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ABSTRACT 

Since the mobile robotic platform was first introduced in the ’50s, it was a goal among 

researchers to develop an algorithm for the platform to be capable of generating a collision-

free path for the robot to follow. Nowadays, the application of the algorithm can be seen in 

most mobile robots anywhere from the autonomous cleaning robot called Roomba, to the 

exploration rover Curiosity on Mars, and even the autonomous self-driving Tesla car. 

However, the most algorithm has been designed for robots navigating on a smooth surface. 

The problem with a rough surface is that the robot will experience slippage and lose some 

control of itself. Other than that, an obstacle such as hills and holes cannot be seen by 

standard mobile robots. Therefore, the purpose of this project is to develop a motion 

controller of a mobile robot specifically for uneven terrain. In this project, an Inertial 

Measurement Unit sensor is used together with a 180 degrees LIDAR system to detect the 

terrain surface orientation under the robot and possible obstacles in front of the robot. The 

speed of the robot is controlled based on the surface roughness for torque control and in the 

case when the robot meets an obstacle, it can determine the distance between itself and the 

obstacle to control it’s approaching speed. This helps give time to the robot to find an 

alternative path around the obstacle. Experimental methods are used to collect the 

information needed and it is graphed for different types of surface including tiles, asphalt, 

rocks, and hills. 
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ABSTRAK 

Sejak platform robot bergerak pertama kali diperkenalkan pada tahun 50’an, telah menjadi 

impian para pengkaji untuk membangunkan sebuah algoritma untuk platform robot bergerak 

agar robot tersebut dapat mencari laluan bebas perlanggaran secara sendiri. Pada masa kini, 

pengapklikasian algoritma ini dapat dilihat pada kebanyakan robot bergerak seperti robot 

pembersih yang bernama Roomba, rover explorasi Curiosity yang berada di Mars, dan juga 

kereta pandu sendiri Tesla. Akan tetapi, algoritma ini hanya digunakan untuk robot yang 

bergerak di permukaan yang rata. Permukaan yang tidak rata akan menyebabkan robot 

mengalami kelicinan pada tayar yang akan menyebabkan robot hilang kawalan semasa 

bergerak. Selain itu, halangan-halangan seperti bukit dan lubang tidak dapat dikesan oleh 

robot biasa. Oleh itu, tujuan projek ini adalah untuk membina pengawal gerakan untuk robot 

bergerak pada permukaan yang tidak rata. Dalam projek ini, sebuah sensor Inertial 

Measurement Unit digunakan bersama sistem LIDAR 180 darjah bagi membaca bentuk 

permukaan di bawah robot dan mengesan halangan-halangan di depan robot. Kelajuan robot 

ini dikawal berdasarkan permukaan tanah untuk mengawal tork robot. Sekiranya terdapat 

halangan di hadapan, robot tersebut dapat mengenalpasti jarak halangan tersebut untuk 

mengawal kelajuannya ketika menghampiri halangan tersebut. Ini dapat memberi masa bagi 

membantu robot tersebut mencari laluan alternatif lain untuk melepasi halangan tersebut. 

Kaedah eksperimen digunakan dalam projek ini bagi mengumpul maklumat yang diperlukan 

dan maklumat itu akan disusun dalam bentuk graf bagi setiap permukaan seperti jubin, asfalt, 

batu dan kawasan berbukit. 
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INTRODUCTION 

1.1 Overview 

This chapter will present the project background on the motion control design of a 

mobile robot for uneven terrain, motivation for the project, problem statement that assist in 

making the proposal of the project, objectives that acts as a guideline throughout the project, 

scopes that shows the limitation of the project in terms of outcome, and the outline of the 

project. 

1.2 Project Background  

Nowadays, the application of the motion control system can be found in almost every 

type of machine and robots due to its ability to control moving parts of the system in a 

controlled or adaptive manner[1]. This control system can be either an open loop or closed 

loop system and is usually comprise of a motion controller, amplifiers, sensors, transducers, 

and actuators. A typical open loop system can be seen in a fan control where the controller 

sends a command signal through the amplifiers to the actuator, which is the motor, to rotate 

the fan[2]–[4]. In a closed loop system, a measuring device or sensor is added to the system 

to measure the output of the system and send it back to the controller[2], [4]. The motion 

controller will compare the measurement from the sensor with the desired outcome and 

compensate for any error by adjusting the command signal before sending it to the actuator 

again. 

 An Autonomous Mobile Robot (AMR) is one of the mobile robots that use the 

motion control system to help it navigate autonomously around obstacles in order to get from 

one point to another. This is achieved by getting information about the surrounding 

environment such as obstacle and position, to generate the appropriate behavior to overcome 
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the obstacle[5]. This has further helped in making it easier for an exploration mission to be 

done autonomously on an unknown environment such as underwater or other planets[6]. 

Such features also make an AMR the most innovative solution for the market, especially in 

the industrial manufacturing field where the AMR is used to transport materials 

automatically from one station to another without intervention from a human[7]. This has 

since increased the work efficiency of the manufacturing process since the transportation of 

materials is a repetitive job in which human will grow tired over time.  

In this project, a motion controller is designed to help a mobile robot navigate 

autonomously on an uneven surface. Information about the surface orientation and presence 

of obstacles is gathered through the sensors and sent to the motion controller where it will 

be used to compute the appropriate speed of the robot using fuzzy logic approach, and the 

possible heading of the robot to avoid the obstacle. Analysis on the input and output of the 

motion controller will be done to view the behavior of the motion controller on different 

types of terrains.  

1.3 Motivation 

 Robots were first developed to do simple but repetitive physical task in the 

industrial section such as polishing steel tubes and cutting a metal sheet. As the field of 

robotics started to advance, the field of artificial intelligent (AI) began to emerge and started 

contributing more to the advancement of robotics. AI helps robots to make simple decisions 

based on the input information from sensors. Soon, more types of robots are being developed 

for a different specific purpose and each purpose has its own form with its own mechanical 

limitation such as workspace area. 

Mobile robotic platform was first introduced back in the ’50s and since then, it has 

been the main endeavor for every researcher to develop a motion control system for a mobile 

robotic platform capable of generating a collision-free path for the robot to follow [8]. To 

date, the application of the motion control system can be seen in most mobile robots 

anywhere from the autonomous cleaning robot called Roomba, to the exploration rover 
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Curiosity on Mars, and even the autonomous self-driving Tesla car. It has successfully made 

advancement for the realm of technology.  

Most of the mobile robot was using motion control system for navigation on a smooth 

surface and most of it is using tires as the mode of locomotion. Although mobile robots for 

uneven terrain has already been developing, most of it uses the concept of legged robot as it 

can overcome obstacle without any difficulty. Only a few Wheeled Mobile Robots (WMR) 

have been developed with the purpose of navigating on rough terrains such as the exploration 

rover Curiosity and Opportunity. Although they work great in navigating on a rough surface, 

it still cost a lot to develop them. WMR concept has been never been a favorite for rough 

terrain exploration due to its limitation which gives a disadvantage on uneven terrain. 

1.4 Problem Statement 

The use of wheels as a mode of locomotion usually gives a huge disadvantage to a 

mobile robot when navigating on uneven terrain. this is because of tire slip which is the loss 

of traction due to surface irregularity, tire sinkage [9], or skidding. This can prevent the 

mobile robot from moving any further than its current position. In order to overcome this, 

the traction of the wheels needed to be increased by adjusting the speed of the wheel since 

the speed of the wheel will affect the time of contact between the wheels and the ground 

surface which then affects the wheels traction.  

