness, a data acquisition card (HY.6070C board) and computer inspecting software 

(Visual C++ 6.0 software) for calculation of pipe wall thickness. The detecting speed 

of this proposed system reaches approximately 0.417 m/s and its accuracy is ±1 mm. 

Acoustic emission sensors are used for leak detection and the leak location for 

gas pipelines. The sensors, which are installed on the outer wall of the gas pipelines, 

collect the leak acoustic emission signals available for the leak detection. An adaptive 

time delay estimator is used to estimate the time delay between two leak acoustic 

emission signals. The time delay is then used to locate the leak location by combining 

with the sonic speed in gas pipeline and the distances between two acoustic emission 

sensors. The experimental result shows that there is only 1% error in locating the 

leakage when the system is tested over the 80m pipeline [42]. 
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The authors in [43] also developed a simulation system with the use of acoustic 

emission for locating the crack in stainless steel pipelines. The transducer used in the 

system is piezoelectric sensor. The acoustic emission signals are collected using the 

same way in [42]. The difference of the system in [43] when compared to the one in 

[42], is timing parameters such as peak definition time, hit definition time and hit 

lockout time are defined clearly. By using these timing parameters, the sound 

localization accuracy is achieved in the experimental part. From the experimental 

results, the locating error of the system is approximately to 1% when the distance 

between the two piezoelectric sensors is 1.8 m [43]. 

2.3.3 Criteria Comparison 

Table 2.1 Criteria Comparison on Pipeline Detection Methods from 

Previous Related Works 

Conference / 

Journal 

[18] [32] [33] [34] 

Algorithm 

Method 

Stereo 

Imaging 

Image 

Processing 

Image 

Processing 

Image 

Processing 

CCD Vision 

System 

Sensor Used Two 

Cameras 

Vision 

Sensor 

SONY-DSC 

T5 Digital 

Camera 

Vison Sensor 

Environment Underwater Tube-sheet 

Welding 

Onshore and 

Offshore 

Sewer Pipes 

Drainage 

Pipelines 

Image Filter  Median 

Filter 

Laplacian 

Filter 

Smooth Filter 

Image 

Segmentation 

 Otsu 

Algorithm 

Threshold Threshold and 

Morphology 

Edge 

Detection 

  Canny Edge 

Detector 

Area/Location 

Determination 

 Sum 

intensity 

Fuzzy Logic Statistics 

Recognition and 

BPNN 

Recognition 

Accuracy  High 

accuracy 

90% accuracy Not Stated 
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Conference / 

Journal 

[35] [36] [40] 

Algorithm 

Method 

Image Processing Image Processing Ultrasonic Monitoring 

System 

Sensor Used Camera Camera Multi-crystal Ultrasonic 

Wave Sensors 

Environment Natural Gas 

Pipelines’ Inner 

Wall 

Onshore and 

Offshore Sewer 

Pipelines 

Oil and Gas Pipelines 

Image Filter Median Filter Morphological 

filter 

 

Image 

Segmentation 

Not Stated  

Edge 

Detection 

 Sobel edge 

detector 

 

Area/Location 

Determination 

Crack recognition With the aid of 

skeleton images 

Using time periods 

from data tendency 

Accuracy 92% recognition 

rate 

Not stated High accuracy 

 

 

Conference / 

Journal 

[41] [42] [43] 

Algorithm 

Method 

On-line High-

speed 

Inspection 

Acoustic Emission 

Technique 

Acoustic Emission 

Technique 

Sensor Used Ultrasonic 

Multisensor 

Acoustic Emission 

Sensors 

Acoustic Emission 

Sensors 

Environment Underground Oil 

or Gas Pipeline 

Gas Pipelines Stainless Steel 

Pipelines 

Area/Location 

Determination 

Visual C++ 6.0 

software 

Time delay 

between two leak 

acoustic emission 

signals. 

Timing parameters 

Accuracy Error of ±1 mm 1% error over 80m 

pipeline 

1% error over 1.8m 

pipeline 
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Table 2.2 Advantages and Limitations of Image Processing Method 

and Method using Acoustic/Ultrasonic Sensor 

Methods Advantages Limitations 

Image Processing 

[32,33,35,36] 
• Low cost 

• High accuracy 

• Thin cracks 

can be 

identified 

• Location and 

area of the 

crack can be 

known 

• Easy usage 

• Time to detect the leak may be slow. 

• Need the help of trained divers or 

inspection tools to obtain the images 

of pipeline. 

Acoustic / 

Ultrasonic 

Sensor 

[2,38,40,41,42,43] 

• Moderately 

high cost  

• Moderately 

high accuracy 

• Time to detect 

the leak is fast. 

 

 

• Inefficient for detecting small cracks 

due to high background and noise 

conditions 

• Limited bandwidth among nodes due 

to distance in between and frequency 

of the acoustic sensors 

• High propagation delays of the 

acoustic signals in underwater 

environment 

• Nodes need battery power to operate. 

The power consumed is high and the 

lifespan of the battery will reduce. 

• Ultrasound may harm the marine 

wildlife 
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2.4 Summary 

The discussion of the underwater pipelines’ background and different type of 

underwater pipeline’s cracks has been done. The reviews on different methods for 

detecting and identifying the cracks of either onshore or offshore pipelines is also done. 

A table is constructed to compare the advantages and limitations of those methods. 

From the literature review, vision sensor and acoustic sensor networks are the 

most popular method to detect the pipeline cracks. Although method using acoustic 

sensors can detect the crack in a faster rate, this method has a limitation in identifying 

the crack area. Image processing, the well-known method to identify the cracks using 

the images taken by the vision sensor, is the trend that is going strong in recent years. 

From the reviews, there is only a few researchers implement the cracking area 

identification method. Mostly of the researcher only use the method on detecting 

whether there is a crack in the pipelines. For this reason, this thesis would like to 

propose an image processing method including the algorithm of identifying the crack 

area in underwater pipelines. 
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METHODOLOGY 

This chapter starts with the overview of the pipeline cracking area 

identification system. Next, the identification system is discussed briefly according to 

the flow chart of system. Finally, the experiments’ setup and procedure are explained. 

