

MOTION CONTROL OF A MOBILE ROBOT FOR UNEVEN
TERRAIN

CALVEN CHRISTOPHER

BACHELOR OF MECHATRONICS ENGINEERING WITH
HONOURS

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

MOTION CONTROL OF A MOBILE ROBOT FOR UNEVEN TERRAIN

CALVEN CHRISTOPHER

A report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Mechatronics Engineering with Honours

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this thesis entitled “MOTION CONTROL OF A MOBILE ROBOT FOR

UNEVEN TERRAIN is the result of my own research except as cited in the references. The

thesis has not been accepted for any degree and is not concurrently submitted in candidature

of any other degree.

Signature :

Name :

Date :

APPROVAL

I hereby declare that I have checked this report entitled “MOTION CONTROL OF A

MOBILE ROBOT FOR UNEVEN TERRAIN” and in my opinion, this thesis it complies

the partial fulfillment for awarding the award of the degree of Bachelor of Mechatronics

Engineering with Honours

Signature :

Supervisor Name :

Date :

iv

DEDICATIONS

To my beloved mother and father

v

ACKNOWLEDGEMENTS

 I would like to thank my supervisor, Prof. Madya Dr. Mariam binti Md. Ghazaly, for her

guidance, support, and encouragement throughout this project. Without her word of

wisdoms, this project will not be done. I would also like to thank our Final Year Project

coordinator, Assoc. Prof. Dr. Ahmad Zaki bin Haji Shukor, for guiding us throughout the

process of executing out project, and to Pn. Fadilah bt Abdul Azis, my Seminar 2 Panel, for

her guidance on the post editing of this thesis report.

 To my fellow classmates and friends, I thank them for their moral support and knowledge

that they shared with me. Lastly, I am very grateful to my family who are supporting me far

from home.

vi

ABSTRACT

Since the mobile robotic platform was first introduced in the ’50s, it was a goal among

researchers to develop an algorithm for the platform to be capable of generating a collision-

free path for the robot to follow. Nowadays, the application of the algorithm can be seen in

most mobile robots anywhere from the autonomous cleaning robot called Roomba, to the

exploration rover Curiosity on Mars, and even the autonomous self-driving Tesla car.

However, the most algorithm has been designed for robots navigating on a smooth surface.

The problem with a rough surface is that the robot will experience slippage and lose some

control of itself. Other than that, an obstacle such as hills and holes cannot be seen by

standard mobile robots. Therefore, the purpose of this project is to develop a motion

controller of a mobile robot specifically for uneven terrain. In this project, an Inertial

Measurement Unit sensor is used together with a 180 degrees LIDAR system to detect the

terrain surface orientation under the robot and possible obstacles in front of the robot. The

speed of the robot is controlled based on the surface roughness for torque control and in the

case when the robot meets an obstacle, it can determine the distance between itself and the

obstacle to control it’s approaching speed. This helps give time to the robot to find an

alternative path around the obstacle. Experimental methods are used to collect the

information needed and it is graphed for different types of surface including tiles, asphalt,

rocks, and hills.

vii

ABSTRAK

Sejak platform robot bergerak pertama kali diperkenalkan pada tahun 50’an, telah menjadi

impian para pengkaji untuk membangunkan sebuah algoritma untuk platform robot bergerak

agar robot tersebut dapat mencari laluan bebas perlanggaran secara sendiri. Pada masa kini,

pengapklikasian algoritma ini dapat dilihat pada kebanyakan robot bergerak seperti robot

pembersih yang bernama Roomba, rover explorasi Curiosity yang berada di Mars, dan juga

kereta pandu sendiri Tesla. Akan tetapi, algoritma ini hanya digunakan untuk robot yang

bergerak di permukaan yang rata. Permukaan yang tidak rata akan menyebabkan robot

mengalami kelicinan pada tayar yang akan menyebabkan robot hilang kawalan semasa

bergerak. Selain itu, halangan-halangan seperti bukit dan lubang tidak dapat dikesan oleh

robot biasa. Oleh itu, tujuan projek ini adalah untuk membina pengawal gerakan untuk robot

bergerak pada permukaan yang tidak rata. Dalam projek ini, sebuah sensor Inertial

Measurement Unit digunakan bersama sistem LIDAR 180 darjah bagi membaca bentuk

permukaan di bawah robot dan mengesan halangan-halangan di depan robot. Kelajuan robot

ini dikawal berdasarkan permukaan tanah untuk mengawal tork robot. Sekiranya terdapat

halangan di hadapan, robot tersebut dapat mengenalpasti jarak halangan tersebut untuk

mengawal kelajuannya ketika menghampiri halangan tersebut. Ini dapat memberi masa bagi

membantu robot tersebut mencari laluan alternatif lain untuk melepasi halangan tersebut.

Kaedah eksperimen digunakan dalam projek ini bagi mengumpul maklumat yang diperlukan

dan maklumat itu akan disusun dalam bentuk graf bagi setiap permukaan seperti jubin, asfalt,

batu dan kawasan berbukit.

viii

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ACKNOWLEDGEMENTS v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS AND ABBREVIATIONS xiv

LIST OF APPENDICES xv

 INTRODUCTION 1
1.1 Overview 1
1.2 Project Background 1

1.3 Motivation 2
1.4 Problem Statement 3

1.5 Objective 4
1.6 Scope 4

 LITERATURE REVIEW 6
2.1 Overview 6
2.2 Types of Mobile Robots 6

2.2.1 Wheeled Mobile Robot 6
2.2.1.1 Differential Drive 7

2.2.1.2 Synchronous Drive 8
2.2.1.3 Tricycle Drive 9

2.2.1.4 Ackermann Steer (Car Drive) 9
2.2.2 Legged Mobile Robot 10

2.3 Type of Sensors 11
2.3.1 Sensors for Obstacle Detection 11

2.3.1.1 Ultrasonic Sensor 12
2.3.1.2 Distance Infrared (IR) Sensor 12

2.3.1.3 Camera Sensor 13
2.3.2 Sensors for Robot Orientation 14

2.3.2.1 Accelerometer 14
2.3.2.2 Gyroscope 15

ix

2.3.2.3 Magnetometer 16

2.3.3 Sensors for Robot Speed 16
2.3.3.1 Accelerometer 16

2.3.3.2 Optical Encoder 17
2.4 Type of Common Control System 17

2.4.1 Proportional-Integral-Derivative (PID) Controller 17
2.4.2 Fuzzy Logic Controller (FLC) 18

2.5 Overall Summary 19

 METHODOLOGY 20

3.1 Overview 20
3.2 Project Overview 21

3.3 Mobile Robot Design 21
3.4 Experiment 1: Detecting Surface Orientation 23

3.4.1 Designing Inertial Measurement Unit (IMU) Sensor’s Algorithm 24
3.4.2 Open Loop Test of IMU Sensor 27

3.4.3 Intergration of IMU sensor and Motor Control Using Fuzzy

Logic Control System. 28
3.5 Experiment 2: Obstacle Detection 31

3.5.1 Open Loop Test of Ultrasonic Sensor 32
3.5.2 Closed Loop Test of Ultrasonic Sensor and Motor Speed Control

Using Fuzzy Logic Controller 34
3.5.3 Heading Selection 37

3.6 Designing Motion Control for Uneven Terrain 39

 RESULTS AND DISCUSSIONS 43

4.1 Experiment 1: Detecting Surface Orientation 43
4.1.1 Open Loop Test of IMU Sensor 43

4.1.2 Intergration of IMU sensor and Motor Control Using Fuzzy Logic

Control System. 44

4.2 Experiment 2: Obstacle Detection 48
4.2.1 Open Loop Test of Ultrasonic Sensor 48

4.2.2 Closed Loop Test of Ultrasonic Sensor and Motor Speed Control

Using Fuzzy Logic Controller 50

4.2.3 Heading Selection 51
4.3 Experiment 3: Designing Motion Control for Uneven Terrain 53

4.3.1 Tiles Surface 53
4.3.2 Asphalt Surface 54

4.3.3 Rocky Surface 55
4.3.4 Hill Surface 56

4.3.5 Overall Behavior of FLC System 57

 CONCLUSION AND RECOMMENDATIONS 58
5.1 Conclusion 58

5.2 Future Works 59

REFERENCES 60

APPENDICES 63

x

LIST OF TABLES

Table 2.1: Movement of robot based on wheel's direction configuration 8

Table 3.1 Mapping of Tasks to Project's Problem Statements and Objectives. 20

Table 3.2: Pitch Orientation Measurements for Open Loop Test on a Rotating

Platform Rig 28

Table 3.3: Fuzzy Rules for Motor Speed Controller 30

Table 3.4: Behavior of Mobile Robot on Uneven Terrain 31

Table 3.5: Characteristic of the Ultrasonic sensor when measuring the distance of an

obstacle 33

Table 3.6: Fuzzy Rule of the FLC system 36

Table 3.7: Characteristic Of Obstacle Distance And Motor Speed 37

Table 3.8: Distance Reading for a 180° scan 38

Table 3.9: Evaluation of Possible Alternative Route Heading 38

Table 3.10: Fuzzy Rules for Experiment 3 39

Table 3.11: Close Loop Test for FLC System in Experiment 3 42

Table 4.1: Evaluation Results of Possible Alternative Route Heading 52

xi

LIST OF FIGURES

Figure 2.1: Example of Wheeled Mobile Robot 7

Figure 2.2: Example of Differential Drive Robot 7

Figure 2.3: Example of Synchronous Drive 8

Figure 2.4: Example of Tricycle Drive 9

Figure 2.5: Example of Ackermann Drive 10

Figure 2.6: Example of Legged Mobile Robot 11

Figure 2.7: HC-SR04 Ultrasonic Sensor 12

Figure 2.8: IR Distance Sensor GP2Y0A41SK0F 13

Figure 2.9: Example of Stereo Camera System 14

Figure 2.10: ADXL335 Accelerometer Sensor 15

Figure 2.11: L3G4200D Gyroscope Sensor 15

Figure 2.12: HMC5883L Magnetometer Sensor 16

Figure 2.13: Example of Optical Encoder Working Principle 17

Figure 2.14: Typical Block Diagram of PID Controller 18

Figure 3.1: Project Development Process (Flow Chart). 21

Figure 3.2: Right Side View of Mobile Robot 22

Figure 3.3: Right Side View of Mobile Robot 22

Figure 3.4: Orthographic View of Mobile Robot 23

Figure 3.5: Axis Frame of The Mobile Robot 24

Figure 3.6: Force vectors acting on the sensor in 3D spaces 25

Figure 3.7: Typical Block Diagram of Complementary Filter 26

Figure 3.8: Example of Pitch Orientation of Robot Correspond Directly to Surface

Orientation 27

xii

Figure 3.9: Open Loop Test setup Using a Rotating Platform Rig. 28

Figure 3.10: Block Diagram of Fuzzy Logic Controller for Motor Speed Control 29

Figure 3.11: Membership Function for Input Variable 30

Figure 3.12: Membership Function for Output Variable 30

Figure 3.13: Expected Behaviour of the FLC System 31

Figure 3.14: Setup for 100 cm Open Loop Test 33

Figure 3.15: Setup for 400 cm Open Loop Test 33

Figure 3.16: Close Loop Test Setup for Ultrasonic Sensor and Motor Control 35

Figure 3.17: FLC Block Diagram for Motor Control using Ultrasonic 35

Figure 3.18: Membership Function of the Ultrasonic reading 36

Figure 3.19: Memberhip Function of the Motor Output Speed 36

Figure 3.20: Expexted Behaviour of Fuzzy logic controller 37

Figure 3.21: Experiment Setup for Heading Selection 38

Figure 3.22: Typical Fuzzy Controller Architecture 40

Figure 3.23: Block Diagram for FLC of Experiment 3 41

Figure 3.24: Surface Graph of Relationship between IMU sensor, Ultrasonic Sensor,

and Motor Speed. 42

Figure 3.25: Type of Terrains Used for Experiment 3 42

Figure 4.1: Graph of Angle Reading (°) vs Actual Angle(°) 43

Figure 4.2: Characteristic of The Pitch Orientation And Motor’s Speed Over Time

For Tiles Surface 45

Figure 4.3: Characteristic of The Pitch Orientation And Motor’s Speed Over Time

For Asphalt Surface 45

Figure 4.4: Characteristic of The Pitch Orientation And Motor’s Speed Over Time

For Rocky Surface 46

xiii

Figure 4.5: Characteristic of The Pitch Orientation And Motor’s Speed Over Time

For Hill Surface 47

Figure 4.6: Accuracy of Ultrasonic Sensor for 0 to 100 cm Range 49

Figure 4.7: Accuracy of Ultrasonic Sensor from 0 to 400 cm 50

Figure 4.8: Behavior Characteristic of the FLC System 51

Figure 4.9: Distance Reading for 180° Area 52

Figure 4.10: Characteristic Behavior of FLC System Used on Tiles Surface. 53

Figure 4.11: Characteristic Behavior of FLC System Used on Asphalt Surface 54

Figure 4.12: Characteristic Behavior of FLC System Used on Rocky Surface 55

Figure 4.13: Characteristic Behavior of FLC System Used on Hill Surface 56

Figure 4.14: Overall Behavior of The MISO FLC System 57

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

AMR - Diameter

AI - Artificial Intelligence

WMR - Wheeled Mobile Robot

DC - Direct Current

DOF - Degree of Freedom

IMU - Inertial Measurement Unit

cm - Centimetre

% - percentage

IR - Infrared Receiver

RPM - Revolution per Minute

PID - Proportional-Integral-Derivative

SISO - Single Input Single Output

FLC - Fuzzy Logic Controller

MIMO - Multiple Input Multiple Output

θ - Degree

LIDAR - Light Detection and Ranging

�̅� - Mean Average

σ - Sigma/Standard Deviation

xv

LIST OF APPENDICES

APPENDIX A EXPERIMENT 1 OPEN LOOP TEST RESULTS 63

APPENDIX B EXPERIMENT 1 CLOSE LOOP RESULT FOR TILES

SURFACE 63

APPENDIX C EXPERIMENT 1 CLOSE LOOP RESULT FOR ASPHALT

SURFACE 64

APPENDIX D EXPERIMENT 1 CLOSE LOOP RESULT FOR ROCKY

SURFACE 65

APPENDIX E EXPERIMENT 1 CLOSE LOOP RESULT FOR HILL

SURFACE 66

APPENDIX F EXPERIMENT 2 OPEN LOOP RESULT 68

APPENDIX G EXPERIMENT 2 CLOSE LOOP TEST RESULT 71

APPENDIX H EXPERIMENT 2 HEADING SELECTION SCAN RESULT 83

APPENDIX I EXPERIMENT 3 FLC BEHAVIOR ON TILES SURFACE 83

APPENDIX J EXPERIMENT 3 FLC BEHAVIOR ON ASPHALT

SURFACE 84

APPENDIX K EXPERIMENT 3 FLC BEHAVIOR ON ROCKY

SURFACE 85

APPENDIX L EXPERIMENT 3 FLC BEHAVIOR ON HILL SURFACE 86

APPENDIX M MAIN PROGRAMMING CODE FOR MOTION

CONTROL 87

APPENDIX N HEADER FILE FOR FLC INFERENCE SYSTEM 96

APPENDIX O SOURCE CODE FOR ACCELEROMETER 96

APPENDIX P HEADER FILE FOR ACCELEROMETER 97

APPENDIX Q SOURCE CODE FOR ULTRASONIC 98

APPENDIX R HEADER FILE FOR ULTRASONIC 98

APPENDIX S SOURCE CODE FOR I2C 99

APPENDIX T HEADER FILE FOR I2C 100

APPENDIX U SOURCE CODE FOR GYROSCOPE 100

APPENDIX V HEADER FILE FOR GYROSCOPE 101

xvi

APPENDIX W SOURCE CODE FOR MOTOR CONTROLLER 102

APPENDIX X HEADER FILE FOR MOTOR CONTROLLER 102

1

INTRODUCTION

1.1 Overview

This chapter will present the project background on the motion control design of a

mobile robot for uneven terrain, motivation for the project, problem statement that assist in

making the proposal of the project, objectives that acts as a guideline throughout the project,

scopes that shows the limitation of the project in terms of outcome, and the outline of the

project.