 The second problem is that in order for a mobile robot to move around 

autonomously, the robot must have the ability to read its environment in order to make the 

optimum decision on how to navigate[10], [11]. Since most WMR is designed to navigate 

on smooth surface, there are less information about the method to measure the orientation of 

an uneven terrain. Since surface orientation and obstacles are the basic information needed 

to allow a mobile robot to navigate on uneven surface, a method for measuring the surface 

orientation, in terms of X and Y plane, and obstacles is needed to allow for uneven terrain 

navigation. 

 Lastly, a mobile robot must process the information about its surrounding and its 

own state so that it can make the necessary action that can help it navigate on uneven terrain. 
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Therefore, a suitable motion controller needs to be developed for helping the robot 

processing all the information efficiently[12]. 

1.5 Objective 

These objectives will serve as a guideline throughout this project. In order to call the 

project successful, all of these project must be achieved.  

The first objective is to develop a method to detect irregular surface. For a motion 

controller to be developed for navigating on uneven terrain, the robot must know the 

characteristic of the terrain in order for it to adapt or react properly. 

Next, the second objective is to develop a method to detect obstacle. Other than 

ground surface, detecting obstacle is also important as it can stops a robot from navigating 

or cause damage if the robot bumbs into obstacle. By detecting it, all concequences 

mentioned can be avoided 

Lastly, to design a motion controller of mobile robot for uneven terrain. Having a 

motion control that can handle more than one input will be very helful to a mobile robot 

since it helps the robot to react fast. 

 

1.6 Scope 

• Using a Differential drive type of Wheeled Mobile Robot 

• Navigating around uneven terrain such as asphalts, rocks and hills 

• Using Arduino Uno or Arduino Mega board as microcontroller 

• Uses two 60:1 gear ratio DC motor to drive the robot. 

• GY-85 9DOF IMU Sensor to measure robot’s orientation 
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• HCSR04 Ultrasonic sensor with up to 400 cm range of detection 

• 180 Degree Servo Motor 
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LITERATURE REVIEW 

2.1 Overview 

This chapter describes some important aspect in designing a motion control for 

mobile robot so that a suitable motion control can be applied specifically on uneven terrain. 

The first part in this chapter is the description of types of mobile robots exist nowadays. The 

second part describes the types of sensors that can be used to detect and measure the robot’s 

environment, which includes obstacle (steep hill, wall, objects), orientation, and moving 

speed. The last part in this section describes the type of common control system which can 

be used to design a motion controller. 

2.2 Types of Mobile Robots 

Mobile robots are robotic system which has the capability to move around its 

environment[13]. The mobile robot can either be controlled manually or move around in an 

autonomous manner. Nowadays, there are a variety of mobile robot designs which can be 

categorized into wheeled mobile robot and legged mobile robot. 

2.2.1 Wheeled Mobile Robot  

Wheeled Mobile Robot (WMR), as the name implied, is a robot that uses motorizes 

wheel to navigate around a surface. An example of WMR can be seen in Figure 2.1. WMR 

can be further classified into several categories depending on their arrangement of driving 

and steering wheel[2], [12], [13]. These categories are differential drive, synchronous drive, 

tricycle drive and car drive[2]. 
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Figure 2.1: Example of Wheeled Mobile Robot 

2.2.1.1 Differential Drive 

 Differential drive is the most common type of WMR due to its simple programming 

and locomotion[2]. It has only two wheels which are driven independently on the same axis 

as shown in Figure 2.2. To control the robot, the speed and the direction of the rotating wheel 

is manipulated so that the robot can move straight, curve, and spin [14]. Table 2.1 shows the 

movement of the robot cause by manipulating each wheel at certain configuration. 

Figure 2.2: Example of Differential Drive Robot 
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Table 2.1: Movement of robot based on wheel's direction configuration 

Speed of each 

wheel (%) 
Direction of each wheel 

Movement 

Left Right Left Right 

100 100 Forward Forward Straight Forward 

100 100 Backward Backward Straight Backward 

100 50 Forward Forward Curve Right 

50 100 Forward Forward Curve Left 

100 100 Forward Backward Spin Right 

100 100 Backward Forward Spin Left 

 However, this configuration comes with an issue which is wheel slipping. This 

problem occurs when the robot is moving on an irregular surface thus causing the robot to 

stall or change its direction. It also can affect the data measurement taken for performance 

testing. Tipping over is also a problem for this configuration due to irregular surface. 

2.2.1.2 Synchronous Drive 

 Synchronous drive is a configuration where all the wheel is always steerable but at 

the same direction all the time as shown in Figure 2.3. The robot moves around without 

changing the direction of its chassis. This allows the robot to navigate in a limited space 

where rotating or making a curve turn is near impossible[2]. While it does reduce the 

possibility of tipping over as seen in differential drive robots, there is also the possibility of 

wheel slippage when there is a large variation on the irregular surface. 

Figure 2.3: Example of Synchronous Drive 
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2.2.1.3 Tricycle Drive 

 A tricycle drive uses three wheels to move around a surface. The first type is having 

two driving rear wheels and 1 steering front wheel while the second type is having a driving 

and steering front wheel and two passive rear wheels[15]. This configuration solves the issue 

with wheel slippage seen on both differential driven and synchronous driven robot[2]. Figure 

2.4 shows an example of tricycle drive. 

 Figure 2.4: Example of Tricycle Drive 

2.2.1.4 Ackermann Steer (Car Drive) 

 The Ackermann Steer configuration has four wheels where the two rear wheel is 

the driving wheel while the front two wheel is the steering wheel[2]. The difference of this 

configuration to the tricycle drive is that it has a link that is connecting the two front wheels 

to allow simultaneous steering for both wheels as shown in Figure 2.5. 
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Figure 2.5: Example of Ackermann Drive 

  The advantage of tricycle and Ackermann drive compare to other configuration is 

that the velocity of the driving wheel is not considered into calculation for driving straight 

[15]. Although the derivation of kinematic model for this configuration is difficult, it is 

suitable for outdoor task that requires traveling over long distance. 

 

2.2.2 Legged Mobile Robot 

 Nowadays, there are more advanced legged mobile robot being developed due to 

its advantage of mobility on rough terrain. The flexibility of the leg helps the robot to easily 

overcome large obstacle[16]. It is known that having more legs allows the robot to be 

balanced at all time than fewer legs due to having a larger base area[17]. However, having 
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this configuration increases the mechanical, electronic and programming complexity as well 

as building cost which is a big disadvantage. Figure 2.6 shows an example of legged mobile 

robot. 

 Figure 2.6: Example of Legged Mobile Robot 

2.3 Type of Sensors 

 Sensors are important in designing a mobile robot as it serves as the eyes and ears 

of a robot. An autonomous mobile robot will take information about the surrounding through 

its sensors and process it to make navigation decision while a manned robot uses the 

information from the sensors for the same purpose and for real time analysis[2]. These 

sensors can be categorized according its purposes which are detecting obstacle, robot’s 

orientation, and robot’s moving speed. 

2.3.1 Sensors for Obstacle Detection 

  Obstacle detection is an important odometry of an autonomous robot. It allows the 

robot to make decision whether to avoid the obstacle or go over it, depending on its 
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capability. Sensors that are suitable for this purpose are ultrasonic sensor, distance infrared 

(IR) sensor, and terrain mapping camera. 