3.1 System Overview 

An overview of the proposed underwater pipeline cracking area identification 

system is discussed in this subchapter. There will be three basic operations in the 

system, which are image acquisition, image processing and crack area determination. 

Images of underwater pipeline with cracks will be snapped or collected. Then, the 

images undergo image pre-processing step which includes image graying, image 

filtering, image thresholding and others. After being processed, the crack area of the 

pipelines will be determined. The flowchart for the overview of system is shown in 

Figure 3.1. Experiments are designed and carried out to implement the system. 

The progress of the project is shown using flowchart in APPENDIX A. The 

detailed timeline is displayed using Gantt chart in APPENDIX B. 

 

Figure 3.1 Overview of Underwater Pipeline Cracking Area 

Identification System 

3.2 Image Acquisition 

Images of underwater pipeline with cracks will be collected. Those images may 

be gathered from internet. The turbidity and lighting level of the images are not stated 

clearly. 

Image 
Acquisition

Image 
Processing 
Algorithm

Crack Area 
Determination

Length and 
Width of the 
Crack Area 
Obtained
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Besides, by putting a cracked pipeline into water under certain depth, the 

images of the pipeline will be captured with known water environment. 

     

Figure 3.2 Example real underwater pipe with cracks 

3.3 Image Processing Algorithm  

Image processing algorithm is the main role in the underwater pipeline 

cracking area identification system. The image processing algorithm of the system will 

be carried out using OpenCV-Python software. The flow of the image processing 

algorithm is shown in Figure 3.3. The first step is to read an image and convert it into 

a grayscale image. Next, the grayscale image will be filtered to remove noise. 

Thresholding will then be applied to the filtered image to create a binary image. Edge 

detection will be used to find the boundaries of the object in the image. Each stage of 

the image processing algorithm is discussed briefly in the following sections. 

 

Figure 3.3 Flow of Image Processing Algorithm 

 

 

Figure 3.4 OpenCV-Python 

Read the 
Image

Image 
Grayscaling

Image 
Filtering

Image 
Thresholding

Edge 
Detection
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3.3.1 Image Grayscaling 

Image grayscaling is the first step for any image processing algorithm. It is a 

process to convert a colour image into grayscale image. Grayscale image has 256 gray 

levels which are from 0 (black) to 255 (white). Grayscale image contains all the 

detailed information of the image and it is easier for understanding. Grayscale image 

can improve the process rate of the image processing algorithm compared to a colour 

image. 

3.3.2 Image Filtering 

Image filtering is aimed to remove the noise of an image. There are many filters 

that can be used, such as smoothing linear filters, weighted average filter, median 

filters and others. In this proposed identification system, median filter, Gaussian filter 

and unsharp masking will be used. The results of the filter used will be compared and 

discussed after the experiments are carried out. 

Median filter is a non-linear filter which is simpler to be used for reducing 

noises in an image while keeping the edges. Gaussian filter is a linear filter that used 

to reduce noises, but it may also blur the edges and reduce contrast of the image. 

3.3.3 Image Thresholding 

Thresholding is one way for image segmentation. Image thresholding is used 

to convert a filtered image into binary (black and white) image and focus on the object 

or area of interest in an image. Two types of threshold, which are simple threshold and 

Otsu threshold will be used in this proposed identification system. Both types of the 

threshold will be analysed and discussed after the experiments are done. 

Simple thresholding is an image thresholding using a set level. When the pixel 

value is larger than the threshold value being set, the pixel is assigned to a standard 

value 0 (black), else the pixel is assigned to 255 (white).  

Otsu threshold is a multi-level thresholding. Otsu threshold value is selected 

by referring the minimum within-class variance of two groups of pixels separated by 

threshold operator. A threshold value is selected, the pixel value smaller than the 

threshold value is known as background pixels, else as foreground pixels. 
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3.3.4 Edge Detection 

Edge detection is used to determine the boundaries of the object in the image 

by detecting the sharply changes of brightness. Common edge detection algorithms 

such as Sobel and Canny will be used and compared in the system. 

Sobel edge detection is the use of a first order derivate mask that can detect the 

edges of objects in an image in vertical and horizontal direction. Figure 3.5 shows the 

mask of 3x3 Sobel operator. 

Canny edge detection is a multistage edge detection with the steps of pre-

processing, calculation of gradients, non-maximum suppression and thresholding with 

hysteresis. Firstly, an image is smoothed by applying Gaussian filter. Next, the 

gradient magnitude is determined using any gradient operator. Next, the edges of 

object in the image is thinned by suppressing non-maximum pixels to the gradient 

magnitude. Lastly, the edges of object in the image is detected by using Double 

Thresholding with two threshold value, τ_1 and τ_2. 

 

Figure 3.5 (a) Horizontal Sobel Mask; (b) Vertical Sobel Mask 

3.4 Crack Area Determination 

Contour method is initially used to segment the interest region in the edge 

detected image. This method can use to find the pipeline crack area. When contour 

function is applied to the edge detected image, a boundary box is drawn around the 

interested region and the coordinates of the box are determined. By using the 

coordinates, the length and width of the crack area can be calculated using the Equation 

(3.1) and (3.2) respectively. 
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Figure 3.6 Boundary Rectangle with Coordinates 

 

𝐿𝑒𝑛𝑔𝑡ℎ, 𝑙 = 𝑥2 − 𝑥1 3.1 

𝑊𝑖𝑑𝑡ℎ, 𝑤 = 𝑦3 − 𝑦1 3.2 

𝐴𝑟𝑒𝑎, 𝐴 = 𝑙 × 𝑤 3.3 

The percent error of the system can be calculated by the actual value and 

experimental value of crack area, as shown in Equation (3.4). 

% 𝑒𝑟𝑟𝑜𝑟 =
|𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
× 100% 3.4 

3.5 Experiments 

In order to test the proposed underwater pipeline cracking area identification 

system, two experiments were conducted to validate the proposed method. Experiment 

1 was carried out to identify the pipeline cracking area using the images from real 

underwater environment. For Experiment 2, pipeline cracking area was determined 

using images from artificial underwater environment in different conditions. 