1.2 Project Background

Nowadays, the application of the motion control system can be found in almost every

type of machine and robots due to its ability to control moving parts of the system in a

controlled or adaptive manner[1]. This control system can be either an open loop or closed

loop system and is usually comprise of a motion controller, amplifiers, sensors, transducers,

and actuators. A typical open loop system can be seen in a fan control where the controller

sends a command signal through the amplifiers to the actuator, which is the motor, to rotate

the fan[2]–[4]. In a closed loop system, a measuring device or sensor is added to the system

to measure the output of the system and send it back to the controller[2], [4]. The motion

controller will compare the measurement from the sensor with the desired outcome and

compensate for any error by adjusting the command signal before sending it to the actuator

again.

 An Autonomous Mobile Robot (AMR) is one of the mobile robots that use the

motion control system to help it navigate autonomously around obstacles in order to get from

one point to another. This is achieved by getting information about the surrounding

environment such as obstacle and position, to generate the appropriate behavior to overcome

2

the obstacle[5]. This has further helped in making it easier for an exploration mission to be

done autonomously on an unknown environment such as underwater or other planets[6].

Such features also make an AMR the most innovative solution for the market, especially in

the industrial manufacturing field where the AMR is used to transport materials

automatically from one station to another without intervention from a human[7]. This has

since increased the work efficiency of the manufacturing process since the transportation of

materials is a repetitive job in which human will grow tired over time.

In this project, a motion controller is designed to help a mobile robot navigate

autonomously on an uneven surface. Information about the surface orientation and presence

of obstacles is gathered through the sensors and sent to the motion controller where it will

be used to compute the appropriate speed of the robot using fuzzy logic approach, and the

possible heading of the robot to avoid the obstacle. Analysis on the input and output of the

motion controller will be done to view the behavior of the motion controller on different

types of terrains.

1.3 Motivation

 Robots were first developed to do simple but repetitive physical task in the

industrial section such as polishing steel tubes and cutting a metal sheet. As the field of

robotics started to advance, the field of artificial intelligent (AI) began to emerge and started

contributing more to the advancement of robotics. AI helps robots to make simple decisions

based on the input information from sensors. Soon, more types of robots are being developed

for a different specific purpose and each purpose has its own form with its own mechanical

limitation such as workspace area.

Mobile robotic platform was first introduced back in the ’50s and since then, it has

been the main endeavor for every researcher to develop a motion control system for a mobile

robotic platform capable of generating a collision-free path for the robot to follow [8]. To

date, the application of the motion control system can be seen in most mobile robots

anywhere from the autonomous cleaning robot called Roomba, to the exploration rover

3

Curiosity on Mars, and even the autonomous self-driving Tesla car. It has successfully made

advancement for the realm of technology.

Most of the mobile robot was using motion control system for navigation on a smooth

surface and most of it is using tires as the mode of locomotion. Although mobile robots for

uneven terrain has already been developing, most of it uses the concept of legged robot as it

can overcome obstacle without any difficulty. Only a few Wheeled Mobile Robots (WMR)

have been developed with the purpose of navigating on rough terrains such as the exploration

rover Curiosity and Opportunity. Although they work great in navigating on a rough surface,

it still cost a lot to develop them. WMR concept has been never been a favorite for rough

terrain exploration due to its limitation which gives a disadvantage on uneven terrain.

1.4 Problem Statement

The use of wheels as a mode of locomotion usually gives a huge disadvantage to a

mobile robot when navigating on uneven terrain. this is because of tire slip which is the loss

of traction due to surface irregularity, tire sinkage [9], or skidding. This can prevent the

mobile robot from moving any further than its current position. In order to overcome this,

the traction of the wheels needed to be increased by adjusting the speed of the wheel since

the speed of the wheel will affect the time of contact between the wheels and the ground

surface which then affects the wheels traction.

 The second problem is that in order for a mobile robot to move around

autonomously, the robot must have the ability to read its environment in order to make the

optimum decision on how to navigate[10], [11]. Since most WMR is designed to navigate

on smooth surface, there are less information about the method to measure the orientation of

an uneven terrain. Since surface orientation and obstacles are the basic information needed

to allow a mobile robot to navigate on uneven surface, a method for measuring the surface

orientation, in terms of X and Y plane, and obstacles is needed to allow for uneven terrain

navigation.

 Lastly, a mobile robot must process the information about its surrounding and its

own state so that it can make the necessary action that can help it navigate on uneven terrain.

4

Therefore, a suitable motion controller needs to be developed for helping the robot

processing all the information efficiently[12].

1.5 Objective

These objectives will serve as a guideline throughout this project. In order to call the

project successful, all of these project must be achieved.

The first objective is to develop a method to detect irregular surface. For a motion

controller to be developed for navigating on uneven terrain, the robot must know the

characteristic of the terrain in order for it to adapt or react properly.

Next, the second objective is to develop a method to detect obstacle. Other than

ground surface, detecting obstacle is also important as it can stops a robot from navigating

or cause damage if the robot bumbs into obstacle. By detecting it, all concequences

mentioned can be avoided

Lastly, to design a motion controller of mobile robot for uneven terrain. Having a

motion control that can handle more than one input will be very helful to a mobile robot

since it helps the robot to react fast.

1.6 Scope

• Using a Differential drive type of Wheeled Mobile Robot

• Navigating around uneven terrain such as asphalts, rocks and hills

• Using Arduino Uno or Arduino Mega board as microcontroller

• Uses two 60:1 gear ratio DC motor to drive the robot.

• GY-85 9DOF IMU Sensor to measure robot’s orientation

5

• HCSR04 Ultrasonic sensor with up to 400 cm range of detection

• 180 Degree Servo Motor

6

LITERATURE REVIEW

2.1 Overview

This chapter describes some important aspect in designing a motion control for

mobile robot so that a suitable motion control can be applied specifically on uneven terrain.

The first part in this chapter is the description of types of mobile robots exist nowadays. The

second part describes the types of sensors that can be used to detect and measure the robot’s

environment, which includes obstacle (steep hill, wall, objects), orientation, and moving

speed. The last part in this section describes the type of common control system which can

be used to design a motion controller.

2.2 Types of Mobile Robots

Mobile robots are robotic system which has the capability to move around its

environment[13]. The mobile robot can either be controlled manually or move around in an

autonomous manner. Nowadays, there are a variety of mobile robot designs which can be

categorized into wheeled mobile robot and legged mobile robot.

2.2.1 Wheeled Mobile Robot

Wheeled Mobile Robot (WMR), as the name implied, is a robot that uses motorizes

wheel to navigate around a surface. An example of WMR can be seen in Figure 2.1. WMR

can be further classified into several categories depending on their arrangement of driving

and steering wheel[2], [12], [13]. These categories are differential drive, synchronous drive,

tricycle drive and car drive[2].

7

Figure 2.1: Example of Wheeled Mobile Robot

2.2.1.1 Differential Drive

 Differential drive is the most common type of WMR due to its simple programming

and locomotion[2]. It has only two wheels which are driven independently on the same axis

as shown in Figure 2.2. To control the robot, the speed and the direction of the rotating wheel

is manipulated so that the robot can move straight, curve, and spin [14]. Table 2.1 shows the

movement of the robot cause by manipulating each wheel at certain configuration.

Figure 2.2: Example of Differential Drive Robot

8

Table 2.1: Movement of robot based on wheel's direction configuration

Speed of each

wheel (%)
Direction of each wheel

Movement

Left Right Left Right

100 100 Forward Forward Straight Forward

100 100 Backward Backward Straight Backward

100 50 Forward Forward Curve Right

50 100 Forward Forward Curve Left

100 100 Forward Backward Spin Right

100 100 Backward Forward Spin Left

 However, this configuration comes with an issue which is wheel slipping. This

problem occurs when the robot is moving on an irregular surface thus causing the robot to

stall or change its direction. It also can affect the data measurement taken for performance

testing. Tipping over is also a problem for this configuration due to irregular surface.

2.2.1.2 Synchronous Drive

 Synchronous drive is a configuration where all the wheel is always steerable but at

the same direction all the time as shown in Figure 2.3. The robot moves around without

changing the direction of its chassis. This allows the robot to navigate in a limited space

where rotating or making a curve turn is near impossible[2]. While it does reduce the

possibility of tipping over as seen in differential drive robots, there is also the possibility of

wheel slippage when there is a large variation on the irregular surface.

Figure 2.3: Example of Synchronous Drive

9

2.2.1.3 Tricycle Drive

 A tricycle drive uses three wheels to move around a surface. The first type is having

two driving rear wheels and 1 steering front wheel while the second type is having a driving

and steering front wheel and two passive rear wheels[15]. This configuration solves the issue

with wheel slippage seen on both differential driven and synchronous driven robot[2]. Figure

2.4 shows an example of tricycle drive.

 Figure 2.4: Example of Tricycle Drive

2.2.1.4 Ackermann Steer (Car Drive)

 The Ackermann Steer configuration has four wheels where the two rear wheel is

the driving wheel while the front two wheel is the steering wheel[2]. The difference of this

configuration to the tricycle drive is that it has a link that is connecting the two front wheels

to allow simultaneous steering for both wheels as shown in Figure 2.5.

10

Figure 2.5: Example of Ackermann Drive

 The advantage of tricycle and Ackermann drive compare to other configuration is

that the velocity of the driving wheel is not considered into calculation for driving straight

[15]. Although the derivation of kinematic model for this configuration is difficult, it is

suitable for outdoor task that requires traveling over long distance.

2.2.2 Legged Mobile Robot

 Nowadays, there are more advanced legged mobile robot being developed due to

its advantage of mobility on rough terrain. The flexibility of the leg helps the robot to easily

overcome large obstacle[16]. It is known that having more legs allows the robot to be

balanced at all time than fewer legs due to having a larger base area[17]. However, having

11

this configuration increases the mechanical, electronic and programming complexity as well

as building cost which is a big disadvantage. Figure 2.6 shows an example of legged mobile

robot.

 Figure 2.6: Example of Legged Mobile Robot

2.3 Type of Sensors

 Sensors are important in designing a mobile robot as it serves as the eyes and ears

of a robot. An autonomous mobile robot will take information about the surrounding through

its sensors and process it to make navigation decision while a manned robot uses the

information from the sensors for the same purpose and for real time analysis[2]. These

sensors can be categorized according its purposes which are detecting obstacle, robot’s

orientation, and robot’s moving speed.

2.3.1 Sensors for Obstacle Detection

 Obstacle detection is an important odometry of an autonomous robot. It allows the

robot to make decision whether to avoid the obstacle or go over it, depending on its

12

capability. Sensors that are suitable for this purpose are ultrasonic sensor, distance infrared

(IR) sensor, and terrain mapping camera.

2.3.1.1 Ultrasonic Sensor

 Ultrasonic sensor utilizes soundwave to measure the distance of an object. The

sensor transmits an ultrasonic wave and detect the reflected wave from the object. By

measuring the time taken between the transmitting and receiving of the wave, the sensor can

determine its distance from the object [6], [18]. Figure 2.7 shows an example of ultrasonic.

 Figure 2.7: HC-SR04 Ultrasonic Sensor

2.3.1.2 Distance Infrared (IR) Sensor

 Distance IR sensor uses the same concept as ultrasonic sensor but with a different

medium which is light waves. The advantage of IR sensor compared to ultrasonic sensor is

that it more suitable for close-proximity object detection. Farther object will produce error

depending on the object surface and orientation [6], [18]. Figure 2.8 shows an example of

Distance IR sensor.

13

 Figure 2.8: IR Distance Sensor GP2Y0A41SK0F

2.3.1.3 Camera Sensor

 The camera technology can actually also be used as an odometry sensor for an

autonomous mobile robot. By using a stereo camera system, a disparity map can be

computed from image produce by both camera for object detection. Computer vision method

is then applied to filter out noises for better object detection [19], [20]. Figure 2.9 shows an

example of stereo camera system

14

Figure 2.9: Example of Stereo Camera System

2.3.2 Sensors for Robot Orientation

 Robot orientation is an important information for an autonomous robot in order for

the robot to know its heading and direction as well as the state of the robot. Sensors in this

category must be able to provide information about the pitch, roll, and yaw of the robot.

Suitable sensors for this purpose are accelerometer, gyroscope, and magnetometer.

2.3.2.1 Accelerometer

 An accelerometer measures dynamic and static forces that act upon the sensor on

three axes. By computing the resultant of a static force, which is the gravity, and using the

trigonometry equation of a right-angle triangle, the orientation of the robot can be measured.

However, because this sensor also measures dynamic forces, it is sensitive to vibration and

mechanical noise, thus producing noise in the measurement[16]. Figure shows an example

of accelerometer sensor.

15

Figure 2.10: ADXL335 Accelerometer Sensor

2.3.2.2 Gyroscope

 A gyroscope measures the angular rate of rotation along 3 axes of the sensor as

shown in Figure 2.11. To compute the orientation of the robot, the angular rate produced by

the sensor is multiplied with the time interval between each reading and added to the last

angle compute. Compared with the accelerometer, gyroscope is less sensitive to mechanical

noise as it only measures rotation. However, gyroscope has drift problem in which the

angular rate does not come back to zero-rate when the rotation stops [16].

Figure 2.11: L3G4200D Gyroscope Sensor

16

2.3.2.3 Magnetometer

 A magnetometer is essentially a compass. It measures the magnetic field of its

surrounding and the earth magnetic field in order to compute the true north heading[15],

[21]. By having the true north heading as a reference, the robots yaw value can be computed.

Figure 2.12 shows an example of magnetometer sensor.

 Figure 2.12: HMC5883L Magnetometer Sensor

2.3.3 Sensors for Robot Speed

 For an autonomous mobile robot, controlling its speed is very important in order

for it to maintain traction on irregular surface by avoiding tire slippage. The sensors that are

suitable for this purpose is Accelerometer sensor and Optical Encoder for motor,

2.3.3.1 Accelerometer

 As mention before, an accelerometer measures the static and dynamic forces act

upon it. By measuring the acceleration of the mobile robot and multiply it with the interval

time between each reading, the velocity of the robot can be calculated[16].