2.3.1.1 Ultrasonic Sensor 

  Ultrasonic sensor utilizes soundwave to measure the distance of an object. The 

sensor transmits an ultrasonic wave and detect the reflected wave from the object. By 

measuring the time taken between the transmitting and receiving of the wave, the sensor can 

determine its distance from the object [6], [18]. Figure 2.7 shows an example of ultrasonic. 

 Figure 2.7: HC-SR04 Ultrasonic Sensor 

2.3.1.2 Distance Infrared (IR) Sensor 

 Distance IR sensor uses the same concept as ultrasonic sensor but with a different 

medium which is light waves. The advantage of IR sensor compared to ultrasonic sensor is 

that it more suitable for close-proximity object detection. Farther object will produce error 

depending on the object surface and orientation [6], [18]. Figure 2.8 shows an example of 

Distance IR sensor. 
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 Figure 2.8: IR Distance Sensor GP2Y0A41SK0F 

2.3.1.3 Camera Sensor 

 The camera technology can actually also be used as an odometry sensor for an 

autonomous mobile robot. By using a stereo camera system, a disparity map can be 

computed from image produce by both camera for object detection. Computer vision method 

is then applied to filter out noises for better object detection [19], [20]. Figure 2.9 shows an 

example of stereo camera system 
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Figure 2.9: Example of Stereo Camera System 

2.3.2 Sensors for Robot Orientation 

 Robot orientation is an important information for an autonomous robot in order for 

the robot to know its heading and direction as well as the state of the robot. Sensors in this 

category must be able to provide information about the pitch, roll, and yaw of the robot. 

Suitable sensors for this purpose are accelerometer, gyroscope, and magnetometer. 

2.3.2.1 Accelerometer 

 An accelerometer measures dynamic and static forces that act upon the sensor on 

three axes. By computing the resultant of a static force, which is the gravity, and using the 

trigonometry equation of a right-angle triangle, the orientation of the robot can be measured. 

However, because this sensor also measures dynamic forces, it is sensitive to vibration and 

mechanical noise, thus producing noise in the measurement[16]. Figure shows an example 

of accelerometer sensor. 
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Figure 2.10: ADXL335 Accelerometer Sensor  

2.3.2.2 Gyroscope 

 A gyroscope measures the angular rate of rotation along 3 axes of the sensor as 

shown in Figure 2.11. To compute the orientation of the robot, the angular rate produced by 

the sensor is multiplied with the time interval between each reading and added to the last 

angle compute. Compared with the accelerometer, gyroscope is less sensitive to mechanical 

noise as it only measures rotation. However, gyroscope has drift problem in which the 

angular rate does not come back to zero-rate when the rotation stops [16]. 

Figure 2.11: L3G4200D Gyroscope Sensor 
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2.3.2.3 Magnetometer 

 A magnetometer is essentially a compass. It measures the magnetic field of its 

surrounding and the earth magnetic field in order to compute the true north heading[15], 

[21]. By having the true north heading as a reference, the robots yaw value can be computed. 

Figure 2.12 shows an example of magnetometer sensor. 

 Figure 2.12: HMC5883L Magnetometer Sensor 

2.3.3 Sensors for Robot Speed 

 For an autonomous mobile robot, controlling its speed is very important in order 

for it to maintain traction on irregular surface by avoiding tire slippage. The sensors that are 

suitable for this purpose is Accelerometer sensor and Optical Encoder for motor, 

2.3.3.1 Accelerometer 

 As mention before, an accelerometer measures the static and dynamic forces act 

upon it. By measuring the acceleration of the mobile robot and multiply it with the interval 

time between each reading, the velocity of the robot can be calculated[16]. 
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2.3.3.2 Optical Encoder 

 An optical encoder measures the speed of the mobile robot by detecting the position 

change of a patterned encoder disc as light passes through it as shown in Figure 2.13. As the 

disc rotates, the position change represents a square wave where after several specific 

wavelengths, 1 rotation of the disc is reached. Using simple equation, the velocity of the 

motor can be computed in the unit of revolution per minute (RPM)[22]. 

Figure 2.13: Example of Optical Encoder Working Principle 

 

2.4 Type of Common Control System 

 A control system is made of subsystem and processes that is assembled with the 

purpose of producing a desired output and performance given specific input. There are two 

most commonly used control system which is the Proportional-Integral-Derivative (PID) 

Controller and Fuzzy Logic Controller. 

2.4.1 Proportional-Integral-Derivative (PID) Controller 
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 A PID controller is a control algorithm that uses three gain coefficients which are 

proportional, integral, and derivative, to tune an output signal in reference with the input 

sensor signal as shown in Figure 2.14. By varying the coefficients, the PID controller can 

produce a desired actuator output signal within a closed loop feedback mechanism. 

However, this method is only available for a Single Input Single Output (SISO) system[15], 

[23], [24]. 

  

Figure 2.14: Typical Block Diagram of PID Controller 

 

2.4.2 Fuzzy Logic Controller (FLC) 

 A fuzzy logic controller is a decision-making method that closely resembles the 

human decision-making skills. It deals with vague and imprecise information by looking at 

the degree of truth rather than the usual true or false Boolean logic. FLC is commonly used 

to handle Multiple Input Single Output (MISO) system only. For a Multiple Input Multiple 
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Output (MISO) system, a Mixed Fuzzy Controller is used where multiple FLC is integrated 

to control the MIMO system[25]–[27]. 

 

2.5 Overall Summary 

Aspects Sub-Aspects Chosen Reasons 

Type of Mobile 

Robots 

Wheeled Mobile 

robot 

Differential Drive Easy to control 

the movement of 

motor 

Type of Sensor 

For Robot 

Orientation 

Accelerometer & 

Gyroscope 

Able to use IMU 

sensor system 

For Obstacle 

Detection 

Ultrasonic Sensor Long ranged 

detection 

Type of common 

Control System 

 
Fuzzy Logic Control Able to use for 

Multiple Input 

Single Output 

(MISO) control 

system 
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METHODOLOGY 

3.1 Overview 

This chapter describes the method and techniques used to design the experiments for 

this project. A good motion control for a mobile robot is designed by collecting vital 

information about the robot’s state and its surrounding and putting it into the control 

algorithm so that the robot can make the optimum decision. The area of study interested in 

mobile robot on uneven terrains are the robot’s orientation, which correspond directly with 

the surface orientation, and unexpected obstacles. This information allows the robot to adapt 

to the environment and navigate around without any difficulty.  

In this project, experimental method is used to collect data on each of the area of 

study. Several different methods are used to obtain each information and an experiment is 

design based on those methods to collect data of each information. Before any experiment 

is done, a mobile robot is designed to help conduct the experiments. Table 3.1 below shows 

the mapping of the designing task and experiments task to the project’s problem statements 

and objectives. 

Table 3.1 Mapping of Tasks to Project's Problem Statements and 

Objectives. 

 

Task Problem 

Statements 

Objectives 

Designing Mobile Robot #      

Experiment 1: Detecting Surface Orientation  #  #   

Experiment 2: Obstacle Detection  #   #  

Experiment 3: Designing Motion Control for 

Uneven Terrain 

  #   # 
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3.2 Project Overview 

Figure 3.1: Project Development Process (Flow Chart). 