Table 3.1 Fulfilment of The Objectives Based on The Experiments 

 Objective 1 Objective 2 

Experiment 1   

Experiment 2   
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3.5.1 Hardware Components 

The selection of hardware part is important to ensure the proposed system work 

efficiently. For Experiment 2, the main hardware part in the proposed system was the 

underwater camera. SJCAM SJ4000 Wi-Fi Action Camera was chosen to capture the 

images of pipeline. The specification of this camera is shown in Table 3.2. 

 

Figure 3.7 SJCAM SJ4000 Wi-Fi Action Camera 

 

Table 3.2 Specification of SJCAM SJ4000 Wi-Fi Action Camera 

Specifications Descriptions 

Lens 170° Ultra Wide Angle Lens 

Image format JPG 

Resolution of Image   12MP / 10MP / 8MP / 5MP / 3MP 

Storage Slot for microSD card (maximum 32GB) 

Battery Capacity 900 mAh 

Operating Time Approximate 70 minutes (for 1080p) 

Connections USB 2.0 / HDMI / Wi-Fi 

Polyvinyl Chloride (PVC) pipe was used as the prototype for underwater 

cracking pipelines in Experiment 2. Soldering iron was used to make the cracks on the 

PVC pipe. Fish aquarium was used as the container filled with water for illustrating 

the artificial underwater environment. 
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3.5.2 Experiment 1: Identification of Pipeline Cracking Area for Real 

Underwater Environment 

For Experiment 1, the goal is to identify the pipeline cracking area for the real 

underwater environment. The aim of the experiment is to determine the suitable filter, 

threshold and edge detector to be used for the proposed image processing algorithm. 

To carry out this experiment, the equipment required was only the laptop with 

OpenCV-Python software. Firstly, the cracked underwater pipeline images from 

internet or oil and gas company were collected. Total of 43 images were collected 

since Warner encouraged considering the minimum sample size is 20 [44]. Next, the 

images were inputted into the image processing algorithm. The original images were 

converted to grayscale images. For the image filtering process, the grayscale images 

were filtered using median filter and Gaussian filter respectively to remove the noise 

in the images. Then, the filtered images were undergone two types of thresholding 

process which are simple threshold and Otsu threshold respectively. The edge 

detection processes were carried out using Sobel, Laplacian and Canny edge detector 

respectively. The most suitable filter, threshold and edge detector were chosen for the 

Experiment 2. Lastly, the area of cracks was determined using contour method. 
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3.5.3 Experiment 2: Identification of Pipeline Cracking Area for Artificial 

Underwater Environment with Different Conditions 

 

Figure 3.8 Flowchart for Experiment 2 
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For Experiment 2, the goal is to identify the pipeline cracking area for different 

conditions of artificial underwater environment. The aim of the experiments is to find 

the crack area of the pipeline using image processing algorithm and calculate the 

percent error. The flowchart of this experiments is shown in Figure 3.8 

Equipment Required 

• Laptop with OpenCV-Python software 

• Fish Aquarium  

• PVC Pipes 

• SJCAM SJ4000 Wi-Fi Action Camera 

• Selfie Stick 

• Soldering Iron 

• Smartphones with SJCAM App 

• Ruler 

• Sandpaper 

• Marker 

• Double-sided Tape 

• Water (Clear and Murky) 

• Scissors 

 

 

Figure 3.9 Equipment Required for Experiment 2 
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Procedure 

Before starting this experiment, the cracks were made on the PVC pipes using 

soldering iron. SJCAM SJ4000 Wi-Fi Action Camera had to be connected with the 

SJCAM app in a smartphone via Wi-Fi. Experiment 2 was carried out by preparing a 

fish aquarium in a bright room. The cracked PVC pipe was set up in the aquarium 

using double-sided tape. SJCAM SJ4000 Wi-Fi Action Camera was inserted into the 

water and placed above the cracked pipe in the distance of 8cm. This is due to the 

camera was able to capture the cracking part perfectly in 8cm. Then, the images of the 

cracked PVC pipe were captured by operating the camera using the SJCAM app in the 

smartphone. The images were saved to the smartphone via SJCAM app and transferred 

to the laptop using Bluetooth. In the laptop, the image processing algorithm was 

carried out with the chosen filter, threshold and edge detector from Experiment 1. 

Later, the area of cracks was determined. The procedures were repeated with the 

following 4 conditions: 

• low turbidity level and high lighting level - using the aquarium filled with 

clear water and setting the equipment in a bright room. 

• low turbidity level and low lighting level - using the aquarium filled with 

clear water and setting the equipment in a dark room. 

• high turbidity level and high lighting level - using the aquarium filled with 

murky water and setting the equipment in a bright room. 

• high turbidity level and low lighting level - using the aquarium filled with 

murky water and setting the equipment in a dark room. 

Finally, the percent error for each condition was calculated using Equation 3.4. 

 

Figure 3.10 Fish Aquarium Setup 
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(a) Clear Water in Bright Room 

 

(b) Clear Water in Dark Room 

 

(c) Murky Water in Bright Room 

 

(d) Murky Water in Dark Room 

 

Figure 3.11 Four Conditions for Experiment 2 

 

Crack A 

 

Crack B 

 

Crack C 

 

Crack D 

 

Figure 3.12 Cracked PVC Pipes for Experiment 2 
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3.6 Summary 

A proposed underwater pipeline cracking area identification system using 

image processing method was designed. Two experiments were carried out. 

Experiment 1 was conducted to identify the pipeline cracking area for the real 

underwater environment. The suitable filter, threshold and edge detector to be used for 

the proposed image processing algorithm is determined. Next, Experiment 2 was 

focused on the artificial underwater environment with different conditions. By using 

the chosen filter, threshold and edge detector from Experiment 1, the images of cracked 

PVC pipes were undergone the proposed image processing algorithm Lastly, the 

percent error of the proposed system in different conditions were compared and 

analysed in Experiment 2. 
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RESULTS AND DISCUSSIONS 

This chapter illustrates the results and analysis for the proposed underwater 

pipeline cracking area identification system. The first part is to show the result of 

Experiment 1, which is to identification of pipeline cracking area for real underwater 

environment. The second part is to analysis and calculate the accuracy of the proposed 

underwater pipeline cracking area identification system from the results of Experiment 

2. 