17

2.3.3.2 Optical Encoder

 An optical encoder measures the speed of the mobile robot by detecting the position

change of a patterned encoder disc as light passes through it as shown in Figure 2.13. As the

disc rotates, the position change represents a square wave where after several specific

wavelengths, 1 rotation of the disc is reached. Using simple equation, the velocity of the

motor can be computed in the unit of revolution per minute (RPM)[22].

Figure 2.13: Example of Optical Encoder Working Principle

2.4 Type of Common Control System

 A control system is made of subsystem and processes that is assembled with the

purpose of producing a desired output and performance given specific input. There are two

most commonly used control system which is the Proportional-Integral-Derivative (PID)

Controller and Fuzzy Logic Controller.

2.4.1 Proportional-Integral-Derivative (PID) Controller

18

 A PID controller is a control algorithm that uses three gain coefficients which are

proportional, integral, and derivative, to tune an output signal in reference with the input

sensor signal as shown in Figure 2.14. By varying the coefficients, the PID controller can

produce a desired actuator output signal within a closed loop feedback mechanism.

However, this method is only available for a Single Input Single Output (SISO) system[15],

[23], [24].

Figure 2.14: Typical Block Diagram of PID Controller

2.4.2 Fuzzy Logic Controller (FLC)

 A fuzzy logic controller is a decision-making method that closely resembles the

human decision-making skills. It deals with vague and imprecise information by looking at

the degree of truth rather than the usual true or false Boolean logic. FLC is commonly used

to handle Multiple Input Single Output (MISO) system only. For a Multiple Input Multiple

19

Output (MISO) system, a Mixed Fuzzy Controller is used where multiple FLC is integrated

to control the MIMO system[25]–[27].

2.5 Overall Summary

Aspects Sub-Aspects Chosen Reasons

Type of Mobile

Robots

Wheeled Mobile

robot

Differential Drive Easy to control

the movement of

motor

Type of Sensor

For Robot

Orientation

Accelerometer &

Gyroscope

Able to use IMU

sensor system

For Obstacle

Detection

Ultrasonic Sensor Long ranged

detection

Type of common

Control System

Fuzzy Logic Control Able to use for

Multiple Input

Single Output

(MISO) control

system

20

METHODOLOGY

3.1 Overview

This chapter describes the method and techniques used to design the experiments for

this project. A good motion control for a mobile robot is designed by collecting vital

information about the robot’s state and its surrounding and putting it into the control

algorithm so that the robot can make the optimum decision. The area of study interested in

mobile robot on uneven terrains are the robot’s orientation, which correspond directly with

the surface orientation, and unexpected obstacles. This information allows the robot to adapt

to the environment and navigate around without any difficulty.

In this project, experimental method is used to collect data on each of the area of

study. Several different methods are used to obtain each information and an experiment is

design based on those methods to collect data of each information. Before any experiment

is done, a mobile robot is designed to help conduct the experiments. Table 3.1 below shows

the mapping of the designing task and experiments task to the project’s problem statements

and objectives.

Table 3.1 Mapping of Tasks to Project's Problem Statements and

Objectives.

Task Problem

Statements

Objectives

Designing Mobile Robot #

Experiment 1: Detecting Surface Orientation # #

Experiment 2: Obstacle Detection # #

Experiment 3: Designing Motion Control for

Uneven Terrain

 # #

21

3.2 Project Overview

Figure 3.1: Project Development Process (Flow Chart).

3.3 Mobile Robot Design

The design of the mobile robot has a great effect onto its performance. By designing

the mobile robot to overcome a problem, it can save a lot of time from having to tune its

program until the problem resolves. The design of the mobile robot uses 4 wheels as the

mode of locomotion and the concept of differential drive configuration at the front wheel.

Since the main problem of this project is tires slip, an absorber is added to each wheel to

compensate for the tire slip individually. An ultrasonic sensor is placed in the front of the

robot to detect incoming obstacles from the front. Error! Reference source not found.,

Figure 3.3, and Figure 3.4 below shows the design of the mobile robot used.

22

Figure 3.2: Right Side View of Mobile Robot

Figure 3.3: Right Side View of Mobile Robot

23

Figure 3.4: Orthographic View of Mobile Robot

3.4 Experiment 1: Detecting Surface Orientation

This experiment is designed to collect data on the characteristic of an irregular

surface based on the changes of the robot’s orientation in terms of pitch and roll. In most

cases, the mobile robot’s orientation corresponds directly to the surface orientation of a

terrain, except when tire slip occurred. This information helps the robot to make decision

based on the characteristic of the terrain.

The experiment is divided into three parts. The first part is designing the Inertial

Measurement Unit (IMU) sensor algorithm by obtaining the raw value of the accelerometer

and gyroscope sensor reading and pass it through a complementary filter to get an accurate

estimation of the robot’s orientation. The second part is doing an open loop test on the IMU

sensor by testing the sensor on a rig that changes its orientation around 1 axis. Since the

changes on the terrain’s surface mostly affects the pitch of the mobile robot, only the angle

of orientation around Y-axis is taken into consideration. The third part is the integration of

the IMU sensor and motor speed control of the robot. A FLC system is designed to control

the motor speed of the robot based on its pitch orientation. The robot is then tested on several

different type of terrain to evaluate the behavior of the FLC system.

24

For this experiment, a GY-85 9DOF IMU Sensor is used to get values from an

accelerometer and gyroscope sensor, and the axis frame of the mobile robot is shown in

Figure 3.5. The pitch reading of the robot is defined as angle of rotation around Y-axis while

roll reading is defined as the angle of rotation around X-axis.

Figure 3.5: Axis Frame of The Mobile Robot

3.4.1 Designing Inertial Measurement Unit (IMU) Sensor’s Algorithm

Since the accelerometer measures static forces that act upon each axis, the output of

the accelerometer will show the value of gravity force acting on each axis in the unit LSB.

To find the orientation of each axis, the raw output value of each axis from the accelerometer

sensor is first divided with the scale factor as shown in (3.1), (3.2), and (3.3), to get the value

of the gravity force in the unit ‘g’.

𝐹𝑥 =
𝐴𝑥𝑅𝑎𝑤

256

(3.1)

𝐹𝑦 =
𝐴𝑦𝑅𝑎𝑤

256

(3.2)

𝐹𝑧 =
𝐴𝑧𝑅𝑎𝑤

256

(3.3)

25

At any orientation, the force of gravity, Fg, can be assumed to be at any direction in

between all three axes as shown in Figure 3.6. By using 3D Pythagorean Theorem, the

resultant force of gravity, Fg, is calculated using the equation (3.4).

Figure 3.6: Force vectors acting on the sensor in 3D spaces

𝐹𝑔 = √𝐹𝑥2 + 𝐹𝑦2 + 𝐹𝑧2

(3.4)

Then, the angle value of pitch and roll orientation is be identified as the angle

between the X-axis and Y-Axis, and the force of gravity respectively. This angle value is

obtained by feeding the value of gravity force on each axis and the resultant gravity into the

trigonometric equation in (3.5) and (3.6) below.

𝜃𝑥 = cos−1 (
𝐹𝑥

𝐹𝑔
)

(3.5)

𝜃𝑦 = cos−1 (
𝐹𝑦

𝐹𝑔
)

(3.6)

Gyroscope sensor measures the rate of rotation around each axis. To get the rate of

rotation, the raw output value is divided with the scale factor to convert it into the unit ‘°/s’,

and multiplied with the time duration from the last reading as shown in (3.7) and (3.8), to

get the value of rate of rotation in ‘°’.

26

𝑅𝑥 = (
𝐺𝑥𝑅𝑎𝑤

14.375
) × 𝑑𝑡

(3.7)

𝑅𝑦 = (
𝐺𝑦𝑅𝑎𝑤

14.375
) × 𝑑𝑡

(3.8)

𝑑𝑡 = 𝑇𝑛 − 𝑇𝑛−1 (3.9)

The value of the axis orientation from the accelerometer is sent through a low pass

filter to remove any noise signal cause by sudden forces while the rate of rotation from the

gyroscope is multiplied with the duration time since the last reading being sent through a

high pass filter to remove the drift effect cause during resting. This can be seen in the typical

block diagram of the complementary filter shown in Figure 3.5.

Figure 3.7: Typical Block Diagram of Complementary Filter

The complementary filter technique is used to obtain the most accurate estimation of

the robot’s orientation by adding 20% of the filtered value of axis orientation and 80% of

the summation of filtered value of rate of rotation and the previous angle together as shown

in (3.10) and (3.11).

𝑋 = 0.8(𝑋𝑛−1 + 𝑅𝑦) + 0.2(𝐴𝑥) (3.10)

𝑌 = 0.8(𝑌𝑛−1 + 𝑅𝑥) + 0.2(𝐴𝑦) (3.11)

27

3.4.2 Open Loop Test of IMU Sensor

Open loop test is a basic test that can be used to observe the different characteristic

of several type of surface. By measuring the robot’s orientation, it is also possible to measure

the surface orientation of a terrain. This is due to how the robot’s orientation corresponds

directly to the surface orientation when it is in direct contact with the surface. In this test, the

pitch orientation of the robot is chosen as the characteristic to be observed since it

corresponds with the incline or decline of an uneven terrain as shown in Figure 3.8. This

characteristic is the most suitable option since the mobile robot will mostly be moving

forward in this project.

Figure 3.8: Example of Pitch Orientation of Robot Correspond Directly to

Surface Orientation

Firstly, the IMU sensor is placed on a platform of a rotating rig as shown in

Figure 3.9 below. The platform is then rotated to 0 to 180 at an interval of

10 to observe the accuracy of the of the IMU sensor. The pitch orientation

measurement from the accelerometer, gyroscope sensor, and

complementary filter are recorded into the Figure 3.9: Open Loop Test

setup Using a Rotating Platform Rig.

Table 3.2 below. A graph is then generated to show the accuracy of the sensor by

comparing each measurement mentioned above.

28

Figure 3.9: Open Loop Test setup Using a Rotating Platform Rig.

Table 3.2: Pitch Orientation Measurements for Open Loop Test on a

Rotating Platform Rig

Angle (°) Accelerometer

(°)

Gyroscope

(°)

Complementary

Filter (°)

0

10

.....

170

180

3.4.3 Intergration of IMU sensor and Motor Control Using Fuzzy Logic Control

System.

A FLC system is made by integrating the IMU sensor with a simple motor speed

control system in order to control the speed of the robot when navigating on uneven terrain.

Since the robot orientation correspond directly with the ground surface, the pitch of the robot

29

is taken as an input of the fuzzy logic controller since as it helps with detecting an incline or

decline on the ground surface while the output of the fuzzy logic is set as the speed of the

motor. Using the software Matlab, the fuzzy logic controller is designed based on the block

diagram shown in Figure 3.10 below.

Figure 3.10: Block Diagram of Fuzzy Logic Controller for Motor Speed

Control

The range of the pitch measurements is set from 0° to 180° with 80-90 as the mid-

range. While the range of the speed of the motor which uses Pulse Width Modulation

(PWM), is set between 20-300. With this, the membership function for input and output is

designed as shown in Figure 3.11 and Figure 3.12 below.

30

Figure 3.11: Membership Function for Input Variable

Figure 3.12: Membership Function for Output Variable

For this FLC system, five simple rules are used to relate the input membership

function to its outputs as shown in the Table 3.3.

Table 3.3: Fuzzy Rules for Motor Speed Controller

Rule Pitch Motor Speed

1 Straight (ST) HIGH

2 Forward Small (FS) MID

3 Forward Medium (FM) LOW

4 Backward Small (FS) MID

5 Backward Medium (FM) LOW

31

By following these rules, a relationship between the input and output variables of the

FLC system can be seen in the generated graph shown in Figure 3.13. It also shows the

expected behavior of the controller when navigating on uneven surface.

Figure 3.13: Expected Behaviour of the FLC System

The fuzzy logic controller developed is then used to observe the behavior of the

mobile robot on several different terrain such as tiles, asphalt, rocks, and hill. The robot’s

pitch, speed, and time taken are recorded in Table 3.4 as the robot move straight for 100 cm.

A graph is then generated to represent the behavior of the mobile robot on different terrain.

Table 3.4: Behavior of Mobile Robot on Uneven Terrain

No of reading, n Pitch of robot (°) Speed of motor

(PWM)

Time taken (s)

1

2

.....

n-1

n

3.5 Experiment 2: Obstacle Detection

This experiment is designed to develop a method which allows the mobile robot to

detect the position of an obstacle in front of it, control its approaching speed, and find an

alternative path to avoid the obstacle. A 180 degrees Light Detection and Ranging (LIDAR)

sensor is mounted at the front of the mobile robot and an obstacle is put in front of the robot

32

on different direction. But instead of light detection, an ultrasonic is used to measure the

distance of an obstacle in every angle.

This experiment is divided to three parts. The first part is an open loop test on the

ultrasonic sensor to observe its accuracy on measuring the distance of the obstacle in front

of it. The second part is a close loop test in which the distance of the obstacle measured is

used to control the speed of the robot by using a FLC system. The third part is an integration

of the ultrasonic sensor with a servo motor to create a 180 degrees LIDAR sensor system

which can detect the position of an obstacle and find the best alternative path to avoid the

obstacle.

3.5.1 Open Loop Test of Ultrasonic Sensor

In this part, the open loop test is done by placing an ultrasonic sensor on a stand or

box and an obstacle is placed in front of to measure its distance. There are two setups

prepared for this part. For the first setup, the sensor is set up as shown in Figure 3.14. The

obstacle’s distance from the sensor is changed from 0 cm to 100 cm at an interval of 1 cm.

This is done to observe the accuracy of the sensor to measure the distance of obstacles within

100 cm range from the robot. While for the second setup, the sensor is set up as shown in

Figure 3.11. The obstacle’s distance from the sensor is changed from 0 cm to 400 cm at an

33

interval of 50 cm. This is done to observe the accuracy of the sensor to detect obstacles that

are further than 100 cm range from the robot.

Figure 3.14: Setup for 100 cm Open Loop Test

 Figure 3.15: Setup for 400 cm Open Loop Test

Each measurement is taken three times in order to calculate the average reading and

standard deviation using the equation () and (3.13) respectively. The distance based on the

average reading is also calculated using the equation (3.15). For each actual distance, the

theoretical echo duration is calculated based on the equation (3.14) as a reference for the

echo duration readings. All measurements are recorded in Table shown below and the data

is graphed to observe the accuracy of the sensor’s measurements.