3.3 Mobile Robot Design 

The design of the mobile robot has a great effect onto its performance. By designing 

the mobile robot to overcome a problem, it can save a lot of time from having to tune its 

program until the problem resolves. The design of the mobile robot uses 4 wheels as the 

mode of locomotion and the concept of differential drive configuration at the front wheel. 

Since the main problem of this project is tires slip, an absorber is added to each wheel to 

compensate for the tire slip individually. An ultrasonic sensor is placed in the front of the 

robot to detect incoming obstacles from the front. Error! Reference source not found., 

Figure 3.3, and Figure 3.4 below shows the design of the mobile robot used. 
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Figure 3.2: Right Side View of Mobile Robot  

Figure 3.3: Right Side View of Mobile Robot 
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Figure 3.4: Orthographic View of Mobile Robot 

3.4 Experiment 1: Detecting Surface Orientation 

This experiment is designed to collect data on the characteristic of an irregular 

surface based on the changes of the robot’s orientation in terms of pitch and roll. In most 

cases, the mobile robot’s orientation corresponds directly to the surface orientation of a 

terrain, except when tire slip occurred. This information helps the robot to make decision 

based on the characteristic of the terrain.  

The experiment is divided into three parts. The first part is designing the Inertial 

Measurement Unit (IMU) sensor algorithm by obtaining the raw value of the accelerometer 

and gyroscope sensor reading and pass it through a complementary filter to get an accurate 

estimation of the robot’s orientation. The second part is doing an open loop test on the IMU 

sensor by testing the sensor on a rig that changes its orientation around 1 axis. Since the 

changes on the terrain’s surface mostly affects the pitch of the mobile robot, only the angle 

of orientation around Y-axis is taken into consideration. The third part is the integration of 

the IMU sensor and motor speed control of the robot. A FLC system is designed to control 

the motor speed of the robot based on its pitch orientation. The robot is then tested on several 

different type of terrain to evaluate the behavior of the FLC system. 



24 

 

 

For this experiment, a GY-85 9DOF IMU Sensor is used to get values from an 

accelerometer and gyroscope sensor, and the axis frame of the mobile robot is shown in 

Figure 3.5. The pitch reading of the robot is defined as angle of rotation around Y-axis while 

roll reading is defined as the angle of rotation around X-axis. 

Figure 3.5: Axis Frame of The Mobile Robot 

3.4.1 Designing Inertial Measurement Unit (IMU) Sensor’s Algorithm 

Since the accelerometer measures static forces that act upon each axis, the output of 

the accelerometer will show the value of gravity force acting on each axis in the unit LSB. 

To find the orientation of each axis, the raw output value of each axis from the accelerometer 

sensor is first divided with the scale factor as shown in (3.1), (3.2), and (3.3), to get the value 

of the gravity force in the unit ‘g’.  

𝐹𝑥 =
𝐴𝑥𝑅𝑎𝑤

256
 

(3.1) 

𝐹𝑦 =
𝐴𝑦𝑅𝑎𝑤

256
 

(3.2) 

𝐹𝑧 =
𝐴𝑧𝑅𝑎𝑤

256
 

(3.3) 
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At any orientation, the force of gravity, Fg, can be assumed to be at any direction in 

between all three axes as shown in Figure 3.6. By using 3D Pythagorean Theorem, the 

resultant force of gravity, Fg, is calculated using the equation (3.4). 

Figure 3.6: Force vectors acting on the sensor in 3D spaces 

 

𝐹𝑔 = √𝐹𝑥2 + 𝐹𝑦2 + 𝐹𝑧2 

 

(3.4) 

Then, the angle value of pitch and roll orientation is be identified as the angle 

between the X-axis and Y-Axis, and the force of gravity respectively. This angle value is 

obtained by feeding the value of gravity force on each axis and the resultant gravity into the 

trigonometric equation in (3.5) and (3.6) below. 

𝜃𝑥 = cos−1 (
𝐹𝑥

𝐹𝑔
) 

(3.5) 

𝜃𝑦 = cos−1 (
𝐹𝑦

𝐹𝑔
) 

(3.6) 

Gyroscope sensor measures the rate of rotation around each axis. To get the rate of 

rotation, the raw output value is divided with the scale factor to convert it into the unit ‘°/s’, 

and multiplied with the time duration from the last reading as shown in (3.7) and (3.8), to 

get the value of rate of rotation in ‘°’. 
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𝑅𝑥 = (
𝐺𝑥𝑅𝑎𝑤

14.375
) × 𝑑𝑡 

(3.7) 

𝑅𝑦 = (
𝐺𝑦𝑅𝑎𝑤

14.375
) × 𝑑𝑡 

(3.8) 

𝑑𝑡 = 𝑇𝑛 − 𝑇𝑛−1 (3.9) 

The value of the axis orientation from the accelerometer is sent through a low pass 

filter to remove any noise signal cause by sudden forces while the rate of rotation from the 

gyroscope is multiplied with the duration time since the last reading being sent through a 

high pass filter to remove the drift effect cause during resting. This can be seen in the typical 

block diagram of the complementary filter shown in Figure 3.5. 

Figure 3.7: Typical Block Diagram of Complementary Filter 

The complementary filter technique is used to obtain the most accurate estimation of 

the robot’s orientation by adding 20% of the filtered value of axis orientation and 80% of 

the summation of filtered value of rate of rotation and the previous angle together as shown 

in (3.10) and (3.11). 

𝑋 = 0.8(𝑋𝑛−1 + 𝑅𝑦) + 0.2(𝐴𝑥) (3.10) 

𝑌 = 0.8(𝑌𝑛−1 + 𝑅𝑥) + 0.2(𝐴𝑦) (3.11) 
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3.4.2 Open Loop Test of IMU Sensor 

Open loop test is a basic test that can be used to observe the different characteristic 

of several type of surface. By measuring the robot’s orientation, it is also possible to measure 

the surface orientation of a terrain. This is due to how the robot’s orientation corresponds 

directly to the surface orientation when it is in direct contact with the surface. In this test, the 

pitch orientation of the robot is chosen as the characteristic to be observed since it 

corresponds with the incline or decline of an uneven terrain as shown in Figure 3.8. This 

characteristic is the most suitable option since the mobile robot will mostly be moving 

forward in this project.  

Figure 3.8: Example of Pitch Orientation of Robot Correspond Directly to 

Surface Orientation 

Firstly, the IMU sensor is placed on a platform of a rotating rig as shown in 

Figure 3.9 below. The platform is then rotated to 0 to 180 at an interval of 

10 to observe the accuracy of the of the IMU sensor. The pitch orientation 

measurement from the accelerometer, gyroscope sensor, and 

complementary filter are recorded into the Figure 3.9: Open Loop Test 

setup Using a Rotating Platform Rig. 

 

Table 3.2 below. A graph is then generated to show the accuracy of the sensor by 

comparing each measurement mentioned above. 
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Figure 3.9: Open Loop Test setup Using a Rotating Platform Rig. 

 

Table 3.2: Pitch Orientation Measurements for Open Loop Test on a 

Rotating Platform Rig 

Angle (°) Accelerometer 

(°) 

Gyroscope 

(°) 

Complementary 

Filter (°) 

0    

10    

.....    

170    

180    

 

3.4.3 Intergration of IMU sensor and Motor Control Using Fuzzy Logic Control 

System. 