4.1 Results and Analysis 

4.1.1 Experiment 1: Identification of Pipeline Cracking Area for Real 

Underwater Environment 

For Experiment 1, the simulation results for the image processing algorithm 

are shown. The simulation was performed using OpenCV-Python and the coding is 

shown in APPENDIX B. For obtaining the results, 43 real underwater pipeline images 

were used to undergo the image processing algorithm. 5 images from the 43 real 

underwater pipeline images were chosen as the samples for the comparison and 

analysis in this section. The analysis for the rest of the images are shown in 

APPENDIX C. Figure 4.1 to Figure 4.5 shows the original and grayscale images of 

the 5 sample real underwater pipeline images. 

 

Figure 4.1 Original Image [33] and Grayscale Image for Crack 1 
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Figure 4.2 Original Image [34] and Grayscale Image for Crack 7 

 

 

Figure 4.3 Original Image [36] and Grayscale Image for Crack 9 

 

 

Figure 4.4 Original Image [20] and Grayscale Image for Crack 20 
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Figure 4.5 Original Image [49] and Grayscale Image for Crack 37 

The grayscale images were filtered to remove the noises of the images. Two 

image filters, which are median filter and Gaussian filter, were used and compared. 

Results for image filtering process is shown in Figure 4.6 to Figure 4.10. From these 

figures, Gaussian filter is a better method for image filtering process. Median filter is 

efficient for removing salt and pepper noise. However, the noises for real underwater 

environment are mostly Gaussian noise. Gaussian filter is better for filtering the 

images to blur the edge of object in the images. Therefore, Gaussian filter was selected 

for the proposed image processing algorithm. 

 

Figure 4.6 Image filtered using median and Gaussian filter for Crack 1 
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Figure 4.7 Image filtered using median and Gaussian filter for Crack 7 

 

Figure 4.8 Image filtered using median and Gaussian filter for Crack 9 

 

Figure 4.9 Image filtered using median and Gaussian filter for Crack 

20 
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Figure 4.10 Image filtered using median and Gaussian filter for Crack 

37 

The Gaussian filtered images were then used to undergo image thresholding 

process. The results for the image thresholding are shown in Figure 4.10 to 4.15. For 

simple thresholding, the threshold value for simple thresholding was selected manually 

while for the Otsu thresholding, the threshold value was chosen arbitrary according to 

the images. From Figure 4.13, 4.14 and 4.15, the cracking part could be recognized for 

simple thresholding while the resulted image of Otsu thresholding does not show the 

perfect output since the cracking part could not be clearly shown. Therefore, simple 

threshold was used to apply for the image thresholding process. 

 

Figure 4.11 Image resulted using simple and Otsu thresholding for 

Crack 1 

 



47 

 

Figure 4.12 Image resulted using simple and Otsu thresholding for 

Crack 7 

 

Figure 4.13 Image resulted using simple and Otsu thresholding for 

Crack 9 

 

Figure 4.14 Image resulted using simple and Otsu thresholding for 

Crack 20 
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Figure 4.15 Image resulted using simple and Otsu thresholding for 

Crack 37 

The resulted images from simple thresholding were undergone Sobel and 

Canny edge detection. The results of both edge detections were shown in Figure 4.16 

to 4.20. Sobel x detects the edges of object in the image in vertical direction only while 

Sobel y detects the edges in horizontal direction only. Sobel x and y cannot detect the 

edges accurately. From the results obtained from Experiment 1, Canny edge detector 

had detected the edges more accurate compared to Sobel edge detector. Therefore, 

Canny edge detection is selected for the proposed underwater pipeline cracking area 

identification system. 

Sobel X 

 

Sobel Y 

 

Canny 

 

Figure 4.16 Image resulted using different edge detector for Crack 1 
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Sobel X 

 

Sobel Y 

 

Canny 

 

Figure 4.17 Image resulted using different edge detector for Crack 7 

 

Sobel X 

 

Sobel Y 

 

Canny 

 

Figure 4.18 Image resulted using different edge detector for Crack 9 

 

Sobel X 

 

Sobel Y 

 

Canny 

 

Figure 4.19 Image resulted using different edge detector for Crack 20 
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Sobel X 

 

Sobel Y 

 

Canny 

 

Figure 4.20 Image resulted using different edge detector for Crack 37 

After image processing algorithm, contour method was used to find the 

pipeline’s crack area. Figure 4.21 to 4.25 and Table 4.1 show the results for the crack 

area determination. The boundary rectangle (in green colour) was drawn on the crack 

part. However, the rectangle might not enclose the whole crack due to the simple 

threshold value set and the lighting condition when the images are captured. The 

starting point (red x mark) and ending point (blue x mark) were determined for the 

need of fixing the crack part in the future. The number of rectangle box formed for a 

crack pipeline image was displayed when running the Python coding. The crack part’s 

rectangle box was selected manually. 

 

Figure 4.21 Area for Crack 1 detected with their coordinates 
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Figure 4.22 Area for Crack 7 detected with their coordinates 

 

 

Figure 4.23 Area for Crack 9 detected with their coordinates 

 

 

Figure 4.24 Area for Crack 20 detected with their coordinates 
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Figure 4.25 Area for Crack 37 detected with their coordinates 

 

Table 4.1 Crack Area Determination Results for Experiment 1 

Crack Length, l 

(mm) 

Width, w 

(mm) 

Area, A 

(mm2) 

Starting 

Point 

Ending 

Point 

1 17 144 2448 (235, 29) (260, 173) 

7 191 32 6112 (14, 204) (205, 172) 

189 25 4725 (206, 197) (395, 197) 

9 21 4 84 (189, 323) (210, 319) 

92 20 1840 (90, 311) (182, 331) 

85 15 1275 (0, 312) (85, 312) 

20 361 59 21299 (19, 144) (380, 173) 

37 228 52 11856 (47, 421) (275, 395) 

180 36 6480 (139, 59) (319, 23) 
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4.1.2 Experiment 2: Identification of Pipeline Cracking Area for Artificial 

Underwater Environment with Different Conditions 

4.1.2.1 Low Turbidity Level and High Lighting Level  

Condition 1 for Experiment 2 is low turbidity level and low lighting level 

which means that this part of the experiment was carried out by using the aquarium 

filled with clear water and setting the equipment in a bright room. The original image 

captured by the camera was converted to grayscale image and the grayscale image was 

then filtered using Gaussian filter. Next, simple thresholding was applied to the filtered 

image with the threshold value that being selected manually. The edge of the crack for 

the threshold image was detected using Canny edge detector before determining the 

crack area. The results of proposed image processing system for Crack A, B, C and D 

in Condition 1 were shown in Figure 4.26, 4.28, 4.30 and 4.32 respectively. After 

completing the image processing algorithm, contour method was used to draw a 

rectangle box around the crack part and crack areas were calculated using Equation 

3.1, 3.2 and 3.3. The crack area determination results for this condition were shown in 

Table 4.2. These results are used as reference to determine the percent error of the 

proposed system for the following conditions. 

Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 55) 

 

Canny edge detected Image 

 

Figure 4.26  Result of Proposed Image Processing Algorithm for 

Crack A1 
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Figure 4.27  Area for Crack A1 detected with their coordinates 

 

Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 55) 

 

Canny edge detected Image 

 

Figure 4.28  Result of Proposed Image Processing Algorithm for 

Crack B1 
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Figure 4.29  Area for Crack B1 detected with their coordinates 

 

Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 54) 

 

Canny edge detected Image 

 

Figure 4.30  Result of Proposed Image Processing Algorithm for 

Crack C1 
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Figure 4.31  Area for Crack C1 detected with their coordinates 

 

Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 54) 

 

Canny edge detected Image 

 

Figure 4.32  Result of Proposed Image Processing Algorithm for 

Crack D1 

 

 

Figure 4.33  Area for Crack D1 detected with their coordinates 
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Table 4.2    Crack Area Determination Results for Experiment 2 

Condition 1 

Crack Length, l 

(mm) 

Width, w 

(mm) 

Area, A 

(mm2) 

Starting 

Point 

Ending 

Point 

A1 349 31 10819 (19, 208) (368, 208) 

B1 172 59 10148 (104, 228) (276, 169) 

C1 75 32 2400 (65, 218) (140, 218) 

107 62 6634 (205, 179) (312, 241) 

D1 76 60 4560 (61, 214) (137, 184) 

46 69 3174 (231, 180) (277, 249) 

 

4.1.2.2 Low Turbidity Level and Low Lighting Level 

This part of the experiment was carried out by using the aquarium filled with 

clear water and setting the equipment in a dark room (Condition 2). Similar to 

Condition 1, the images captured by SJCAM SJ4000 Wi-Fi Action Camera were 

undergone image processing algorithm. The results of proposed image processing 

system for Crack A, B, C and D in this condition were shown in Figure 4.34, 4.36, 

4.38 and 4.40 respectively. Lastly, the contour method was used to determine the crack 

area. The contour method results for Crack A, B, C and D in this condition were 

manifested in Figure 4.35, 4.37, 4.39 and 4.41 respectively. The crack area 

determination results for Condition 2 were shown in Table 4.3. The results of the 

percent error of the proposed system for this condition area shown in Table 4.4. 
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Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 30) 

 

Canny edge detected Image 

 

Figure 4.34  Result of Proposed Image Processing Algorithm for 

Crack A2 

 

 

Figure 4.35  Area for Crack A2 detected with their coordinates 
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Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 14) 

 

Canny edge detected Image 

 

Figure 4.36  Result of Proposed Image Processing Algorithm for 

Crack B2 

 

 

Figure 4.37  Area for Crack B2 detected with their coordinates 
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Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 15) 

 

Canny edge detected Image 

 

Figure 4.38  Result of Proposed Image Processing Algorithm for 

Crack C2 

 

 

Figure 4.39  Area for Crack C2 detected with their coordinates 
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Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 25) 

 

Canny edge detected Image 

 

Figure 4.40  Result of Proposed Image Processing Algorithm for 

Crack D2 

 

 

Figure 4.41  Area for Crack D2 detected with their coordinates 
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Table 4.3    Crack Area Determination Results for Experiment 2 

Condition 2 

Crack Length, l 

(mm) 

Width, w 

(mm) 

Area, A 

(mm2) 

Starting 

Point 

Ending 

Point 

A2 372 31 11532 (15, 193) (387, 178) 

B2 163 56 9128 (89, 239) (252, 183) 

C2 68 32 2176 (74, 210) (142, 210) 

108 63 6804 (213, 169) (321, 232) 

D2 75 61 4575 (139, 212) (214, 182) 

37 64 2368 (319, 179) (356, 243) 

 

Table 4.4    Percent Error Results for Experiment 2 Condition 2 

Crack Reference Area 

(mm2) 

Experimental Area 

(mm2) 

Percent Error 

(%) 

A 10819 11532 6.59 

B 10148 9128 10.05 

C 2400 2176 9.33 

6634 6804 2.56 

D 4560 4575 0.33 

3174 2368 25.39 

From Table 4.4, the percent error of Condition 2 for all crack images are mostly 

less than 11%, except for the second crack in Crack D. 
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4.1.2.3 High Turbidity Level and High Lighting Level 

Condition 3 for Experiment 2 is carried out by using the aquarium filled with 

murky water and setting the equipment in a bright room. Similar to the previous 

conditions, the image processing algorithm was applied to the images captured by the 

camera in this condition and followed by crack area determination. The image 

processing results for Crack A, B, C and D in this condition were shown in Figure 

4.42, 4.44, 4.46 and 4.48 respectively. The results of contour method for Crack A, B, 

C and D in this condition were displayed in Figure 4.43, 4.45, 4.47 and 4.49 

respectively. The crack area determination results for this condition were shown in 

Table 4.5. The percent error results of each crack for the proposed system in Condition 

3 are manifested in Table 4.6. 

Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 92) 

 

Canny edge detected Image 

 

Figure 4.42  Result of Proposed Image Processing Algorithm for 

Crack A3 
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Figure 4.43  Area for Crack A3 detected with their coordinates 

 

Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 88) 

 

Canny edge detected Image 

 

Figure 4.44  Result of Proposed Image Processing Algorithm for 

Crack B3 
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Figure 4.45  Area for Crack B3 detected with their coordinates 

 

Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 94) 

 

Canny edge detected Image 

 

Figure 4.46  Result of Proposed Image Processing Algorithm for 

Crack C3 

 

 

Figure 4.47  Area for Crack C3 detected with their coordinates 
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Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 91) 

 

Canny edge detected Image 

 

Figure 4.48  Result of Proposed Image Processing Algorithm for 

Crack D3 

 

 

Figure 4.49  Area for Crack D3 detected with their coordinates 
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Table 4.5    Crack Area Determination Results for Experiment 2 

Condition 3 

Crack Length, l 

(mm) 

Width, w 

(mm) 

Area, A 

(mm2) 

Starting 

Point 

Ending 

Point 

A2 326 18 5868 (41, 194) (367, 194) 

B2 196 68 13328 (88, 184) (284, 116) 

C2 74 31 2294 (94, 207) (168, 207) 

105 65 6825 (233, 172) (338, 237) 

D2 62 55 3410 (95, 212) (157, 185) 

48 68 3264 (253, 175) (301, 243) 

 

Table 4.6    Percent Error Results for Experiment 2 Condition 3 

Crack Reference Area 

(mm2) 

Experimental Area 

(mm2) 

Percent Error 

(%) 

A 10819 5868 45.76 

B 10148 13328 31.34 

C 2400 2294 4.42 

6634 6825 2.88 

D 4560 3410 25.22 

3174 3264 2.84 

The highest percent error in Condition 3 is happened in Crack A, which had 

reached more than 45%, followed by Crack B (31.34%). The percent error for the first 

crack part of Crack D was 25.22%. The percent errors for other crack parts were less 

than 5%. 
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4.1.2.4 High Turbidity Level and Low Lighting Level 

The last condition for Experiment 2 is carried out by using the aquarium filled 

with murky water and setting the equipment in a dark room. As mentioned in previous 

conditions, the images captured by the camera was undergone image processing and 

followed by crack area determination. The image processing and contour method 

results for Crack A, B, C and D in Condition 4 were shown in Figure 4.50 to 4.57. The 

crack area determination and percent error results of each crack for the proposed 

system in Condition 4 were shown in Table 4.7 and Table 4.8 respectively. 

Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 42) 

 

Canny edge detected Image 

 

Figure 4.50  Result of Proposed Image Processing Algorithm for 

Crack A4 

 

 

Figure 4.51  Area for Crack A4 detected with their coordinates 
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Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 40) 

 

Canny edge detected Image 

 

Figure 4.52  Result of Proposed Image Processing Algorithm for 

Crack B4 

 

 

Figure 4.53  Area for Crack B4 detected with their coordinates 
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Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 41) 

 

Canny edge detected Image 

 

Figure 4.54  Result of Proposed Image Processing Algorithm for 

Crack C4 

 

 

Figure 4.55  Area for Crack C4 detected with their coordinates 
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Original Image 

 

Grayscale Image 

 

Gaussian Filtered Image 

 

Simple Threshold Image (T = 40) 

 

Canny edge detected Image 

 

Figure 4.56  Result of Proposed Image Processing Algorithm for 

Crack D4 

 

 

Figure 4.57  Area for Crack D4 detected with their coordinates 
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Table 4.7    Crack Area Determination Results for Experiment 2 

Condition 4 

Crack Length, l 

(mm) 

Width, w 

(mm) 

Area, A 

(mm2) 

Starting 

Point 

Ending 

Point 

A2 156 19 2964 (35, 186) (191, 205) 

B2 182 62 11284 (104, 225) (286, 225) 

C2 72 34 2448 (70, 208) (142, 208) 

None None None None None 

D2 83 48 3984 (84, 167) (167, 143) 

None None None None None 

 

Table 4.8    Percent Error Results for Experiment 2 Condition 4 

Crack Reference Area 

(mm2) 

Experimental Area 

(mm2) 

Percent Error 

(%) 

A 10819 2964 72.60 

B 10148 11284 11.19 

C 2400 2448 2.00 

6634 None None 

D 4560 3984 12.63 

3174 None None 

In Condition 4, some of the crack part in the images cannot be detected due to 

the problem of turbidity and lighting. For those crack parts that being detected, the 

percent error had reached more than 70%.  
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4.1.3 Summary 

For Experiment 1, the proposed image processing algorithm was design. After 

converting the original image to grayscale image, Gaussian filter was chosen for 

filtering the noise from the image instead of median filter as the noise in the real 

underwater images were mostly Gaussian noises. Next, the Gaussian filtered image 

was converted to binary image using simple thresholding since the threshold value for 

simple thresholding can be chosen manually to produce a better binary image that can 

be more focus on the crack part when compared to that of Otsu thresholding. Then, the 

simple threshold image was undergone edge detection. Instead of Sobel edge detector, 

Canny edge detector was selected since it can be more accurate in detecting the edges 

of crack part. Lastly, the Canny edge detected image was used for determining the 

crack area using Contour method. The crack area was successfully be determined using 

the proposed image processing algorithm. 

By using the proposed image processing algorithm from Experiment 1, the 

performance of the algorithm was compared under 4 conditions. The conclusion 

obtained for Experiment 2 is the proposed image processing method has the best 

performance in the condition of low turbidity level with high lighting level, followed 

by the condition of low turbidity level with low lighting level and high turbidity level 

with high lighting level the condition of The worst performance is when the images 

are captured in the condition of high turbidity level but low lighting level, as the system 

even cannot detect all the crack parts of the images in this condition. 
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CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

To be concluded, all the objectives were achieved successfully. First objective 

was achieved successfully by carrying out Experiment 1. An image processing 

algorithm was developed successfully to identify the cracking area. First of all, the real 

world image of cracking pipeline were collected from internet. The images were 

processed using OpenCV-Python software. The images were converted to grayscale 

images and filtered. Two filters, which were median and Gaussian filter, were used to 

remove the noise of image respectively and Gaussian filter was selected as the noise 

for the image were mainly Gaussian noises. Next, the Gaussian filtered images were 

undergone thresholding process using simple and Otsu threshold respectively. Simple 

threshold was chosen for the system since simple threshold had performed better than 

Otsu threshold. Simple threshold can select threshold value manually to get a better 

threshold image while Otsu threshold chooses the threshold value arbitrary according 

to the images. So, some of the cracking part cannot be clearly shown. Then, the simple 

threshold images were undergone edge detection using Sobel and Canny edge detector 

respectively. Canny edge detection was selected for the system as the Canny edge 

detector can detect the edges more accurately. Lastly, contour method was applied on 

the Canny edge detected images to draw a rectangle box for bounding the crack part. 