Table 3.5: Characteristic of the Ultrasonic sensor when measuring the

distance of an obstacle

Actual

Distance

(cm)

Calculated

Echo Duration

(µs)

Echo Duration Reading (µs) Calculated

Distance

(cm)

1 2 3 Average Standard

Deviation

0

1

...

n-1

n

34

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑎𝑑𝑖𝑛𝑔, �̅� =
∑ 𝐸𝑐ℎ𝑜 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑎𝑑𝑖𝑛𝑔

3

(3.12)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝜎 = √
∑(𝐸𝑐ℎ𝑜 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 − �̅�)2

3 − 1

(3.13)

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑐ℎ𝑜 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.0343
∗ 2

(3.14)

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
�̅� × 0.0343

2

(3.15)

3.5.2 Closed Loop Test of Ultrasonic Sensor and Motor Speed Control Using Fuzzy

Logic Controller

In this part, close loop test done by using a FLC system to control the speed of the

robot according to the distance of the obstacle measured from the robot. Two motors and a

motor controller are added to the open loop setup to form a close loop setup system as shown

in Figure 3.16

35

Figure 3.16: Close Loop Test Setup for Ultrasonic Sensor and Motor

Control

Using the Matlab Software, the fuzzy logic controller is designed according to the

block diagram shown in Figure 3.17. The distance of the obstacle is set as the input of the

system while the speed of the motor is set as the output of the system.

Figure 3.17: FLC Block Diagram for Motor Control using Ultrasonic

The range of the measured distance is set from 0 cm to 250 cm while the range for

motor speed is set from 20 to 300 as shown in Figure 3.18 and Figure 3.19. The FLC system

utilizes only three rules as shown in Figure 3.19: Memberhip Function of the Motor Output

Speed

Table 3.6.

36

Figure 3.18: Membership Function of the Ultrasonic reading

Figure 3.19: Memberhip Function of the Motor Output Speed

Table 3.6: Fuzzy Rule of the FLC system

Rule Distance Motor Speed

1 Near LOW

2 Mid MID

3 Far HIGH

Following these three rules, a relationship between the input and output variables of

the Fuzzy Logic Controller is graphed as shown in Figure 3.20 which shows the expected

behavior of the controller when detecting an obstacle.

37

Figure 3.20: Expexted Behaviour of Fuzzy logic controller

The behavior of the developed fuzzy logic controller is observed as it detects obstacle

at a random distance from the ultrasonic sensor. The data is then recorded in the Table 3.7

below and graphed to represent the behavior of the controller.

Table 3.7: Characteristic Of Obstacle Distance And Motor Speed

No Distance (cm) Motor Speed (PWM)

1

2

....

n-1

n

3.5.3 Heading Selection

In this part, a 180° LIDAR system is created by attaching an ultrasonic sensor to a

servo motor. The LIDAR system is then put on a large scale protractor with a radius of 30

cm as shown in Figure 3.21. The large protractor helps with comparing the direction of the

obstacle to the measurements reading.

38

Figure 3.21: Experiment Setup for Heading Selection

The LIDAR system first scan the front area at an interval of 10° for 180° range. The

top three furthest distance measured is taken as possible alternative routes. For each possible

route, an average reading for the 20° around the possible direction is calculated. However, a

possible direction is neglected if there exist a distance below 60 cm. The highest average

reading of 20° around each possible route with no distance below 60 cm is chosen as the best

alternative route. All readings are recorded in the table

Table 3.8: Distance Reading for a 180° scan

Heading Direction (°) Distance (cm)

0

10

….

180

Table 3.9: Evaluation of Possible Alternative Route Heading

Possible Alternative

Route Heading

Average Distance

Reading

Safety Threshold State

39

3.6 Designing Motion Control for Uneven Terrain

In this experiment, both Fuzzy Logic controller from Experiment 1 and 2 are brought

together and combine into one Fuzzy Logic Control System. By adding the 180 degrees

LIDAR system from Experiment 2, it will then become the suitable Motion Control for

Mobile Robot on Uneven Terrain. Figure 3.22 shows the overall flowchart of the Motion

Control for Uneven Terrain.

The Figure 3.23 shows the block diagram used to design the Fuzzy Logic Control

System for this experiment. The membership function used for this system is the same as in

Experiment 1 and 2. The only difference is the rules used has increased due to combination

of two system. The rules used is shown in Table 3.8 below.

Table 3.10: Fuzzy Rules for Experiment 3

 Pitch Orientatiom

 BM BS ST FS FM

Obstacle

Distance

Near LOW LOW LOW LOW LOW

Mid LOW MID MID MID LOW

Far LOW MID HIGH MID LOW

40

Figure 3.22: Typical Fuzzy Controller Architecture

Start

Update pitch value

and distance value

Servo rotate to 90

degree

Distance

< 30?

Motor Speed =

pwm

FLC Evaluate

pwm = fis_output

A

Motor Speed = 0

Scan

Surrounding

Determine best

alternative

heading

Robot rotate to

heading

A

41

Figure 3.23: Block Diagram for FLC of Experiment 3

 After combining the rules from Table 3.3 and Table 3.6, a relationship between the

IMU sensor, Ultrasonic Sensor and the Motor Speed is graphed as shown in Figure 3.24

below.

42

 Figure 3.24: Surface Graph of Relationship between IMU sensor,

Ultrasonic Sensor, and Motor Speed.

The FLC System is tested on the mobile robot by having the robot navigate on several

surface shown in Figure 3.25. All measurements are recorded in the Table 3.11 below and

graphed.

Tiles Surface Asphalt Surface

Rocks Surface Hill Surface

Figure 3.25: Type of Terrains Used for Experiment 3

Table 3.11: Close Loop Test for FLC System in Experiment 3

No Pitch (°) Distance (cm) Motor Speed

(PWM)

Time Taken

(s)

1

2

....

n-1

n

43

RESULTS AND DISCUSSIONS

4.1 Experiment 1: Detecting Surface Orientation

In this section, the accuracy of the IMU sensor and the characteristic of the pitch

reading on different terrain is analyze and discussed.

4.1.1 Open Loop Test of IMU Sensor

In this experiment, the measurements of robot orientation in terms of pitch from

accelerometer, gyroscope sensor, and complementary filter is graphed on Figure 4.1 below.

Figure 4.1: Graph of Angle Reading (°) vs Actual Angle(°)

44

From the graph shown in Figure 4.1, the readings from the accelerometer sensor

shows some deviation from the actual angle at 40°, 60°, and 140°, while the readings from

the gyroscope shows a drift effect occurring causing it to have a reading with 10 degree more

than the actual angle set. However, the angle reading from the complementary filter

accurately follows the actual angle set on the rig.

This shows how the complementary filter was able to remove the noise and drift

effect and produce an accurate reading of the angle set on the rig despite some error from

the sensor and drift effect from the gyroscope sensor.

4.1.2 Intergration of IMU sensor and Motor Control Using Fuzzy Logic Control

System.

In this experiment, the characteristic graph of the pitch orientation and motor’s speed

over time on several type of terrain are shown in Figure 4.2, Figure 4.3, Figure 4.4, and

Figure 4.5.

45

Figure 4.2: Characteristic of The Pitch Orientation And Motor’s Speed Over

Time For Tiles Surface

From the graph in Figure 4.2, the robot takes approximately 3.4 seconds to move 100

cm forward on a tiles surface. After 2.4 seconds, the IMU sensor reading stays around 90°

while the output motor speed signal jumps from below 160 to above 240 and maintain there

until the robot reached 100 cm.

This shows that after reaching the steady state reading of the IMU sensor, FLC

system can detect the smooth tiles surface and maintain the high output speed since the is no

irregularity on the terrain. This helps the robot reach 100 cm at a faster duration of time.

Figure 4.3: Characteristic of The Pitch Orientation And Motor’s Speed Over

Time For Asphalt Surface

The graph from Figure 4.3 shows that the robot takes approximately 3.9 seconds to

move 100 cm forward on an asphalt surface. After reaching the steady state reading of the

IMU sensor at 2.2 seconds, the IMU sensor reading fluctuates between 91° and 92° while

the output speed signal of the motor fluctuates from 229 to 237. This shows how the FLC

46

controller can detect the small irregularity of the asphalt surface and tries to compensate it

by slightly adjusting the output motor speed signal.

Figure 4.4: Characteristic of The Pitch Orientation And Motor’s Speed Over

Time For Rocky Surface

The graph from Figure 4.4 shows that the robot takes approximately 7.4 seconds to

move 100 cm forward on rocky surface. After reaching the steady state reading of the IMU

sensor at 1.8 seconds, the IMU sensor reading fluctuates between 88° and 93° while the

output speed signal of the motor fluctuates from 155 to 248. This shows that the FLC

controller detects a constant irregularity of the rocky surface and tries to compensate it with

the corresponding output motor speed signal.

47

Figure 4.5: Characteristic of The Pitch Orientation And Motor’s Speed Over

Time For Hill Surface

The graph from Figure 4.5 shows how the robot takes approximately 9.7 seconds to

move 100 cm forward on a hill surface. After reaching the steady state reading of the IMU

sensor at 1.4 seconds, the IMU sensor reading drops from 79° at 1.8 seconds, to 64° at 4.9

seconds before climbing back up to 82° at 9.3 seconds. The output speed signal of the motor

follows the trend of the IMU sensor reading by dropping from 158 at 1.8 seconds, to 135 at

4.9 seconds, and climbing back up to 157 at 9.3 seconds.

This shows that the FLC controller detects an incline surface of the hill terrain and

compensate it by decreasing the speed of the motor. This helps overcome the tire slip that

usually occurred on an incline surface by increasing the time of contact between the surface

and the wheel. The controller then steadily increased the speed of the motor when the surface

incline is decreasing at the top of the hill.

From all graphs, its can be seen that the controller needs an average of 1.95 seconds

to reach a steady state reading from the IMU sensor. The time taken also decreased from the

48

as the surface iregularity increased. This shows that a higher irregularity of the IMU sensor

reading helps increase the time taken for a steady state reading of the sensor since the

complementary filter also depends on previous reading to compensate for the error occurred.

The time taken for the robot to move 100 cm forward also increased as the surface

irregularity increased on each surface. This shows that the robot takes more time to overcome

any surface irregularity since it slows down to increase the torque of the motor.

4.2 Experiment 2: Obstacle Detection

This section shows the accuracy of the ultrasonic sensor reading and the

characteristic of the FLC system used to control the ouput motor speed based on the distance

of the detected obstacles.

4.2.1 Open Loop Test of Ultrasonic Sensor

 In this experiment, the echo reading of obstacle from 0 to 100 cm shows the

accuracy if the ultrasonic sensor while the distance reading of obstacle from 0 to 400 cm

shows the ability of the ultrasonic sensor to detect long ranged obstacles.

49

Figure 4.6: Accuracy of Ultrasonic Sensor for 0 to 100 cm Range

In the graph shown in Figure 4.6, the distance measured is accurate from 10 cm to

50 cm. After that, the reading is accurate with ±5 cm error. This shows that the sensor can

be used to measure the obstacle’s distance accurately up to 50 cm. At 0 cm, the distance

measured is at 76 cm. However, this will not affect the robot’s movement since there will be

a fixed distance between the robot and the obstacles when the robot stops moving.

50

Figure 4.7: Accuracy of Ultrasonic Sensor from 0 to 400 cm

Graph in Figure 4.7 shows that from 100 to 400 cm, the measurements reading is 5

cm less than the actual distance. However, this will not matter as long as the robot is able to

detect long ranged obstacle to adjust the approaching speed.

4.2.2 Closed Loop Test of Ultrasonic Sensor and Motor Speed Control Using Fuzzy

Logic Controller

In this experiment, the data is graphed in a scattered manner to generate the

characteristic of the FLC system used.

51

Figure 4.8: Behavior Characteristic of the FLC System

By comparing the graph in Figure 4.8 with the expected behavior in Figure, we can

see a similarity on which the speed will increased when the distance is increasing. This also

shows the ability of the robot to decrease its approaching speed as it is getting nearer to an

obstacle.

4.2.3 Heading Selection

In this experiment, the distance measured are graphed to see the characteristic of the

surrounding 180° area in front of the LIDAR sensor and the top three heading with the

furthest distance is evaluated to choose the possible alternative route.

52

Figure 4.9: Distance Reading for 180° Area

From the graph in Figure 4.9, it is shown that the LIDAR system detects a presence

of obstacle obstacle from 50° to 110° heading. This shows that the system is able to detect

the obstacle that is below 60 cm.

Table 4.1: Evaluation Results of Possible Alternative Route Heading

Possible Alternative

Route Heading (°)

Average Distance

Reading for 20° Around

Heading (cm)

Safety Threshold State

40 162.6 Not safe

180 534.8 Safe

30 170.2 Not Safe

In Table 4.1, the chosen possible alternative route is at 40° heading since it is the

furthest and is deemed safe for the 20° around that direction.

53

4.3 Experiment 3: Designing Motion Control for Uneven Terrain

In this section, the measurements of the robot’s pitch orientation, obstacle distance,

and time taken to cover a distance of 100 cm is graphed to observe its characteristic on

different terrains.

4.3.1 Tiles Surface

Figure 4.10: Characteristic Behavior of FLC System Used on Tiles Surface.

On tiles surface, the pitch orientation remains the same after reaching the steady state

reading at 5 seconds. However, the distance reading and the output motor speed signal drops

at at 3.4 seconds and 4.2 seconds. This is due to when the robot interacts with the grooves

between the tiles, the ultrasonic sensor is pointer downward for a moment causing a decrease

in the reading and the output signal. This shows that the robot is able to response to sudden

appearance of obstacles while on smooth surface.

54

The highest output speed signal is 159 while the lowest output speed signal is 92.

The time taken for the robot to move 100 cm forward is approximately 6.8 seconds which is

lower than the time taken in Experiment 1. This is due to the additional ultrasonic sensor

input to the FLC system causing it to have a more constricting rule.

4.3.2 Asphalt Surface

Figure 4.11: Characteristic Behavior of FLC System Used on Asphalt

Surface

On asphalt surface, after reaching a steady state reading at 4 seconds, a slight

variation of the pitch orientation can be seen occurring due to the slight irregularity of the

asphalt surface. A drop in distance reading can be seen at 2.2 seconds, 4.6 seconds, and 6.2

seconds due to the sensor pointing downward for a moment during the slight irregularity.

However, only the latter two are compensated since the IMU sensor reading reach a steady

state at 4 seconds. This shows how the robot is able to adjust the output motor speed signal

to compensate for two kind of errors occurring simultaneously.

55

4.3.3 Rocky Surface

Figure 4.12: Characteristic Behavior of FLC System Used on Rocky

Surface

On a rocky surface, the pitch reading from the IMU sensor shows the irregularity of

the surface fluctuating as the reading reaches its steady state. A drop in the distance reading

can be seen at 5.5 seconds which shows that the robot detects a sudden presence of obstacle

when the robot is overcoming a slight incline. This is compensated by the FLC system by

decreasing the output speed signal to 41. The robot takes 8.3 seconds to cover a distance of

100 cm on rocky surface. For most of the time, the output speed signal stays around 122

which cause the robot to move 100 cm forward slower than on asphalt and tiles surface.

56

4.3.4 Hill Surface

Figure 4.13: Characteristic Behavior of FLC System Used on Hill Surface

On hill surface, the pitch orientation reading starts to decrease at 1.8 seconds and

increased back at 8.3 second. The distance reading started at a low value before climbing up

as the pitch reading decreased and decreased again as the pitch reading increased. This shows

that the robot started to climb the hill at 1.8 seconds and took 6.5 seconds to overcome the

hill. During the climb, the output motor speed signal is maintained around 100 which helps

maintain the torque of the robot’s motor. During the declining surface, the output motor

speed signal can be seen decreasing to avoid the robot from descending too fast. At 10.1

seconds and above, the output speed stays at 122 since the robot has reached the top of the

surface.