A FLC system is made by integrating the IMU sensor with a simple motor speed 

control system in order to control the speed of the robot when navigating on uneven terrain. 

Since the robot orientation correspond directly with the ground surface, the pitch of the robot 
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is taken as an input of the fuzzy logic controller since as it helps with detecting an incline or 

decline on the ground surface while the output of the fuzzy logic is set as the speed of the 

motor. Using the software Matlab, the fuzzy logic controller is designed based on the block 

diagram shown in Figure 3.10 below. 

Figure 3.10: Block Diagram of Fuzzy Logic Controller for Motor Speed 

Control 

The range of the pitch measurements is set from 0° to 180° with 80-90 as the mid-

range. While the range of the speed of the motor which uses Pulse Width Modulation 

(PWM), is set between 20-300. With this, the membership function for input and output is 

designed as shown in Figure 3.11 and Figure 3.12 below. 
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Figure 3.11: Membership Function for Input Variable 

Figure 3.12: Membership Function for Output Variable 

For this FLC system, five simple rules are used to relate the input membership 

function to its outputs as shown in the Table 3.3. 

Table 3.3: Fuzzy Rules for Motor Speed Controller 

Rule Pitch Motor Speed 

1 Straight (ST) HIGH 

2 Forward Small (FS) MID 

3 Forward Medium (FM) LOW 

4 Backward Small (FS) MID 

5 Backward Medium (FM) LOW 
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By following these rules, a relationship between the input and output variables of the 

FLC system can be seen in the generated graph shown in Figure 3.13. It also shows the 

expected behavior of the controller when navigating on uneven surface. 

Figure 3.13: Expected Behaviour of the FLC System  

The fuzzy logic controller developed is then used to observe the behavior of the 

mobile robot on several different terrain such as tiles, asphalt, rocks, and hill. The robot’s 

pitch, speed, and time taken are recorded in Table 3.4 as the robot move straight for 100 cm. 

A graph is then generated to represent the behavior of the mobile robot on different terrain. 

Table 3.4: Behavior of Mobile Robot on Uneven Terrain 

No of reading, n Pitch of robot (°) Speed of motor 

(PWM) 

Time taken (s) 

1    

2    

.....    

n-1    

n    

3.5 Experiment 2: Obstacle Detection 

This experiment is designed to develop a method which allows the mobile robot to 

detect the position of an obstacle in front of it, control its approaching speed, and find an 

alternative path to avoid the obstacle. A 180 degrees Light Detection and Ranging (LIDAR) 

sensor is mounted at the front of the mobile robot and an obstacle is put in front of the robot 
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on different direction. But instead of light detection, an ultrasonic is used to measure the 

distance of an obstacle in every angle. 

This experiment is divided to three parts. The first part is an open loop test on the 

ultrasonic sensor to observe its accuracy on measuring the distance of the obstacle in front 

of it. The second part is a close loop test in which the distance of the obstacle measured is 

used to control the speed of the robot by using a FLC system. The third part is an integration 

of the ultrasonic sensor with a servo motor to create a 180 degrees LIDAR sensor system 

which can detect the position of an obstacle and find the best alternative path to avoid the 

obstacle. 

3.5.1 Open Loop Test of Ultrasonic Sensor 

In this part, the open loop test is done by placing an ultrasonic sensor on a stand or 

box and an obstacle is placed in front of to measure its distance. There are two setups 

prepared for this part. For the first setup, the sensor is set up as shown in Figure 3.14. The 

obstacle’s distance from the sensor is changed from 0 cm to 100 cm at an interval of 1 cm. 

This is done to observe the accuracy of the sensor to measure the distance of obstacles within 

100 cm range from the robot. While for the second setup, the sensor is set up as shown in 

Figure 3.11. The obstacle’s distance from the sensor is changed from 0 cm to 400 cm at an 
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interval of 50 cm. This is done to observe the accuracy of the sensor to detect obstacles that 

are further than 100 cm range from the robot. 

Figure 3.14: Setup for 100 cm Open Loop Test 

 

  Figure 3.15: Setup for 400 cm Open Loop Test 

Each measurement is taken three times in order to calculate the average reading and 

standard deviation using the equation () and (3.13) respectively. The distance based on the 

average reading is also calculated using the equation (3.15). For each actual distance, the 

theoretical echo duration is calculated based on the equation (3.14) as a reference for the 

echo duration readings. All measurements are recorded in Table shown below and the data 

is graphed to observe the accuracy of the sensor’s measurements.  

Table 3.5: Characteristic of the Ultrasonic sensor when measuring the 

distance of an obstacle 

Actual 

Distance 

(cm) 

Calculated 

Echo Duration 

(µs) 

Echo Duration Reading (µs) Calculated 

Distance 

(cm) 

1 2 3 Average Standard 

Deviation 

0        

1        

...        

n-1        

n        
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑎𝑑𝑖𝑛𝑔, �̅� =
∑ 𝐸𝑐ℎ𝑜 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑎𝑑𝑖𝑛𝑔

3
 

(3.12) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝜎 = √
∑(𝐸𝑐ℎ𝑜 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 − �̅�)2

3 − 1
 

(3.13) 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑐ℎ𝑜 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.0343
∗ 2 

(3.14) 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
�̅� × 0.0343

2
 

 

(3.15) 

3.5.2 Closed Loop Test of Ultrasonic Sensor and Motor Speed Control Using Fuzzy 

Logic Controller 

In this part, close loop test done by using a FLC system to control the speed of the 

robot according to the distance of the obstacle measured from the robot. Two motors and a 

motor controller are added to the open loop setup to form a close loop setup system as shown 

in Figure 3.16 
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Figure 3.16: Close Loop Test Setup for Ultrasonic Sensor and Motor 

Control  

Using the Matlab Software, the fuzzy logic controller is designed according to the 

block diagram shown in Figure 3.17. The distance of the obstacle is set as the input of the 

system while the speed of the motor is set as the output of the system.  

 

Figure 3.17: FLC Block Diagram for Motor Control using Ultrasonic 

The range of the measured distance is set from 0 cm to 250 cm while the range for 

motor speed is set from 20 to 300 as shown in Figure 3.18 and Figure 3.19. The FLC system 

utilizes only three rules as shown in Figure 3.19: Memberhip Function of the Motor Output 

Speed 

 

Table 3.6. 
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Figure 3.18: Membership Function of the Ultrasonic reading 

 

Figure 3.19: Memberhip Function of the Motor Output Speed 

 

Table 3.6: Fuzzy Rule of the FLC system 

Rule Distance Motor Speed 

1 Near LOW  

2 Mid MID 

3 Far HIGH 

Following these three rules, a relationship between the input and output variables of 

the Fuzzy Logic Controller is graphed as shown in Figure 3.20 which shows the expected 

behavior of the controller when detecting an obstacle. 
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Figure 3.20: Expexted Behaviour of Fuzzy logic controller 

The behavior of the developed fuzzy logic controller is observed as it detects obstacle 

at a random distance from the ultrasonic sensor. The data is then recorded in the Table 3.7 

below and graphed to represent the behavior of the controller. 