The coordinates of the rectangle box were determined and area of the crack part was 

obtained. 

Second objective was also achieved in Experiment 2. An artificial underwater 

environment was prepared – a fish aquarium with clear or murky water and the crack 

PVC pipe. There were four conditions set for Experiment 2, which were low turbidity 

level with high lighting level (Condition 1), low turbidity level with low lighting level 

(Condition 2), high turbidity level with high lighting level (Condition 3) and high 

turbidity level with low lighting level (Condition 4). Firstly, the images of cracking 

PVC pipeline were captured by using SJCAM SJ4000 Wi-Fi Action Camera via the 
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SJCAM app in smartphone for the first condition. Next, the image of cracking 

pipelines was transfer to laptop via Bluetooth. The cracking PVC pipelines images 

were processed through the image processing algorithm mentioned in previous 

paragraph and the area of crack part was determined. The areas obtained for 

Experiment Condition 1 were used as the reference value for calculating the percent 

error of the system in other 3 conditions. After finishing experiment in Condition 1, 

the procedures were repeated for other conditions. Then, the percent error for each 

condition were calculated. Condition 1 had performed the best among those 4 

conditions. Percent error in Condition 2 was mostly less than 11% while the percent 

error in Condition 3 had reached more than 45%. Condition 4 had the worst 

performance as it reached the highest percent error which is more than 70%. Half of 

the cracking part even cannot be detected in Condition 4. This can be concluded that 

turbidity level and lighting level is important for the image processing. 

5.2 Future Works 

In order to improve the proposed underwater pipeline cracking area 

identification system, there are many suggestions that can be concluded. Instead of 

SJCAM SJ4000 Wi-Fi Action Camera, a more suitable camera, such as GoPro and 

Nikon brand, can be used for obtaining the image of cracking pipelines with better 

quality. Secondly, the contour method that used in this project needs to select the 

rectangle box manually for the cracking part. In order to get the area of cracking part 

faster for future, an automatic selection method is suggested the crack area 

determination process. Next, lighting and turbidity level are the factors that affect the 

performance of image processing for the underwater images. To improve the 

performance of image processing, the lighting and turbidity level must be considered 

when capturing the real world underwater images. 
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APPENDIX C IMAGE PROCESSING ALGORITHM CODING 

import cv2 

import numpy as np 

import matplotlib.pylab as plt 

 

#loading Image 

img = cv2.imread('Crack B2.jpg') 

r=400.0/img.shape[1]  

dim=(400,int(img.shape[0]*r))  

resized=cv2.resize(img,dim,interpolation=cv2.INTER_AREA) 

 

#convert to grayscale image 

gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY) 

cv2.imwrite('gray.png',gray) 

plt.subplot(121), plt.imshow(cv2.cvtColor(resized, 

cv2.COLOR_BGR2RGB)), plt.axis('off'), plt.title('Original') 

plt.subplot(122), plt.imshow(gray,cmap = 'gray'), 

plt.axis('off'), plt.title('Grayscale') 

plt.show() 

 

#filtering to remove noise 

median = cv2.medianBlur(gray,3) 

cv2.imwrite('median.png', median) 

gaussian= cv2.GaussianBlur(gray, (3,3), 0) 

cv2.imwrite('gaussian.png', gaussian) 

plt.subplot(121), plt.imshow(median,cmap = 'gray'), 

plt.axis('off'), plt.title('median') 

plt.subplot(122), plt.imshow(gaussian,cmap = 'gray'), 

plt.axis('off'), plt.title('gaussian') 

plt.show() 

 

#simple thresholding 

_, sthres = cv2.threshold(gaussian, 14, 255, 

cv2.THRESH_BINARY_INV) 

cv2.imwrite("simple threshold.png", sthres) 

 

#otsu thresholding 

ret,othres = 

cv2.threshold(gaussian,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_O

TSU) 

cv2.imwrite("otsu threshold.png", othres) 



84 

print (ret) 

plt.subplot(121), plt.imshow(sthres,cmap = 'gray'), 

plt.axis('off'), plt.title('simple threshold') 

plt.subplot(122), plt.imshow(othres,cmap = 'gray'), 

plt.axis('off'), plt.title('otsu threshold') 

plt.show() 

 

#edge detection 

sobelx = cv2.Sobel(sthres, cv2.CV_64F, 1, 0, ksize=5) 

cv2.imwrite("sobelx.png", sobelx) 

sobely = cv2.Sobel(sthres, cv2.CV_64F, 0, 1, ksize=5) 

cv2.imwrite("sobely.png", sobely) 

canny = cv2.Canny(sthres, 30, 190) 

cv2.imwrite("canny.png", canny) 

plt.subplot(131), plt.imshow(sobelx), plt.axis('off'), 

plt.title('Sobel x edge') 

plt.subplot(132), plt.imshow(sobely), plt.axis('off'), 

plt.title('Sobel y edge') 

plt.subplot(133), plt.imshow(canny), plt.axis('off'), 

plt.title('Canny edge') 

plt.show() 

     

cv2.waitKey(0) 

cv2.destroyAllWindows() 
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APPENDIX D CRACK AREA DETERMINATION CODING 

import cv2 

import numpy as np 

import matplotlib.pylab as plt 

 

#Convert to grayscale image 

img = cv2.imread('Crack 1.png') 

r=400.0/img.shape[1]  

dim=(400,int(img.shape[0]*r))  

resized=cv2.resize(img,dim,interpolation=cv2.INTER_AREA) 

gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY) 

 

#Gaussian filter 

gaussian= cv2.GaussianBlur(gray, (5,5), 0) 

 

#Simple threshold & Canny edge detection 

_, thres = cv2.threshold(gaussian, 41, 255, cv2.THRESH_BINARY) 

canny = cv2.Canny(thres, 25, 190) 

cv2.imshow("canny", canny) 

cv2.imwrite("canny_edge.png", canny) 