57

4.3.5 Overall Behavior of FLC System

The readings of distance, pitch orientation and speed for each surface are collected

and graph to observe its overall behavior.

Figure 4.14: Overall Behavior of The MISO FLC System

By comparing the behavior graphed on Figure 4.14 to the expected behavior graphed

in Figure, we can see that there are a lot of similarity to the behavior. When the distance

increase, and the pitch is on the straight orientation, the output speed signal increased while

when the distance increase, and the pitch is on the below 40°, the output speed signal

maintains around 120.

This shows that the FLC system successfully creates a motion controller that can

control the speed of the robot according to its surrounding as expected in the design of the

system. However, since the readings are not taken to the full range of the inputs, only half

of the behavior is can be graphed and compared.

58

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In a conclusion, by combining information of the surface orientation and obstacle

detection, it is possible to create sufficient fuzzy rules to develop a good motion controller.

The methods used to collect data information on each area of study can be categorized as the

simplest and cost effective for this project since even the sensors used are not more than 50

Malaysian Ringgit.

The IMU sensor used is the simplest method to get the orientation of the robot.

Although it is still prone to noise and drift problems if used for a long time, through the

experiment done in this project, the sensor can be said to have successfully help the robot to

measure the surface orientation thus achieving the first objective.

The 180 degrees LIDAR sensor system consisting of a servo motor and an ultrasonic

sensor helps the robot control its approaching speed and choose the best alternative route

when being confronted with an obstacle which achieved the second objective. Although it

takes a long time to for the sensor to scan for obstacle and may decrease the overall

performance of the mobile robot.

Lastly, the motion controller developed using Fuzzy Logic Controller was able to

help the robot adapt to its surrounding successfully with only motor speed control as its

output. This shows that the concept proposed for building the Motion Controller is

achievable thus achieving the third objective. However, this does not include the heading

selection since the combination of all programming code is more than the Arduino board’s

memory can handle.

59

5.2 Future Works

For future improvements, the accuracy of the surface orientation measurements

needs to be improved since in this project, drift and noise can occur when the sensor is used

for a long time. The LIDAR coding needs to be redesign since there is a problem with time

execution of the coding where the size of the code exceeds the memory of the Arduino board.

A new body design is also needed since the current body actually gives a big disadvantage

to the robot especially when turning or rotating.

60

REFERENCES

[1] A. S. Andreyev and O. A. Peregudova, “The motion control of a wheeled mobile

robot,” J. Appl. Math. Mech., vol. 79, no. 4, pp. 316–324, 2015.

[2] C. A. Berry, Mobile robotics for multidisciplinary study, vol. 3, no. 1. 2012.

[3] B. Puskas and Z. Rajnai, “Requirements of the Installation of the Critical

Informational Infrastructure and Its Management,” Interdiscip. Descr. Complex

Syst., vol. 13, no. 1, pp. 41–49, 2015.

[4] O. Mokhiamar and S. Amine, “Lateral motion control of skid steering vehicles using

full drive-by-wire system,” Alexandria Eng. J., vol. 56, no. 4, pp. 383–394, 2017.

[5] V. Yerubandi, Y. M. Reddy, and M. V. K. Reddy, “Navigation system for an

autonomous robot using fuzzy logic,” vol. 5, no. 2, pp. 5–8, 2015.

[6] J. Clark and R. Fierro, “Mobile robotic sensors for perimeter detection and

tracking,” ISA Trans., vol. 46, no. 1, pp. 3–13, 2007.

[7] H. Li and A. V. Savkin, “An algorithm for safe navigation of mobile robots by a

sensor network in dynamic cluttered industrial environments,” Robot. Comput.

Integr. Manuf., vol. 54, no. March 2017, pp. 65–82, 2018.

[8] M. Duguleana and G. Mogan, “Neural networks based reinforcement learning for

mobile robots obstacle avoidance,” Expert Syst. Appl., vol. 62, pp. 104–115, 2016.

[9] H. Gao et al., “Sinkage definition and visual detection for planetary rovers wheels

on rough terrain based on wheel–soil interaction boundary,” Rob. Auton. Syst., vol.

98, no. June 2005, pp. 222–240, 2017.

[10] N. H. Singh and K. Thongam, “Mobile Robot Navigation Using Fuzzy Logic in

Static Environments,” Procedia Comput. Sci., vol. 125, pp. 11–17, 2018.

[11] A. Zdešar, S. Blažic, and G. Klančar, “Engineering Education in Wheeled Mobile

Robotics,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 12173–12178, 2017.

[12] I. Matraji, A. Al-Durra, A. Haryono, K. Al-Wahedi, and M. Abou-Khousa,

“Trajectory tracking control of Skid-Steered Mobile Robot based on adaptive

Second Order Sliding Mode Control,” Control Eng. Pract., vol. 72, no. October

2017, pp. 167–176, 2018.

61

[13] S. Noga, “Kinematics and dynamics of some selected two-wheeled mobile robots,”

Arch. Civ. Mech. Eng., vol. 6, no. 3, pp. 55–70, 2006.

[14] N. Leena and K. K. Saju, “Modelling and Trajectory Tracking of Wheeled Mobile

Robots,” Procedia Technol., vol. 24, pp. 538–545, 2016.

[15] H.R. Everett, SensorsForMobileRobots book. CRC Press, 1995.

[16] J. Candiotti et al., “Design and evaluation of a seat orientation controller during

uneven terrain driving,” Med. Eng. Phys., vol. 38, no. 3, pp. 241–247, 2016.

[17] V. P. Eathakota, A. K. Singh, and K. Madhava Krishna, “Two models of force

actuator based active suspension mechanisms for mobility on uneven terrain,” Acta

Astronaut., vol. 67, no. 9–10, pp. 1233–1247, 2010.

[18] P. Skrzypczyński, “Genetic algorithm based learning in a fuzzy logic mobile robot

controller,” IFAC Proc. Vol., vol. 36, no. 17, pp. 503–508, 2003.

[19] S. B. Mane and S. Vhanale, “Real time obstacle detection for mobile robot

navigation using stereo vision,” Int. Conf. Comput. Anal. Secur. Trends, CAST 2016,

pp. 637–642, 2017.

[20] B. Bovcon, R. Mandeljc, J. Perš, and M. Kristan, “Stereo obstacle detection for

unmanned surface vehicles by IMU-assisted semantic segmentation,” Rob. Auton.

Syst., vol. 104, pp. 1–13, 2018.

[21] Y. Wang and R. Rajamani, “Direction cosine matrix estimation with an inertial

measurement unit,” Mech. Syst. Signal Process., vol. 109, pp. 268–284, 2018.

[22] B. Anoohya B and R. Padhi, “Trajectory Tracking of Autonomous Mobile Robots

Using Nonlinear Dynamic Inversion,” IFAC-PapersOnLine, vol. 51, no. 1, pp. 202–

207, 2018.

[23] I. Carlucho, M. De Paula, S. A. Villar, and G. G. Acosta, “Incremental Q-learning

strategy for adaptive PID control of mobile robots,” Expert Syst. Appl., vol. 80, pp.

183–199, 2017.

[24] L. Chun-rui, K. Li-jun, Q. Qing-xing, M. De-bing, L. Quan-ming, and X. Gang,

“The numerical analysis of borehole blasting and application in coal mine roof-

weaken,” Procedia Earth Planet. Sci., vol. 1, no. 1, pp. 451–459, 2009.

[25] O. Yazdanbakhsh and S. Dick, “A systematic review of complex fuzzy sets and

logic,” Fuzzy Sets Syst., vol. 338, pp. 1–22, 2018.

[26] P. Reignier, “Fuzzy logic techniques for mobile robot obstacle avoidance,” Rob.

62

Auton. Syst., vol. 12, no. 3–4, pp. 143–153, 1994.

[27] S. Parasuraman, “Sensor fusion for mobile robot navigation: Fuzzy Associative

Memory,” Procedia Eng., vol. 41, no. Iris, pp. 251–256, 2012.

63

APPENDICES

APPENDIX A EXPERIMENT 1 OPEN LOOP TEST RESULTS

Angle (°) Accelerometer

(°)

Gyroscope

(°)

Complementary

Filter (°)

0 0.22 3.6 0.68

10 10.65 15.95 10.1

20 20.29 28.9 20.15

30 30.7 40.43 30.15

40 41.8 52.33 40.98

50 50.54 61.53 50.61

60 59.72 72.2 60.55

70 70.38 80.95 70.05

80 80.32 91.51 80.54

90 90.05 100.94 90.1

100 101.15 111.65 100.86

110 110.89 122.18 110.8

120 120.23 131.19 120.1

130 130.61 141.89 130.4

140 139.06 151.75 140.5

150 150.31 162.14 150.57

160 160.14 171.76 160.5

170 171.2 185.09 170.92

180 173.27 195.77 173.3

APPENDIX B EXPERIMENT 1 CLOSE LOOP RESULT FOR TILES SURFACE

No of reading, n Pitch of robot (°) Speed of motor

(PWM)

Time taken (s)

1 18.17 86 0.133

2 32.74 107 0.256

3 44.35 127 0.378

4 53.69 138 0.501

5 61.11 133 0.624

6 67.16 139 0.747

7 71.89 148 0.871

8 75.74 154 0.994

9 78.75 157 1.117

10 81.36 158 1.241

11 83.33 157 1.363

12 85 156 1.486

64

13 86.26 156 1.609

14 87.3 156 1.733

15 88.01 156 1.856

16 88.52 155 1.979

17 89.09 155 2.103

18 89.71 155 2.226

19 89.87 155 2.349

20 90.16 252 2.471

21 90.3 250 2.594

22 90.49 248 2.718

23 90.72 245 2.841

24 90.79 244 2.964

25 90.72 245 3.087

26 90.93 242 3.21

27 90.87 243 3.334

28 91.2 239 3.457

APPENDIX C EXPERIMENT 1 CLOSE LOOP RESULT FOR ASPHALT

SURFACE

No of reading, n Pitch of robot (°) Speed of motor

(PWM)

Time taken (s)

1 76.24 154 0.994

2 79.6 158 1.117

3 82.02 157 1.241

4 83.96 157 1.363

5 85.31 156 1.486

6 86.4 156 1.609

7 87.6 156 1.733

8 88.3 156 1.856

9 89.55 155 1.979

10 89.98 155 2.102

11 91.46 236 2.226

12 91.45 236 2.349

13 92.35 229 2.471

14 92.28 229 2.594

15 92.15 230 2.717

16 92.24 230 2.841

17 91.98 232 2.964

18 91.79 233 3.087

19 91.49 236 3.21

20 91.42 237 3.333

65

21 91.2 239 3.456

22 91.9 232 3.579

23 91.62 235 3.702

24 92.31 229 3.825

25 92.19 230 3.948

APPENDIX D EXPERIMENT 1 CLOSE LOOP RESULT FOR ROCKY SURFACE

No of reading, n Pitch of robot (°) Speed of motor

(PWM)

Time taken (s)

1 18.63 89 0.133

2 33.5 109 0.256

3 45.09 128 0.378

4 54.41 139 0.501

5 61.85 132 0.624

6 69.61 144 0.748

7 73.66 151 0.871

8 76.28 154 0.994

9 82.44 157 1.117

10 83.18 157 1.241

11 84.66 156 1.363

12 88.45 155 1.486

13 86.61 156 1.609

14 87.94 156 1.733

15 90.58 247 1.856

16 88.99 155 1.979

17 90.5 248 2.102

18 91.18 239 2.225

19 88.91 155 2.349

20 90.89 243 2.471

21 91.35 237 2.594

22 89.45 155 2.717

23 92.78 227 2.841

24 91.74 234 2.964

25 91.15 240 3.087

26 93.76 222 3.21

27 91.2 239 3.333

28 91.98 232 3.457

29 92.69 227 3.579

30 89.96 155 3.702

31 91.11 240 3.825

32 92.23 230 3.948

66

33 88.25 156 4.072

34 90.54 247 4.195

35 91.31 238 4.318

36 89.25 155 4.441

37 92.53 228 4.563

38 91.49 236 4.687

39 92.02 231 4.81

40 93.78 222 4.933

41 90.45 248 5.056

42 91.27 238 5.179

43 92.8 226 5.302

44 89.8 155 5.426

45 90.99 242 5.549

46 91.23 239 5.671

47 88.26 156 5.794

48 91.43 236 5.917

49 91.51 236 6.041

50 90.28 250 6.164

51 92.96 226 6.287

52 92.04 231 6.41

53 91.06 241 6.533

54 93.71 222 6.657

55 91.94 232 6.779

56 90.94 242 6.902

57 93.96 221 7.025

58 92.2 230 7.148

59 90.48 248 7.271

60 93.87 222 7.395

APPENDIX E EXPERIMENT 1 CLOSE LOOP RESULT FOR HILL SURFACE

No of reading, n Pitch of robot (°) Speed of motor

(PWM)

Time taken (s)

1 18.16 89 0.133

2 32.87 107 0.256

3 44.52 127 0.378

4 54 139 0.501

5 61.4 132 0.624

6 66.82 139 0.747

7 71.1 147 0.871

8 74.14 152 0.994

9 76.73 155 1.117

67

10 78.48 157 1.241

11 79.29 158 1.363

12 79.81 158 1.486

13 79.91 158 1.61

14 79.86 158 1.733

15 79.18 158 1.856

16 78.08 157 1.98

17 77.37 156 2.103

18 76.48 155 2.226

19 74.46 152 2.35

20 74.02 151 2.472

21 74.68 152 2.595

22 76.04 154 2.718

23 73.98 151 2.842

24 73.64 151 2.965

25 77.15 156 3.089

26 75.77 154 3.212

27 71.86 148 3.335

28 71.91 148 3.459

29 71.58 148 3.581

30 67.91 141 3.704

31 69.97 145 3.827

32 70.15 145 3.951

33 66.95 139 4.074

34 66.06 137 4.197

35 69.52 144 4.321

36 65.75 136 4.444

37 65.11 135 4.567

38 68.74 142 4.689

39 66.31 138 4.812

40 64.75 135 4.936

41 64.94 135 5.059

42 69.88 145 5.182

43 67.89 141 5.306

44 64.04 134 5.429

45 68.46 142 5.552

46 67.9 141 5.675

47 65.33 136 5.798

48 68.19 141 5.921

49 70.92 147 6.044

50 66.66 138 6.167

51 69.91 145 6.291

68

52 71.17 147 6.414

53 67.44 140 6.537

54 67.83 141 6.661

55 67.08 139 6.784

56 63.52 133 6.906

57 66.82 139 7.029

58 67.76 140 7.153

59 66.49 138 7.276

60 67.45 140 7.399

61 68.03 141 7.522

62 69.04 143 7.646

63 68.95 143 7.769

64 69.21 143 7.891

65 71.05 147 8.015

66 73.81 151 8.138

67 74.42 152 8.261

68 74.84 153 8.385

69 75.51 154 8.508

70 75.73 154 8.631

71 75.75 154 8.755

72 75.68 154 8.878

73 75.97 154 9

74 76.88 155 9.124

75 79.04 158 9.247

76 82.62 157 9.37

77 86.73 156 9.494

78 87.03 156 9.617

79 88.22 156 9.74

APPENDIX F EXPERIMENT 2 OPEN LOOP RESULT

Actual

Distance

(cm)