Table 3.7: Characteristic Of Obstacle Distance And Motor Speed 

No Distance (cm) Motor Speed (PWM) 

1   

2   

....   

n-1   

n   

3.5.3 Heading Selection 

In this part, a 180° LIDAR system is created by attaching an ultrasonic sensor to a 

servo motor. The LIDAR system is then put on a large scale protractor with a radius of 30 

cm as shown in Figure 3.21. The large protractor helps with comparing the direction of the 

obstacle to the measurements reading. 
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Figure 3.21: Experiment Setup for Heading Selection 

The LIDAR system first scan the front area at an interval of 10° for 180° range. The 

top three furthest distance measured is taken as possible alternative routes. For each possible 

route, an average reading for the 20° around the possible direction is calculated. However, a 

possible direction is neglected if there exist a distance below 60 cm. The highest average 

reading of 20° around each possible route with no distance below 60 cm is chosen as the best 

alternative route. All readings are recorded in the table 

Table 3.8: Distance Reading for a 180° scan 

Heading Direction (°) Distance (cm) 

0  

10  

….  

180  

Table 3.9: Evaluation of Possible Alternative Route Heading 

Possible Alternative 

Route Heading 

Average Distance 

Reading  

Safety Threshold State 
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3.6 Designing Motion Control for Uneven Terrain 

In this experiment, both Fuzzy Logic controller from Experiment 1 and 2 are brought 

together and combine into one Fuzzy Logic Control System. By adding the 180 degrees 

LIDAR system from Experiment 2, it will then become the suitable Motion Control for 

Mobile Robot on Uneven Terrain. Figure 3.22 shows the overall flowchart of the Motion 

Control for Uneven Terrain.  

The Figure 3.23 shows the block diagram used to design the Fuzzy Logic Control 

System for this experiment. The membership function used for this system is the same as in 

Experiment 1 and 2. The only difference is the rules used has increased due to combination 

of two system. The rules used is shown in Table 3.8 below. 

Table 3.10: Fuzzy Rules for Experiment 3 

  Pitch Orientatiom 

  BM BS ST FS FM 

Obstacle 

Distance 

Near LOW LOW LOW LOW LOW 

Mid LOW MID MID MID LOW 

Far LOW MID HIGH MID LOW 
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Figure 3.22: Typical Fuzzy Controller Architecture 

Start 

Update pitch value 

and distance value 

Servo rotate to 90 

degree 

Distance

< 30? 

Motor Speed = 

pwm 

FLC Evaluate 

pwm  = fis_output 

A 

Motor Speed = 0 

Scan 

Surrounding 

Determine best 

alternative 

heading 

Robot rotate to 

heading 

A 
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Figure 3.23: Block Diagram for FLC of Experiment 3 

 After combining the rules from Table 3.3 and Table 3.6, a relationship between the 

IMU sensor, Ultrasonic Sensor and the Motor Speed is graphed as shown in Figure 3.24 

below. 
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 Figure 3.24: Surface Graph of Relationship between IMU sensor, 

Ultrasonic Sensor, and Motor Speed. 

The FLC System is tested on the mobile robot by having the robot navigate on several 

surface shown in Figure 3.25. All measurements are recorded in the Table 3.11 below and 

graphed. 

Tiles Surface Asphalt Surface 

Rocks Surface Hill Surface 

Figure 3.25: Type of Terrains Used for Experiment 3 

 

Table 3.11: Close Loop Test for FLC System in Experiment 3 

No Pitch (°) Distance (cm) Motor Speed 

(PWM) 

Time Taken 

(s) 

1     

2     

....     

n-1     

n     
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RESULTS AND DISCUSSIONS 

4.1 Experiment 1: Detecting Surface Orientation  

In this section, the accuracy of the IMU sensor and the characteristic of the pitch 

reading on different terrain is analyze and discussed. 

4.1.1 Open Loop Test of IMU Sensor 

In this experiment, the measurements of robot orientation in terms of pitch from 

accelerometer, gyroscope sensor, and complementary filter is graphed on Figure 4.1 below. 

Figure 4.1: Graph of Angle Reading (°) vs Actual Angle(°) 
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From the graph shown in Figure 4.1, the readings from the accelerometer sensor 

shows some deviation from the actual angle at 40°, 60°, and 140°, while the readings from 

the gyroscope shows a drift effect occurring causing it to have a reading with 10 degree more 

than the actual angle set. However, the angle reading from the complementary filter 

accurately follows the actual angle set on the rig.  

This shows how the complementary filter was able to remove the noise and drift 

effect and produce an accurate reading of the angle set on the rig despite some error from 

the sensor and drift effect from the gyroscope sensor. 

4.1.2 Intergration of IMU sensor and Motor Control Using Fuzzy Logic Control 

System.  

In this experiment, the characteristic graph of the pitch orientation and motor’s speed 

over time on several type of terrain are shown in Figure 4.2, Figure 4.3, Figure 4.4, and 

Figure 4.5.  
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Figure 4.2: Characteristic of The Pitch Orientation And Motor’s Speed Over 

Time For Tiles Surface 

From the graph in Figure 4.2, the robot takes approximately 3.4 seconds to move 100 

cm forward on a tiles surface. After 2.4 seconds, the IMU sensor reading stays around 90° 

while the output motor speed signal jumps from below 160 to above 240 and maintain there 

until the robot reached 100 cm.  

This shows that after reaching the steady state reading of the IMU sensor, FLC 

system can detect the smooth tiles surface and maintain the high output speed since the is no 

irregularity on the terrain. This helps the robot reach 100 cm at a faster duration of time. 

Figure 4.3: Characteristic of The Pitch Orientation And Motor’s Speed Over 

Time For Asphalt Surface 

The graph from Figure 4.3 shows that the robot takes approximately 3.9 seconds to 

move 100 cm forward on an asphalt surface. After reaching the steady state reading of the 

IMU sensor at 2.2 seconds, the IMU sensor reading fluctuates between 91° and 92° while 

the output speed signal of the motor fluctuates from 229 to 237. This shows how the FLC 
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controller can detect the small irregularity of the asphalt surface and tries to compensate it 

by slightly adjusting the output motor speed signal. 

 

Figure 4.4: Characteristic of The Pitch Orientation And Motor’s Speed Over 

Time For Rocky Surface  

The graph from Figure 4.4 shows that the robot takes approximately 7.4 seconds to 

move 100 cm forward on rocky surface. After reaching the steady state reading of the IMU 

sensor at 1.8 seconds, the IMU sensor reading fluctuates between 88° and 93° while the 

output speed signal of the motor fluctuates from 155 to 248. This shows that the FLC 

controller detects a constant irregularity of the rocky surface and tries to compensate it with 

the corresponding output motor speed signal. 
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Figure 4.5: Characteristic of The Pitch Orientation And Motor’s Speed Over 

Time For Hill Surface 

The graph from Figure 4.5 shows how the robot takes approximately 9.7 seconds to 

move 100 cm forward on a hill surface. After reaching the steady state reading of the IMU 

sensor at 1.4 seconds, the IMU sensor reading drops from 79° at 1.8 seconds, to 64° at 4.9 

seconds before climbing back up to 82° at 9.3 seconds. The output speed signal of the motor 

follows the trend of the IMU sensor reading by dropping from 158 at 1.8 seconds, to 135 at 

4.9 seconds, and climbing back up to 157 at 9.3 seconds.  

This shows that the FLC controller detects an incline surface of the hill terrain and 

compensate it by decreasing the speed of the motor. This helps overcome the tire slip that 

usually occurred on an incline surface by increasing the time of contact between the surface 

and the wheel. The controller then steadily increased the speed of the motor when the surface 

incline is decreasing at the top of the hill. 