 

#Contour method 

_, cnts, _ = cv2.findContours(canny, cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

print("{} rectangle box are found\n".format(len(cnts))) 

 

#select the rectanggle box by changing the number 

cnts=cnts[0] 

 

x,y,w,h = cv2.boundingRect(cnts)  

cv2.rectangle(resized,(x,y),(x+w,y+h),(0,255,0),2) 

 

cv2.imshow("contour", resized)  

print("A : ",(x,y))  

print("B : ",(x+w,y))  

print("C : ",(x,y+h))  

print("D : ",(x+w,y+h))  

 

cv2.waitKey(0) 

  



86 

APPENDIX E RESULTS FOR EXPERIMENT 1 
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Area Determination 
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Coordinates = (172, 72) (400, 72) (172, 261) (400, 261) 

Length, l = 228 mm 

Width, w = 189 mm 

Area, A = 43092 mm2 
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Area Determination 
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Crack 31 [48] 

Original Image 

 

Grayscale Image 

 
Median Filter 

 

Gaussian Filter 

 
Simple threshold (T = 82) 

 

Otsu Threshold (T = 148) 

 
Edge Detection 

     
Sobel X                            Sobel Y                              Canny 

Area Determination 

 

 

Coordinates = (195, 48) (209, 48) (195, 128) (209, 128) 

Length, l = 14 mm 

Width, w = 80 mm 

Area, A = 1120 mm2 

 

Crack 32 [48] 

Original Image 

 

Grayscale Image 

 
Median Filter 

 

Gaussian Filter 

 
Simple threshold (T = 70) 

 

Otsu Threshold (T = 129) 

 



106 

Edge Detection 

     
Sobel X                            Sobel Y                              Canny 

Area Determination 

 

 

Coordinates = (177, 41) (192, 41) (177, 128) (192, 128) 

Length, l = 15 mm 

Width, w = 87 mm 

Area, A = 1305 mm2 

 

Crack 33 [48] 

Original Image 

 

Grayscale Image 

 
Median Filter 

 

Gaussian Filter 

 

Simple threshold (T = 60) 

 

Otsu Threshold (T = 109) 

 

Edge Detection 

     
Sobel X                            Sobel Y                              Canny 

Area Determination 

 

 

Coordinates = (72, 62) (83, 62) (72, 133) (83, 133) 

Length, l = 11 mm 

Width, w = 71 mm 

Area, A = 781 mm2 

 

  



107 

Crack 35 [49] 
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Coordinates = (227, 238) (377, 238) (227, 292) (377, 292) 

Length, l = 150 mm 

Width, w = 54 mm 

Area, A = 8100 mm2 

 

 

 

 

 

Coordinates = (124, 630) (257, 630) (124, 674) (257, 674) 

Length, l = 133 mm 

Width, w = 44 mm 

Area, A = 5852 mm2 

 

Crack 38 [49] 

Original Image 

 

Grayscale Image 

 

Median Filter 

 

Gaussian Filter 
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Simple threshold 

(T = 63) 

 

Otsu Threshold 

(T = 128) 
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Coordinates = (191, 71) (212, 71) (191, 110) (212, 110) 

Length, l = 21 mm 

Width, w = 39 mm 

Area, A = 819 mm2 

 

 

 

 

 

Coordinates = (218, 291) (256, 291) (218, 320) (256, 320) 

Length, l = 38 mm 

Width, w = 29 mm 

Area, A = 1102 mm2 

 

Crack 39 [49] 
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Gaussian Filter 

 
Simple threshold 

(T = 78) 

 

Otsu Threshold 

(T = 122) 

 

Edge Detection 
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Area Determination 

 
 

 

 

Coordinates = (116, 227) (203, 227) (116, 514) (203, 514) 

Length, l = 87 mm 

Width, w = 287 mm 

Area, A = 24969 mm2 

 

 

 

 

 

 

 

 

Coordinates = (115, 76) (169, 76) (115, 272) (169, 272) 

Length, l = 54 mm 

Width, w = 196 mm 

Area, A = 10584 mm2 

 

Crack 39 [49] 
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Simple threshold 

(T = 101) 

 

Otsu Threshold 
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Area Determination 

 
 

 

 

Coordinates = (66, 617) (209, 617) (66, 705) (209, 705) 

Length, l = 143 mm 

Width, w = 88 mm 

Area, A = 12584 mm2 

 

 

 

 

 

 

 

 

Coordinates = (112, 243) (180, 243) (112, 511) (180, 511) 

Length, l = 68 mm 

Width, w = 268 mm 

Area, A = 18224 mm2 

 

Crack 41 [49] 
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Simple threshold (T = 52) 

 

Otsu Threshold (T = 113) 
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Area Determination 

 
 

 

 

Coordinates = (146, 209) (380, 209) (146, 237) (380, 237) 

Length, l = 234 mm 

Width, w = 28 mm 

Area, A = 6552 mm2 

 

 

 

Coordinates = (69, 113) (149, 113) (69, 156) (149, 156) 

Length, l = 80 mm 

Width, w = 43 mm 

Area, A = 3440 mm2 

 

Crack 42 [49] 
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Simple threshold (T = 39) 

 

Otsu Threshold (T = 93) 
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Coordinates = (146, 209) (380, 209) (146, 237) (380, 237) 

Length, l = 234 mm 

Width, w = 28 mm 

Area, A = 6552 mm2 

 

 

 

Coordinates = (69, 113) (149, 113) (69, 156) (149, 156) 

Length, l = 80 mm 

Width, w = 43 mm 

Area, A = 3440 mm2 
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Crack 43 [50] 

Original Image 

 

Grayscale Image 

 

Median Filter 

 

Gaussian Filter 

 
Simple threshold (T = 48) 

 

Otsu Threshold (T = 104) 

 
Edge Detection 
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Coordinates = (186, 113) (201, 113) (186, 237) (201, 237) 

Length, l = 15 mm 

Width, w = 124 mm 

Area, A = 1860 mm2 

 

 

 

 

 

Coordinates = (194, 318) (202, 318) (194, 334) (202, 334) 

Length, l = 8 mm 

Width, w = 16 mm 

Area, A = 128 mm2 
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