Calculated

Echo

Duration

(µs)

Echo Duration Reading (µs)

Calculated

Distance

(cm) 1 2 3 Average Standard

Deviation

0 0 13435
7

13429
2

13444
5

134364.6
6

-134364.66 35.8

1 58.30904 292 317 317 308.66 14.43375673 5.29

2 116.61808 174 174 174 174 0 2.98

3 174.92711 201 201 201 201 0 3.44

4 233.23615 253 253 226 244 15.58845727 4.18

5 291.54519 314 314 313 313.66 0.577350269 5.37

69

6 349.85423 372 371 368 370.33 2.081665999 6.35

7 408.16327 420 420 420 420 0 7.2

8 466.4723 502 478 475 485 14.79864859 8.31

9 524.78134 533 533 533 533 0 9.14

10 583.09038 593 594 594 593.66 0.577350269 10.18

11 641.39942 648 649 648 648.33 0.577350269 11.11

12 699.70845 706 731 730 722.33 14.15391583 12.38

13 758.01749 761 786 787 778 14.73091986 13.34

14 816.32653 840 839 867 848.66 15.88500341 14.55

15 874.63557 899 898 900 899 1 15.41

16 932.94461 955 956 931 947.33 14.15391583 16.24

17 991.25364 986 1013 987 995.33 15.30795 17.06

18 1049.56268 1046 1045 1046 1045.66 0.577350269 17.93

19 1107.87172 1126 1126 1125 1125.66 0.577350269 19.3

20 1166.18076 1184 1185 1183 1184 1 20.3

21 1224.4898 1266 1265 1239 1256.66 15.30795 21.55

22 1282.79883 1344 1319 1344 1335.66 14.43375673 22.9

23 1341.10787 1329 1353 1354 1345.33 14.15391583 23.07

24 1399.41691 1414 1439 1415 1422.66 14.15391583 24.39

25 1457.72595 1476 1497 1474 1482.33 12.7410099 25.42

26 1516.03499 1485 1485 1484 1484.66 0.577350269 25.46

27 1574.34402 1600 1622 1598 1606.66 13.31665624 27.55

28 1632.65306 1610 1609 1609 1609.33 0.577350269 27.6

29 1690.9621 1692 1693 1695 1693.33 1.527525232 29.04

30 1749.27114 1728 1729 1727 1728 1 29.63

31 1807.58017 1756 1782 1779 1772.33 14.2243922 30.39

32 1865.88921 1829 1806 1808 1814.33 12.7410099 31.11

33 1924.19825 1918 1917 1919 1918 1 32.89

34 1982.50729 1948 1950 1949 1949 1 33.42

35 2040.81633 1980 2005 1979 1988 14.73091986 34.09

36 2099.12536 2088 2114 2086 2096 15.62049935 35.94

37 2157.4344 2125 2126 2126 2125.66 0.577350269 36.45

38 2215.74344 2195 2217 2194 2202 13 37.76

39 2274.05248 2230 2231 2256 2239 14.73091986 38.39

40 2332.36152 2308 2310 2284 2300.66 14.46835628 39.45

41 2390.67055 2367 2368 2391 2375.33 13.57694124 40.73

42 2448.97959 2426 2453 2403 2427.33 25.02665246 41.62

43 2507.28863 2458 2483 2458 2466.33 14.43375673 42.29

44 2565.59767 2534 2560 2559 2551 14.73091986 43.74

45 2623.90671 2614 2591 2589 2598 13.89244399 44.55

46 2682.21574 2652 2650 2652 2651.33 1.154700538 45.47

47 2740.52478 2680 2706 2704 2696.66 14.46835628 46.24

70

48 2798.83382 2767 2768 2766 2767 1 47.45

49 2857.14286 2822 2823 2825 2823.33 1.527525232 48.42

50 2915.4519 2878 2853 2877 2869.33 14.15391583 49.2

51 2973.76093 2908 2933 2909 2916.66 14.15391583 50.02

52 3032.06997 2998 2997 2974 2989.66 13.57694124 51.27

53 3090.37901 3051 3026 3050 3042.33 14.15391583 52.17

54 3148.68805 3092 3117 3114 3107.66 13.65039682 53.29

55 3206.99708 3170 3195 3169 3178 14.73091986 54.5

56 3265.30612 3231 3230 3231 3230.66 0.577350269 55.4

57 3323.61516 3286 3311 3262 3286.33 24.50170062 56.36

58 3381.9242 3303 3304 3329 3312 14.73091986 56.8

59 3440.23324 3329 3330 3406 3355 44.17012565 57.53

60 3498.54227 3433 3469 3444 3448.66 18.44812547 59.14

61 3556.85131 3469 3471 3470 3470 1 59.51

62 3615.16035 3528 3527 3551 3535.33 13.57694124 60.63

63 3673.46939 3584 3609 3585 3592.66 14.15391583 61.61

64 3731.77843 3667 3644 3667 3659.33 13.27905619 62.75

65 3790.08746 3721 3698 3697 3705.33 13.57694124 63.54

66 3848.3965 3755 3756 3782 3764.33 15.30795 64.55

67 3906.70554 3810 3835 3836 3827 14.73091986 65.63

68 3965.01458 3900 3899 3950 3916.33 29.16047553 67.16

69 4023.32362 3931 3976 3954 3953.66 22.50185178 67.8

70 4081.63265 3909 3931 3909 3916.33 12.70170592 67.16

71 4139.94169 4016 4066 4040 4040.66 25.00666578 69.29

72 4198.25073 4096 4072 4098 4088.66 14.46835628 70.12

73 4256.55977 4156 4180 4158 4164.66 13.31665624 71.42

74 4314.8688 4188 4211 4164 4187.66 23.50177298 71.81

75 4373.17784 4285 4312 4263 4286.66 24.54248018 73.51

76 4431.48688 4311 4338 4389 4346 39.61060464 74.53

77 4489.79592 4244 4270 4436 4316.66 104.1601331 74.03

78 4548.10496 4459 4508 4483 4483.33 24.50170062 76.88

79 4606.41399 4440 4490 4463 4464.33 25.02665246 76.56

80 4664.72303 4563 4513 4540 4538.66 25.02665246 77.83

81 4723.03207 4673 4649 4700 4674 25.51470164 80.15

82 4781.34111 4611 4635 4660 4635.33 24.50170062 79.49

83 4839.65015 4695 4745 4721 4720.33 25.00666578 80.95

84 4897.95918 4808 4784 4807 4799.66 13.57694124 82.31

85 4956.26822 4834 4856 4835 4841.66 12.42309677 83.03

86 5014.57726 4992 5041 4971 5001.33 35.92121008 85.77

87 5072.8863 4903 4880 4881 4888 13 83.82

88 5131.19534 5058 5031 5058 5049 15.58845727 86.59

89 5189.50437 5145 5094 5074 5104.33 36.61056314 87.53

71

90 5247.81341 5166 5142 5115 5141 25.51470164 88.16

91 5306.12245 5247 5223 5200 5223.33 23.50177298 89.58

92 5364.43149 5251 5179 5060 5163.33 96.45897228 88.55

93 5422.74052 5183 5307 5257 5249 62.38589584 90.02

94 5481.04956 5232 5395 5373 5333.33 88.44395589 91.46

95 5539.3586 4984 5007 4982 4991 13.89244399 85.59

96 5597.66764 5453 5429 5031 5304.33 237.0175802 90.96

97 5655.97668 5534 5557 5558 5549.66 13.57694124 95.17

98 5714.28571 5558 5572 5549 5559.66 11.59022577 95.34

99 5772.59475 5060 4986 4960 5002 51.88448708 85.78

100 5830.90379 5785 5760 5758 5767.66 15.0443788 98.91

150 8746.35 8561 8557 8557 8558.33 188.02 146.77

200 11661.8 11405 11422 11374 11400.33 261.47 195.51

250 14577.25 14369 14342 14341 14350.66 226.59 246.11

300 17492.71 17283 17284 17340 17302.33 190.38 296.73

350 20408.16 20113 20147 20216 20158.66 249.5 345.72

400 23323.61 23024 23137 23087 23082.66 240.95 395.86

APPENDIX G EXPERIMENT 2 CLOSE LOOP TEST RESULT

No Distance (cm) Motor Speed

(PWM)

1 209 251

2 209 251

3 209 251

4 209 251

5 207 251

6 207 251

7 209 251

8 208 251

9 208 251

10 208 251

11 208 251

12 209 251

13 209 251

14 208 251

15 211 251

16 211 251

17 210 251

18 210 251

72

19 209 251

20 211 251

21 209 251

22 209 251

23 211 251

24 210 251

25 209 251

26 210 251

27 208 251

28 209 251

29 210 251

30 209 251

31 252 253

32 174 246

33 175 246

34 175 246

35 126 207

36 141 227

37 130 213

38 124 204

39 126 207

40 132 216

41 129 212

42 124 204

43 123 202

44 128 210

45 127 209

46 127 209

47 128 210

48 128 210

49 128 210

50 127 209

51 115 185

52 125 205

53 118 192

54 124 204

55 124 204

56 175 246

57 289 253

58 212 251

59 209 251

60 209 251

73

61 210 251

62 210 251

63 209 251

64 209 251

65 210 251

66 210 251

67 211 251

68 211 251

69 248 253

70 173 246

71 125 205

72 124 204

73 115 185

74 114 183

75 110 176

76 111 177

77 110 176

78 111 177

79 110 176

80 112 179

81 113 181

82 110 176

83 111 177

84 111 177

85 113 181

86 61 92

87 59 92

88 58 92

89 59 92

90 109 174

91 109 174

92 123 202

93 115 185

94 113 181

95 112 179

96 112 179

97 112 179

98 122 200

99 215 252

100 214 252

101 212 251

74

102 214 252

103 213 251

104 211 251

105 209 251

106 209 251

107 209 251

108 210 251

109 210 251

110 211 251

111 210 251

112 210 251

113 210 251

114 210 251

115 211 251

116 210 251

117 212 251

118 210 251

119 215 252

120 211 251

121 212 251

122 211 251

123 210 251

124 210 251

125 211 251

126 212 251

127 211 251

128 211 251

129 212 251

130 211 251

131 212 251

132 211 251

133 211 251

134 211 251

135 212 251

136 211 251

137 211 251

138 212 251

139 210 251

140 211 251

141 211 251

142 211 251

143 212 251

75

144 213 251

145 211 251

146 211 251

147 210 251

148 213 251

149 211 251

150 212 251

151 211 251

152 214 252

153 215 252

154 123 202

155 124 204

156 124 204

157 112 179

158 110 176

159 112 179

160 111 177

161 111 177

162 0 89

163 61 92

164 59 92

165 57 92

166 71 90

167 56 92

168 62 91

169 61 92

170 109 174

171 109 174

172 122 200

173 114 183

174 110 176

175 111 177

176 110 176

177 112 179

178 112 179

179 112 179

180 125 205

181 123 202

182 112 179

183 123 202

184 112 179

185 124 204

76

186 126 207

187 125 205

188 124 204

189 125 205

190 115 185

191 26 89

192 25 89

193 23 89

194 23 89

195 22 89

196 22 89

197 22 89

198 23 89

199 23 89

200 24 89

201 24 89

202 24 89

203 24 89

204 24 89

205 78 89

206 24 89

207 31 90

208 26 89

209 29 89

210 27 89

211 27 89

212 28 89

213 29 89

214 28 89

215 31 90

216 30 90

217 29 89

218 28 89

219 27 89

220 26 89

221 24 89

222 26 89

223 27 89

224 27 89

225 27 89

226 29 89

227 29 89

77

228 106 170

229 30 90

230 30 90

231 31 90

232 106 170

233 49 92

234 109 174

235 107 171

236 106 170

237 106 170

238 108 173

239 150 234

240 155 238

241 152 236

242 156 238

243 152 236

244 157 239

245 155 238

246 164 242

247 175 246

248 156 238

249 130 213

250 153 236

251 131 215

252 157 239

253 151 235

254 151 235

255 25 89

256 25 89

257 23 89

258 23 89

259 25 89

260 27 89

261 24 89

262 24 89

263 25 89

264 34 90

265 20 89

266 19 89

267 22 89

268 20 89

269 21 89

78

270 21 89

271 57 92

272 19 89

273 15 89

274 15 89

275 15 89

276 15 89

277 14 89

278 14 89

279 14 89

280 50 92

281 53 92

282 52 92

283 7 89

284 7 89

285 6 89

286 6 89

287 8 89

288 9 89

289 13 89

290 13 89

291 82 89

292 22 89

293 25 89

294 22 89

295 22 89

296 20 89

297 17 89

298 16 89

299 15 89

300 16 89

301 18 89

302 127 209

303 126 207

304 126 207

305 125 205

306 114 183

307 113 181

308 114 183

309 119 194

310 114 183

311 119 194

79

312 117 189

313 125 205

314 126 207

315 131 215

316 128 210

317 127 209

318 152 236

319 174 246

320 175 246

321 210 251

322 208 251

323 207 251

324 208 251

325 209 251

326 208 251

327 210 251

328 208 251

329 207 251

330 211 251

331 210 251

332 176 246

333 174 246

334 154 237

335 130 213

336 128 210

337 126 207

338 127 209

339 127 209

340 131 215

341 124 204

342 118 192

343 116 187

344 118 192

345 117 189

346 118 192

347 117 189

348 118 192

349 128 210

350 120 196

351 117 189

352 117 189

353 116 187

80

354 117 189

355 116 187

356 129 212

357 126 207

358 127 209

359 174 246

360 177 247

361 210 251

362 209 251

363 208 251

364 207 251

365 208 251

366 207 251

367 207 251

368 208 251

369 207 251

370 207 251

371 207 251

372 207 251

373 207 251

374 208 251

375 207 251

376 207 251

377 208 251

378 160 241

379 158 239

380 208 251

381 157 239

382 209 251

383 209 251

384 208 251

385 207 251

386 207 251

387 208 251

388 209 251

389 208 251

390 208 251

391 209 251

392 208 251

393 209 251

394 209 251

395 209 251

81

396 188 249

397 189 249

398 184 248

399 174 246

400 145 230

401 128 210

402 126 207

403 129 212

404 126 207

405 126 207

406 128 210

407 132 216

408 129 212

409 132 216

410 126 207

411 121 198

412 119 194

413 118 192

414 117 189

415 118 192

416 119 194

417 117 189

418 118 192

419 117 189

420 117 189

421 118 192

422 118 192

423 128 210

424 116 187

425 126 207

426 129 212

427 117 189

428 122 200

429 117 189

430 116 187

431 118 192

432 42 91

433 117 189

434 119 194

435 25 89

436 21 89

437 21 89

82

438 20 89

439 20 89

440 20 89

441 21 89

442 116 187

443 129 212

444 128 210

445 117 189

446 116 187

447 121 198

448 117 189

449 118 192

450 118 192

451 118 192

452 119 194

453 118 192

454 121 198

455 127 209

456 129 212

457 174 246

458 209 251

459 210 251

460 207 251

461 208 251

462 208 251

463 209 251

464 208 251

465 208 251

466 208 251

467 209 251

468 209 251

469 208 251

470 208 251

471 208 251

472 208 251

473 208 251

474 208 251

475 208 251

476 208 251

477 209 251

478 211 251

479 213 251

83

480 171 245

481 126 207

482 0 89

483 114 183

484 118 192

485 114 183

486 112 179

487 116 187

488 112 179

489 115 185

490 116 187

491 113 181

492 124 204

493 114 183

494 112 179

APPENDIX H EXPERIMENT 2 HEADING SELECTION SCAN RESULT

Heading Direction (°) Distance (cm)