From all graphs, its can be seen that the controller needs an average of 1.95 seconds 

to reach a steady state reading from the IMU sensor. The time taken also decreased from the 
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as the surface iregularity increased. This shows that a higher irregularity of the IMU sensor 

reading helps increase the time taken for a steady state reading of the sensor since the 

complementary filter also depends on previous reading to compensate for the error occurred.  

The time taken for the robot to move 100 cm forward also increased as the surface 

irregularity increased on each surface. This shows that the robot takes more time to overcome 

any surface irregularity since it slows down to increase the torque of the motor.  

4.2 Experiment 2: Obstacle Detection 

This section shows the accuracy of the ultrasonic sensor reading and the 

characteristic of the FLC system used to control the ouput motor speed based on the distance 

of the detected obstacles. 

4.2.1 Open Loop Test of Ultrasonic Sensor 

 In this experiment, the echo reading of obstacle from 0 to 100 cm shows the 

accuracy if the ultrasonic sensor while the distance reading of obstacle from 0 to 400 cm 

shows the ability of the ultrasonic sensor to detect long ranged obstacles. 
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Figure 4.6: Accuracy of Ultrasonic Sensor for 0 to 100 cm Range 

In the graph shown in Figure 4.6, the distance measured is accurate from 10 cm to 

50 cm. After that, the reading is accurate with ±5 cm error. This shows that the sensor can 

be used to measure the obstacle’s distance accurately up to 50 cm. At 0 cm, the distance 

measured is at 76 cm. However, this will not affect the robot’s movement since there will be 

a fixed distance between the robot and the obstacles when the robot stops moving. 
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Figure 4.7: Accuracy of Ultrasonic Sensor from 0 to 400 cm 

Graph in Figure 4.7 shows that from 100 to 400 cm, the measurements reading is 5 

cm less than the actual distance. However, this will not matter as long as the robot is able to 

detect long ranged obstacle to adjust the approaching speed. 

4.2.2 Closed Loop Test of Ultrasonic Sensor and Motor Speed Control Using Fuzzy 

Logic Controller 

In this experiment, the data is graphed in a scattered manner to generate the 

characteristic of the FLC system used. 

  



51 

 

 

Figure 4.8: Behavior Characteristic of the FLC System 

By comparing the graph in Figure 4.8 with the expected behavior in Figure, we can 

see a similarity on which the speed will increased when the distance is increasing. This also 

shows the ability of the robot to decrease its approaching speed as it is getting nearer to an 

obstacle. 

4.2.3 Heading Selection 

In this experiment, the distance measured are graphed to see the characteristic of the 

surrounding 180° area in front of the LIDAR sensor and the top three heading with the 

furthest distance is evaluated to choose the possible alternative route. 
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Figure 4.9: Distance Reading for 180° Area 

From the graph in Figure 4.9, it is shown that the LIDAR system detects a presence 

of obstacle obstacle from 50° to 110° heading. This shows that the system is able to detect 

the obstacle that is below 60 cm. 

Table 4.1: Evaluation Results of Possible Alternative Route Heading 

Possible Alternative 

Route Heading (°) 

Average Distance 

Reading for 20° Around 

Heading (cm)  

Safety Threshold State 

40 162.6 Not safe  

180 534.8 Safe 

30 170.2 Not Safe 

In Table 4.1, the chosen possible alternative route is at 40° heading since it is the 

furthest and is deemed safe for the 20° around that direction. 
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4.3 Experiment 3: Designing Motion Control for Uneven Terrain 

In this section, the measurements of the robot’s pitch orientation, obstacle distance, 

and time taken to cover a distance of 100 cm is graphed to observe its characteristic on 

different terrains. 

4.3.1 Tiles Surface 

Figure 4.10: Characteristic Behavior of FLC System Used on Tiles Surface. 

On tiles surface, the pitch orientation remains the same after reaching the steady state 

reading at 5 seconds. However, the distance reading and the output motor speed signal drops 

at at 3.4 seconds and 4.2 seconds. This is due to when the robot interacts with the grooves 

between the tiles, the ultrasonic sensor is pointer downward for a moment causing a decrease 

in the reading and the output signal. This shows that the robot is able to response to sudden 

appearance of obstacles while on smooth surface. 
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The highest output speed signal is 159 while the lowest output speed signal is 92. 

The time taken for the robot to move 100 cm forward is approximately 6.8 seconds which is 

lower than the time taken in Experiment 1. This is due to the additional ultrasonic sensor 

input to the FLC system causing it to have a more constricting rule. 

4.3.2 Asphalt Surface      

Figure 4.11: Characteristic Behavior of FLC System Used on Asphalt 

Surface 

On asphalt surface, after reaching a steady state reading at 4 seconds, a slight 

variation of the pitch orientation can be seen occurring due to the slight irregularity of the 

asphalt surface. A drop in distance reading can be seen at 2.2 seconds, 4.6 seconds, and 6.2 

seconds due to the sensor pointing downward for a moment during the slight irregularity. 

However, only the latter two are compensated since the IMU sensor reading reach a steady 

state at 4 seconds. This shows how the robot is able to adjust the output motor speed signal 

to compensate for two kind of errors occurring simultaneously. 
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4.3.3 Rocky Surface 

Figure 4.12: Characteristic Behavior of FLC System Used on Rocky 

Surface 

On a rocky surface, the pitch reading from the IMU sensor shows the irregularity of 

the surface fluctuating as the reading reaches its steady state. A drop in the distance reading 

can be seen at 5.5 seconds which shows that the robot detects a sudden presence of obstacle 

when the robot is overcoming a slight incline. This is compensated by the FLC system by 

decreasing the output speed signal to 41. The robot takes 8.3 seconds to cover a distance of 

100 cm on rocky surface. For most of the time, the output speed signal stays around 122 

which cause the robot to move 100 cm forward slower than on asphalt and tiles surface. 
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4.3.4 Hill Surface  

Figure 4.13: Characteristic Behavior of FLC System Used on Hill Surface 

On hill surface, the pitch orientation reading starts to decrease at 1.8 seconds and 

increased back at 8.3 second. The distance reading started at a low value before climbing up 

as the pitch reading decreased and decreased again as the pitch reading increased. This shows 

that the robot started to climb the hill at 1.8 seconds and took 6.5 seconds to overcome the 

hill. During the climb, the output motor speed signal is maintained around 100 which helps 

maintain the torque of the robot’s motor. During the declining surface, the output motor 

speed signal can be seen decreasing to avoid the robot from descending too fast. At 10.1 

seconds and above, the output speed stays at 122 since the robot has reached the top of the 

surface. 
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4.3.5  Overall Behavior of FLC System 

The readings of distance, pitch orientation and speed for each surface are collected 

and graph to observe its overall behavior. 

Figure 4.14: Overall Behavior of The MISO FLC System 

By comparing the behavior graphed on Figure 4.14 to the expected behavior graphed 

in Figure, we can see that there are a lot of similarity to the behavior. When the distance 

increase, and the pitch is on the straight orientation, the output speed signal increased while 

when the distance increase, and the pitch is on the below 40°, the output speed signal 

maintains around 120. 

This shows that the FLC system successfully creates a motion controller that can 

control the speed of the robot according to its surrounding as expected in the design of the 

system. However, since the readings are not taken to the full range of the inputs, only half 

of the behavior is can be graphed and compared.   
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CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

In a conclusion, by combining information of the surface orientation and obstacle 

detection, it is possible to create sufficient fuzzy rules to develop a good motion controller. 