0 82

10 81

20 73

30 324

40 329

50 44

60 43

70 42

80 42

90 42

100 42

110 43

120 71

130 68

140 69

150 68

160 72

170 275

180 327

APPENDIX I EXPERIMENT 3 FLC BEHAVIOR ON TILES SURFACE

84

No Pitch (°) Distance (cm) Motor Speed

(PWM)

Time Taken

(s)

1 16.89 123 92 0.319

2 30.57 122 98 0.629

3 41.49 121 131 0.94

4 50.43 122 131 1.25

5 57.27 121 133 1.56

6 62.77 122 132 1.87

7 66.92 121 144 2.181

8 70.59 123 153 2.491

9 73.4 122 159 2.801

10 75.87 122 159 3.111

11 77.85 113 147 3.421

12 79.3 123 159 3.732

13 80.55 121 159 4.042

14 81.68 122 158 4.353

15 82.22 121 158 4.663

16 82.99 122 158 4.973

17 83.39 108 134 5.282

18 83.84 123 157 5.593

19 84.08 121 158 5.903

20 84.48 122 158 6.213

21 84.52 121 158 6.523

22 84.74 122 158 6.834

APPENDIX JEXPERIMENT 3 FLC BEHAVIOR ON ASPHALT SURFACE

No Pitch (°) Distance (cm) Motor Speed

(PWM)

Time Taken

(s)

1 16.87 122 92 0.319

2 30.8 122 100 0.629

3 41.49 121 131 0.94

4 50.37 122 131 1.25

5 57.87 121 132 1.56

6 63.77 121 135 1.87

7 67.4 113 146 2.18

8 71.39 122 156 2.49

9 74.21 122 159 2.8

10 76.89 122 159 3.11

11 77.8 121 159 3.421

12 80.12 122 159 3.732

85

13 79.8 122 159 4.042

14 80.19 122 158 4.353

15 81.63 113 147 4.662

16 82.69 121 158 4.972

17 82.44 122 158 5.282

18 84.76 121 158 5.594

19 83.31 121 158 5.904

20 85.27 114 150 6.213

21 83.62 121 158 6.523

22 85.49 122 158 6.834

APPENDIX K EXPERIMENT 3 FLC BEHAVIOR ON ROCKY SURFACE

No Pitch (°) Distance (cm) Motor Speed

(PWM)

Time Taken

(s)

1 17.13 124 92 0.319

2 30.67 123 98 0.629

3 41.8 121 131 0.94

4 52.18 122 133 1.25

5 60.87 122 130 1.56

6 62.87 122 132 1.87

7 64.72 121 138 2.181

8 73.3 123 159 2.491

9 73.41 122 159 2.801

10 75.03 122 159 3.111

11 82.19 121 158 3.423

12 82.64 122 158 3.733

13 77.01 121 159 4.043

14 81.68 122 158 4.354

15 88.24 122 158 4.664

16 87.7 122 158 4.974

17 84.56 121 158 5.284

18 82.99 41 91 5.587

19 86.53 122 158 5.898

20 89.97 122 158 6.208

21 88.46 122 158 6.519

22 89.14 123 157 6.83

23 95.19 121 198 7.14

24 91.88 122 200 7.45

25 95.29 121 198 7.76

26 95.43 122 200 8.071

86

27 92.17 123 202 8.381

APPENDIX L EXPERIMENT 3 FLC BEHAVIOR ON HILL SURFACE

No Pitch (°) Distance (cm) Motor Speed

(PWM)

Time Taken

(s)

1 16.72 73 90 0.315

2 31.42 72 90 0.62

3 42.44 72 91 0.925

4 52.2 72 90 1.23

5 57.48 71 90 1.536

6 62.23 72 90 1.84

7 57.27 74 90 2.145

8 53.01 77 89 2.45

9 49.85 80 89 2.756

10 49.09 87 133 3.064

11 49.06 89 133 3.373

12 49.74 92 133 3.681

13 49.38 93 133 3.989

14 49.17 100 133 4.298

15 48.4 101 132 4.606

16 47.24 99 130 4.916

17 48.25 103 131 5.225

18 49.25 101 132 5.534

19 49.81 104 133 5.842

20 49.69 98 133 6.152

21 49.55 106 132 6.461

22 49.76 100 133 6.77

23 49.36 108 131 7.079

24 49.53 100 133 7.388

25 49.43 100 133 7.697

26 49.83 103 133 8.006

27 52.99 101 137 8.314

28 53.68 105 137 8.624

29 56.89 105 136 8.933

30 65.2 102 130 9.242

31 77.49 93 123 9.55

32 83.27 80 89 9.857

33 83.9 90 122 10.165

34 83.8 91 122 10.473

35 83.88 91 122 10.781

87

36 83.97 91 122 11.089

37 83.98 91 122 11.398

38 84 91 122 11.706

39 83.96 91 122 12.014

40 84.03 90 122 12.322

41 84.12 91 122 12.632

42 84.17 91 122 12.94

43 84.13 91 122 13.248

44 84.15 91 122 13.556

45 84.21 91 122 13.864

46 84.25 91 122 14.173

47 84.34 90 122 14.481

APPENDIX M MAIN PROGRAMMING CODE FOR MOTION CONTROL

#include <Servo.h>

#include "L298N.h"

#include "HCSR04.h"

#include "ADXL345.h"

#include "ITG3200.h"

#include "fis_header.h"

Motor ML(6,7,8);

Motor MR(13,12,11);

HCSR04 UsSen(9,10);

Servo servo;

//---IMU Raw Variable

double Ax, Ay, Az;

float Gx, Gy, Gz, LGx, LGy;

unsigned long lastTime;

float dt;

//--- Filtered Variable

float AngleX, AngleY, AngleZ;

float LastAngleX, LastAngleY, LastAngleZ;

//---- HCSR04 variable

int dist;

long pulse;

//--- Motor variable

int p; // motor speed in pwm pulses 0-255

88

// Number of inputs to the fuzzy inference system

const int fis_gcI = 2;

// Number of outputs to the fuzzy inference system

const int fis_gcO = 1;

// Number of rules to the fuzzy inference system

const int fis_gcR = 15;

FIS_TYPE g_fisInput[fis_gcI];

FIS_TYPE g_fisOutput[fis_gcO];

void setup()

{

 ADXL.init();

 ITG.init();

 servo.attach(3);

 servo.write(80);

 Serial.begin(9600);

 LastAngleX = 0.0;

 LastAngleY = 0.0;

 LastAngleZ = 0.0;

 lastTime = millis();

 LGy=90;

}

void loop()

{

 AngleRead(AngleX, AngleY, AngleZ);

 UsSen.scan(dist,pulse);

 //---Update Fuzzy Logic input/output data

 g_fisInput[0] = AngleX;

 g_fisInput[1] = dist;

 g_fisOutput[0] = 0;

 if (dist>=60)

 {

 fis_evaluate();

 p = g_fisOutput[0]; // Set output value: Speed

 if(p>=255)

 {

 p=255;

 }

 else if(p<=80)

89

 {

 p=80;

 }

 }

 else if(dist<60)

 {

 p=0;

 //do LIDAR scanning subroutine

 }

 ML.CCW(p);

 MR.CCW(p);

 Serial.print(AngleX);

 Serial.print("\t");

 Serial.print(dist);

 Serial.print("\t");

 Serial.println(p);

}

void AngleRead(float &X, float &Y, float &Z)

{

 ADXL.scan(Ax, Ay, Az);

 ITG.scan(Gx,Gy,Gz,dt,lastTime);

 X = 0.8*(LastAngleX+Gy)+0.2*(Ax);

 Y = 0.8*(LastAngleX+Gx)+0.2*(Ay);

 Z = 0.8*(LastAngleX+Gz)+0.2*(Az);

 LastAngleX = X;

 LastAngleY = Y;

 LastAngleZ = Z;

}

//***

// Support functions for Fuzzy Inference System

//***

// Z-shaped Member Function

FIS_TYPE fis_zmf(FIS_TYPE x, FIS_TYPE* p)

{

 FIS_TYPE a = p[0], b = p[1];

 FIS_TYPE m = ((a + b) / 2.0);

 FIS_TYPE t = (b - a);

 if (x <= a) return (FIS_TYPE) 1;

 if (x <= m)

90

 {

 t = (x - a) / t;

 return (FIS_TYPE) (1.0 - (2.0 * t * t));

 }

 if (x <= b)

 {

 t = (b - x) / t;

 return (FIS_TYPE) (1.0 - (2.0 * t * t));

 }

 return (FIS_TYPE) 0;

}

// Trapezoidal Member Function

FIS_TYPE fis_trapmf(FIS_TYPE x, FIS_TYPE* p)

{

 FIS_TYPE a = p[0], b = p[1], c = p[2], d = p[3];

 FIS_TYPE t1 = ((x <= c) ? 1 : ((d < x) ? 0 : ((c != d) ? ((d - x) / (d - c)) : 0)));

 FIS_TYPE t2 = ((b <= x) ? 1 : ((x < a) ? 0 : ((a != b) ? ((x - a) / (b - a)) : 0)));

 return (FIS_TYPE) min(t1, t2);

}

// S-Shaped membership function

FIS_TYPE fis_smf(FIS_TYPE x, FIS_TYPE* p)

{

 FIS_TYPE a = p[0], b = p[1];

 FIS_TYPE m = ((a + b) / 2.0);

 FIS_TYPE t = (b - a);

 if (a >= b) return (FIS_TYPE) (x >= m);

 if (x <= a) return (FIS_TYPE) 0;

 if (x <= m)

 {

 t = (x - a) / t;

 return (FIS_TYPE) (2.0 * t * t);

 }

 if (x <= b)

 {

 t = (b - x) / t;

 return (FIS_TYPE) (1.0 - (2.0 * t * t));

 }

 return (FIS_TYPE) 1;

}

// Generalized Bell Member Function

FIS_TYPE fis_gbellmf(FIS_TYPE x, FIS_TYPE* p)

{

 FIS_TYPE a = p[0], b = p[1], c = p[2];

 FIS_TYPE t = (x - c) / a;

91

 if ((t == 0) && (b == 0)) return (FIS_TYPE) 0.5;

 if ((t == 0) && (b < 0)) return (FIS_TYPE) 0;

 return (FIS_TYPE) (1.0 / (1.0 + pow(t, b)));

}

FIS_TYPE fis_min(FIS_TYPE a, FIS_TYPE b)

{

 return min(a, b);

}

FIS_TYPE fis_max(FIS_TYPE a, FIS_TYPE b)

{

 return max(a, b);

}

FIS_TYPE fis_array_operation(FIS_TYPE *array, int size, _FIS_ARR_OP pfnOp)

{

 int i;

 FIS_TYPE ret = 0;

 if (size == 0) return ret;

 if (size == 1) return array[0];

 ret = array[0];

 for (i = 1; i < size; i++)

 {

 ret = (*pfnOp)(ret, array[i]);

 }

 return ret;

}

//***

// Data for Fuzzy Inference System

//***

// Pointers to the implementations of member functions

_FIS_MF fis_gMF[] =

{

 fis_zmf, fis_trapmf, fis_smf, fis_gbellmf

};

// Count of member function for each Input

int fis_gIMFCount[] = { 5, 3 };

// Count of member function for each Output

int fis_gOMFCount[] = { 3 };

92

// Coefficients for the Input Member Functions

FIS_TYPE fis_gMFI0Coeff1[] = { 20, 90 };

FIS_TYPE fis_gMFI0Coeff2[] = { 60, 80, 100, 120 };

FIS_TYPE fis_gMFI0Coeff3[] = { 90, 160 };

FIS_TYPE fis_gMFI0Coeff4[] = { 30, 50, 70, 90 };

FIS_TYPE fis_gMFI0Coeff5[] = { 90, 110, 130, 150 };

FIS_TYPE* fis_gMFI0Coeff[] = { fis_gMFI0Coeff1, fis_gMFI0Coeff2,

fis_gMFI0Coeff3, fis_gMFI0Coeff4, fis_gMFI0Coeff5 };

FIS_TYPE fis_gMFI1Coeff1[] = { 20, 85 };

FIS_TYPE fis_gMFI1Coeff2[] = { 31.26, 3.278, 85 };

FIS_TYPE fis_gMFI1Coeff3[] = { 85, 150 };

FIS_TYPE* fis_gMFI1Coeff[] = { fis_gMFI1Coeff1, fis_gMFI1Coeff2, fis_gMFI1Coeff3

};

FIS_TYPE** fis_gMFICoeff[] = { fis_gMFI0Coeff, fis_gMFI1Coeff };

// Coefficients for the Output Member Functions

FIS_TYPE fis_gMFO0Coeff1[] = { 80, 167.5 };

FIS_TYPE fis_gMFO0Coeff2[] = { 40, 2, 167.5 };

FIS_TYPE fis_gMFO0Coeff3[] = { 167.5, 255 };

FIS_TYPE* fis_gMFO0Coeff[] = { fis_gMFO0Coeff1, fis_gMFO0Coeff2,

fis_gMFO0Coeff3 };

FIS_TYPE** fis_gMFOCoeff[] = { fis_gMFO0Coeff };

// Input membership function set

int fis_gMFI0[] = { 0, 1, 2, 1, 1 };

int fis_gMFI1[] = { 0, 3, 2 };

int* fis_gMFI[] = { fis_gMFI0, fis_gMFI1};

// Output membership function set

int fis_gMFO0[] = { 0, 3, 2 };

int* fis_gMFO[] = { fis_gMFO0};

// Rule Weights

FIS_TYPE fis_gRWeight[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

// Rule Type

int fis_gRType[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

// Rule Inputs

int fis_gRI0[] = { 2, 3 };

int fis_gRI1[] = { 4, 3 };

int fis_gRI2[] = { 5, 3 };

int fis_gRI3[] = { 3, 3 };

int fis_gRI4[] = { 1, 3 };

int fis_gRI5[] = { 2, 2 };

int fis_gRI6[] = { 4, 2 };

int fis_gRI7[] = { 5, 2 };

int fis_gRI8[] = { 1, 2 };

93

int fis_gRI9[] = { 3, 2 };

int fis_gRI10[] = { 2, 1 };

int fis_gRI11[] = { 4, 1 };

int fis_gRI12[] = { 5, 1 };

int fis_gRI13[] = { 1, 1 };

int fis_gRI14[] = { 3, 1 };

int* fis_gRI[] = { fis_gRI0, fis_gRI1, fis_gRI2, fis_gRI3, fis_gRI4, fis_gRI5, fis_gRI6,

fis_gRI7, fis_gRI8, fis_gRI9, fis_gRI10, fis_gRI11, fis_gRI12, fis_gRI13, fis_gRI14 };

// Rule Outputs

int fis_gRO0[] = { 3 };

int fis_gRO1[] = { 2 };

int fis_gRO2[] = { 2 };

int fis_gRO3[] = { 1 };

int fis_gRO4[] = { 1 };

int fis_gRO5[] = { 2 };

int fis_gRO6[] = { 2 };

int fis_gRO7[] = { 2 };

int fis_gRO8[] = { 1 };

int fis_gRO9[] = { 1 };

int fis_gRO10[] = { 1 };

int fis_gRO11[] = { 1 };

int fis_gRO12[] = { 1 };

int fis_gRO13[] = { 1 };

int fis_gRO14[] = { 1 };

int* fis_gRO[] = { fis_gRO0, fis_gRO1, fis_gRO2, fis_gRO3, fis_gRO4, fis_gRO5,

fis_gRO6, fis_gRO7, fis_gRO8, fis_gRO9, fis_gRO10, fis_gRO11, fis_gRO12,

fis_gRO13, fis_gRO14 };

// Input range Min

FIS_TYPE fis_gIMin[] = { 0, 0 };

// Input range Max

FIS_TYPE fis_gIMax[] = { 180, 250 };

// Output range Min

FIS_TYPE fis_gOMin[] = { 20 };

// Output range Max

FIS_TYPE fis_gOMax[] = { 300 };

//***

// Data dependent support functions for Fuzzy Inference System

//***

FIS_TYPE fis_MF_out(FIS_TYPE** fuzzyRuleSet, FIS_TYPE x, int o)

{

 FIS_TYPE mfOut;

 int r;

94

 for (r = 0; r < fis_gcR; ++r)

 {

 int index = fis_gRO[r][o];

 if (index > 0)

 {

 index = index - 1;

 mfOut = (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]);

 }

 else if (index < 0)

 {

 index = -index - 1;

 mfOut = 1 - (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]);

 }

 else

 {

 mfOut = 0;

 }

 fuzzyRuleSet[0][r] = fis_min(mfOut, fuzzyRuleSet[1][r]);

 }

 return fis_array_operation(fuzzyRuleSet[0], fis_gcR, fis_max);

}

FIS_TYPE fis_defuzz_centroid(FIS_TYPE** fuzzyRuleSet, int o)

{

 FIS_TYPE step = (fis_gOMax[o] - fis_gOMin[o]) / (FIS_RESOLUSION - 1);

 FIS_TYPE area = 0;

 FIS_TYPE momentum = 0;

 FIS_TYPE dist, slice;

 int i;

 // calculate the area under the curve formed by the MF outputs

 for (i = 0; i < FIS_RESOLUSION; ++i){

 dist = fis_gOMin[o] + (step * i);

 slice = step * fis_MF_out(fuzzyRuleSet, dist, o);

 area += slice;

 momentum += slice*dist;

 }

 return ((area == 0) ? ((fis_gOMax[o] + fis_gOMin[o]) / 2) : (momentum / area));

}

//***

// Fuzzy Inference System

//***

void fis_evaluate()

{

95

 FIS_TYPE fuzzyInput0[] = { 0, 0, 0, 0, 0 };

 FIS_TYPE fuzzyInput1[] = { 0, 0, 0 };

 FIS_TYPE* fuzzyInput[fis_gcI] = { fuzzyInput0, fuzzyInput1, };

 FIS_TYPE fuzzyOutput0[] = { 0, 0, 0 };

 FIS_TYPE* fuzzyOutput[fis_gcO] = { fuzzyOutput0, };

 FIS_TYPE fuzzyRules[fis_gcR] = { 0 };

 FIS_TYPE fuzzyFires[fis_gcR] = { 0 };

 FIS_TYPE* fuzzyRuleSet[] = { fuzzyRules, fuzzyFires };

 FIS_TYPE sW = 0;

 // Transforming input to fuzzy Input

 int i, j, r, o;

 for (i = 0; i < fis_gcI; ++i)

 {

 for (j = 0; j < fis_gIMFCount[i]; ++j)

 {

 fuzzyInput[i][j] =

 (fis_gMF[fis_gMFI[i][j]])(g_fisInput[i], fis_gMFICoeff[i][j]);

 }

 }

 int index = 0;

 for (r = 0; r < fis_gcR; ++r)

 {

 if (fis_gRType[r] == 1)

 {

 fuzzyFires[r] = FIS_MAX;

 for (i = 0; i < fis_gcI; ++i)

 {

 index = fis_gRI[r][i];

 if (index > 0)

 fuzzyFires[r] = fis_min(fuzzyFires[r], fuzzyInput[i][index - 1]);

 else if (index < 0)

 fuzzyFires[r] = fis_min(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]);

 else

 fuzzyFires[r] = fis_min(fuzzyFires[r], 1);

 }

 }

 else

 {

 fuzzyFires[r] = FIS_MIN;

 for (i = 0; i < fis_gcI; ++i)

 {

 index = fis_gRI[r][i];

 if (index > 0)

 fuzzyFires[r] = fis_max(fuzzyFires[r], fuzzyInput[i][index - 1]);

 else if (index < 0)

 fuzzyFires[r] = fis_max(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]);

96

 else

 fuzzyFires[r] = fis_max(fuzzyFires[r], 0);

 }

 }

 fuzzyFires[r] = fis_gRWeight[r] * fuzzyFires[r];

 sW += fuzzyFires[r];

 }

 if (sW == 0)

 {

 for (o = 0; o < fis_gcO; ++o)

 {

 g_fisOutput[o] = ((fis_gOMax[o] + fis_gOMin[o]) / 2);

 }

 }

 else

 {

 for (o = 0; o < fis_gcO; ++o)

 {

 g_fisOutput[o] = fis_defuzz_centroid(fuzzyRuleSet, o);

 }

 }

}

APPENDIX N HEADER FILE FOR FLC INFERENCE SYSTEM

#define FIS_TYPE float

#define FIS_RESOLUSION 101

#define FIS_MIN -3.4028235E+38

#define FIS_MAX 3.4028235E+38

typedef FIS_TYPE(*_FIS_MF)(FIS_TYPE, FIS_TYPE*);

typedef FIS_TYPE(*_FIS_ARR_OP)(FIS_TYPE, FIS_TYPE);

typedef FIS_TYPE(*_FIS_ARR)(FIS_TYPE*, int, _FIS_ARR_OP);

APPENDIX O SOURCE CODE FOR ACCELEROMETER

#include "Arduino.h"

#include "I2C.h"

#include "ADXL345.h"

void ADXL::init()

{

97

 I2C.init();

 //--- Configure Accelerometer ADXL345

 I2C.write(ADXAddress, BW_Rate, 0x0A); //Set Sampling rate to 100Hz

 I2C.write(ADXAddress, Power_Register, 8); //Enabling measuring mode

 delay(10);

}

void ADXL::scan(double &X, double &Y, double &Z)

{

 int xRaw, yRaw, zRaw;

 double Rx, Ry, Rz, Racc, AccScale = 256.0;

 xRaw = I2C.read(ADXAddress, ACC_XOUT_H)<<8; // X-axis

 xRaw |= I2C.read(ADXAddress, ACC_XOUT_L);

 yRaw = I2C.read(ADXAddress, ACC_YOUT_H)<<8; // Y-Axis

 yRaw |= I2C.read(ADXAddress, ACC_YOUT_L);

 zRaw = I2C.read(ADXAddress, ACC_ZOUT_H)<<8; // Z-Axis

 zRaw |= I2C.read(ADXAddress, ACC_ZOUT_L);

 //---convert to g

 Rx = xRaw/AccScale;

 Ry = yRaw/AccScale;

 Rz = zRaw/AccScale;

 //---find angle between resultant and axes

 Racc = sqrt(pow(Rx,2) + pow(Ry,2) + pow(Rz,2));

 X = (acos(Rx/Racc)*180)/3.14;

 Y = (acos(Ry/Racc)*180)/3.14;

 Z = (acos(Rz/Racc)*180)/3.14;

}

APPENDIX P HEADER FILE FOR ACCELEROMETER

#ifndef ADXL345_h

#define ADXL345_h

#include "Arduino.h"

//--- Accelerometer Register Addresses

#define ADXAddress 0x53 // Sensor address

#define BW_Rate 0x2C // bandwith rate table 7 datasheet

#define Power_Register 0x2D // power control

#define ACC_XOUT_L 0x32 // Xout low

#define ACC_XOUT_H 0x33 // Xout high

#define ACC_YOUT_L 0x34 // Yout low

#define ACC_YOUT_H 0x35 // Yout high

98

#define ACC_ZOUT_L 0x36 // Zout low

#define ACC_ZOUT_H 0x37 // Zout high

class ADXL

{

 public:

 void init();

 void scan(double &X, double &Y, double &Z);

 private:

};

extern ADXL ADXL;

#endif

APPENDIX Q SOURCE CODE FOR ULTRASONIC

#include "Arduino.h"

#include "HCSR04.h"

HCSR04::HCSR04(int trig, int echo)

{

 pinMode(trig, OUTPUT);

 pinMode(echo, INPUT);

 _trig = trig;

 _echo = echo;

}

void HCSR04::scan(int &dist, long &pulse)

{

 digitalWrite(_trig, LOW);

 delayMicroseconds(2);

 digitalWrite(_trig, HIGH);

 delayMicroseconds(10);

 digitalWrite(_trig, LOW);

 pulse = pulseIn(_echo, HIGH);

 dist= pulse*0.034/2;

}

APPENDIX R HEADER FILE FOR ULTRASONIC

99

#ifndef HCSR04_h

#define HCSR04_h

#include "Arduino.h"

class HCSR04

{

 public:

 HCSR04(int trig, int echo);

 void scan(int &dist, long &pulse);

 private:

 int _trig;

 int _echo;

};

#endif

APPENDIX S SOURCE CODE FOR I2C

#include "I2C.h"

#include "Arduino.h"

#include <Wire.h>

void I2C::init()

{

 Wire.begin();

}

void I2C::write(char address, char registerAddress, char data)

{

 Wire.beginTransmission(address);

 Wire.write(registerAddress);

 Wire.write(data);

 Wire.endTransmission();

}

unsigned char I2C::read(char address, char registerAddress)

{

 unsigned char data=0;

 Wire.beginTransmission(address);

 Wire.write(registerAddress);

 Wire.endTransmission();

 Wire.beginTransmission(address);

 Wire.requestFrom(address, 1);

100

 if(Wire.available())

 {

 data = Wire.read();

 }

 Wire.endTransmission();

 return data;

}

APPENDIX T HEADER FILE FOR I2C

#ifndef I2C_h

#define I2C_h

#include "Arduino.h"

class I2C

{

 public:

 void init();

 void write(char address, char registerAddress, char data);

 unsigned char read(char address, char registerAddress);

};

extern I2C I2C;

#endif

APPENDIX U SOURCE CODE FOR GYROSCOPE

#include "Arduino.h"

#include "I2C.h"

#include "ITG3200.h"

void ITG::init()

{

 I2C.init();

 //--- Configure Accelerometer ADXL345

 char DLPF_CFG = 1;

 char DLPF_FS_SEL = 3<<3;

101

 I2C.write(ITGAddress, DLPF_FS, (DLPF_FS_SEL|DLPF_CFG)); //Set the gyroscope

Full Scale Selection, Low Pass Filter and Internal Rate Sampling Configuration

 I2C.write(ITGAddress, SMPLRT_DIV, 9); //Set the sample rate divider to 100 hz

}

void ITG::scan(float &Gx, float &Gy, float &Gz, float &dt, unsigned long &lT)

{

 int Gx_Raw, Gy_Raw, Gz_Raw;

 float RxGyro, RyGyro, RzGyro, GyroFactor = 14.375;

 unsigned long now;

 //--- Gyroscope Reading

 Gx_Raw =I2C.read(ITGAddress, GYRO_XOUT_H)<<8; // X-axis

 Gx_Raw |=I2C.read(ITGAddress, GYRO_XOUT_L);

 Gy_Raw =I2C.read(ITGAddress, GYRO_YOUT_H)<<8; // y-axis

 Gy_Raw |=I2C.read(ITGAddress, GYRO_YOUT_L);

 Gz_Raw =I2C.read(ITGAddress, GYRO_ZOUT_H)<<8; // z-axis

 Gz_Raw |=I2C.read(ITGAddress, GYRO_ZOUT_L);

 now = millis();

 dt = now - lT;

 lT = now;

 //--- Compute Angle rate data from Gyroscope

 Gx = ((Gx_Raw/GyroFactor)*dt)/1000;

 Gy = ((Gy_Raw/GyroFactor)*dt)/1000;

 Gz = ((Gz_Raw/GyroFactor)*dt)/1000;

}

APPENDIX V HEADER FILE FOR GYROSCOPE

#ifndef ITG3200_h

#define ITG3200_h

#include "Arduino.h"

//--- Gyroscope ITG 3200 Register Addresses

#define ITGAddress 0x68

#define SMPLRT_DIV 0x15

#define DLPF_FS 0x16

#define GYRO_XOUT_H 0x1D

#define GYRO_XOUT_L 0x1E

#define GYRO_YOUT_H 0x1F

#define GYRO_YOUT_L 0x20

#define GYRO_ZOUT_H 0x21

#define GYRO_ZOUT_L 0x22

class ITG

102

{

 public:

 void init();

 void scan(float &Gx, float &Gy, float &Gz, float &dt, unsigned long &lT);

 private:

};

extern ITG ITG;

#endif

APPENDIX W SOURCE CODE FOR MOTOR CONTROLLER

#include "Arduino.h"

#include "L298N.h"

Motor::Motor(int IN1,int IN2,int PWM)

{

 pinMode(IN1, OUTPUT);

 pinMode(IN2, OUTPUT);

 pinMode(PWM, OUTPUT);

 _in1 = IN1;

 _in2 = IN2;

 _pwm = PWM;

}

void Motor::CW(int Speed)

{

 digitalWrite(_in1, HIGH);

 digitalWrite(_in2, LOW);

 analogWrite(_pwm, Speed);

}

void Motor::CCW(int Speed)

{

 digitalWrite(_in1, LOW);

 digitalWrite(_in2, HIGH);

 analogWrite(_pwm, Speed);

}

APPENDIX X HEADER FILE FOR MOTOR CONTROLLER

103

#ifndef L298N_h

#define L298N_h

#include "Arduino.h"

class Motor

{

 public:

 Motor(int IN1,int IN2,int PWM);

 void CW(int Speed);

 void CCW(int Speed);

 private:

 i

t _in1;

 int _in2;

 int _pwm;

};

#endif