The methods used to collect data information on each area of study can be categorized as the 

simplest and cost effective for this project since even the sensors used are not more than 50 

Malaysian Ringgit. 

The IMU sensor used is the simplest method to get the orientation of the robot. 

Although it is still prone to noise and drift problems if used for a long time, through the 

experiment done in this project, the sensor can be said to have successfully help the robot to 

measure the surface orientation thus achieving the first objective.  

The 180 degrees LIDAR sensor system consisting of a servo motor and an ultrasonic 

sensor helps the robot control its approaching speed and choose the best alternative route 

when being confronted with an obstacle which achieved the second objective. Although it 

takes a long time to for the sensor to scan for obstacle and may decrease the overall 

performance of the mobile robot. 

Lastly, the motion controller developed using Fuzzy Logic Controller was able to 

help the robot adapt to its surrounding successfully with only motor speed control as its 

output. This shows that the concept proposed for building the Motion Controller is 

achievable thus achieving the third objective. However, this does not include the heading 

selection since the combination of all programming code is more than the Arduino board’s 

memory can handle. 
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5.2 Future Works 

For future improvements, the accuracy of the surface orientation measurements 

needs to be improved since in this project, drift and noise can occur when the sensor is used 

for a long time. The LIDAR coding needs to be redesign since there is a problem with time 

execution of the coding where the size of the code exceeds the memory of the Arduino board. 

A new body design is also needed since the current body actually gives a big disadvantage 

to the robot especially when turning or rotating. 
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APPENDICES 

APPENDIX A EXPERIMENT 1 OPEN LOOP TEST RESULTS  

Angle (°) Accelerometer 

(°) 

Gyroscope 

(°) 

Complementary 

Filter (°) 

0 0.22 3.6 0.68 

10 10.65 15.95 10.1 

20 20.29 28.9 20.15 

30 30.7 40.43 30.15 

40 41.8 52.33 40.98 

50 50.54 61.53 50.61 

60 59.72 72.2 60.55 

70 70.38 80.95 70.05 

80 80.32 91.51 80.54 

90 90.05 100.94 90.1 

100 101.15 111.65 100.86 

110 110.89 122.18 110.8 

120 120.23 131.19 120.1 

130 130.61 141.89 130.4 

140 139.06 151.75 140.5 

150 150.31 162.14 150.57 

160 160.14 171.76 160.5 

170 171.2 185.09 170.92 

180 173.27 195.77 173.3 

APPENDIX B EXPERIMENT 1 CLOSE LOOP RESULT FOR TILES SURFACE 

No of reading, n Pitch of robot (°) Speed of motor 

(PWM) 

Time taken (s) 

1 18.17 86 0.133 

2 32.74 107 0.256 

3 44.35 127 0.378 

4 53.69 138 0.501 

5 61.11 133 0.624 

6 67.16 139 0.747 

7 71.89 148 0.871 

8 75.74 154 0.994 

9 78.75 157 1.117 

10 81.36 158 1.241 

11 83.33 157 1.363 

12 85 156 1.486 
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13 86.26 156 1.609 

14 87.3 156 1.733 

15 88.01 156 1.856 

16 88.52 155 1.979 

17 89.09 155 2.103 

18 89.71 155 2.226 

19 89.87 155 2.349 

20 90.16 252 2.471 

21 90.3 250 2.594 

22 90.49 248 2.718 

23 90.72 245 2.841 

24 90.79 244 2.964 

25 90.72 245 3.087 

26 90.93 242 3.21 

27 90.87 243 3.334 

28 91.2 239 3.457 

APPENDIX C EXPERIMENT 1 CLOSE LOOP RESULT FOR ASPHALT 

SURFACE 

No of reading, n Pitch of robot (°) Speed of motor 

(PWM) 

Time taken (s) 

1 76.24 154 0.994 

2 79.6 158 1.117 

3 82.02 157 1.241 

4 83.96 157 1.363 

5 85.31 156 1.486 

6 86.4 156 1.609 

7 87.6 156 1.733 

8 88.3 156 1.856 

9 89.55 155 1.979 

10 89.98 155 2.102 

11 91.46 236 2.226 

12 91.45 236 2.349 

13 92.35 229 2.471 

14 92.28 229 2.594 

15 92.15 230 2.717 

16 92.24 230 2.841 

17 91.98 232 2.964 

18 91.79 233 3.087 

19 91.49 236 3.21 

20 91.42 237 3.333 
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21 91.2 239 3.456 

22 91.9 232 3.579 

23 91.62 235 3.702 

24 92.31 229 3.825 

25 92.19 230 3.948 

APPENDIX D EXPERIMENT 1 CLOSE LOOP RESULT FOR ROCKY SURFACE 

No of reading, n Pitch of robot (°) Speed of motor 

(PWM) 

Time taken (s) 

1 18.63 89 0.133 

2 33.5 109 0.256 

3 45.09 128 0.378 

4 54.41 139 0.501 

5 61.85 132 0.624 

6 69.61 144 0.748 

7 73.66 151 0.871 

8 76.28 154 0.994 

9 82.44 157 1.117 

10 83.18 157 1.241 

11 84.66 156 1.363 

12 88.45 155 1.486 

13 86.61 156 1.609 

14 87.94 156 1.733 

15 90.58 247 1.856 

16 88.99 155 1.979 

17 90.5 248 2.102 

18 91.18 239 2.225 

19 88.91 155 2.349 

20 90.89 243 2.471 

21 91.35 237 2.594 

22 89.45 155 2.717 

23 92.78 227 2.841 

24 91.74 234 2.964 

25 91.15 240 3.087 

26 93.76 222 3.21 

27 91.2 239 3.333 

28 91.98 232 3.457 

29 92.69 227 3.579 

30 89.96 155 3.702 

31 91.11 240 3.825 

32 92.23 230 3.948 
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33 88.25 156 4.072 

34 90.54 247 4.195 

35 91.31 238 4.318 

36 89.25 155 4.441 

37 92.53 228 4.563 

38 91.49 236 4.687 

39 92.02 231 4.81 

40 93.78 222 4.933 

41 90.45 248 5.056 

42 91.27 238 5.179 

43 92.8 226 5.302 

44 89.8 155 5.426 

45 90.99 242 5.549 

46 91.23 239 5.671 

47 88.26 156 5.794 

48 91.43 236 5.917 

49 91.51 236 6.041 

50 90.28 250 6.164 

51 92.96 226 6.287 

52 92.04 231 6.41 

53 91.06 241 6.533 

54 93.71 222 6.657 

55 91.94 232 6.779 

56 90.94 242 6.902 

57 93.96 221 7.025 

58 92.2 230 7.148 

59 90.48 248 7.271 

60 93.87 222 7.395 

APPENDIX E EXPERIMENT 1 CLOSE LOOP RESULT FOR HILL SURFACE 

No of reading, n Pitch of robot (°) Speed of motor 

(PWM) 

Time taken (s) 

1 18.16 89 0.133 

2 32.87 107 0.256 

3 44.52 127 0.378 

4 54 139 0.501 

5 61.4 132 0.624 

6 66.82 139 0.747 

7 71.1 147 0.871 

8 74.14 152 0.994 

9 76.73 155 1.117 



67 

 

 

10 78.48 157 1.241 

11 79.29 158 1.363 

12 79.81 158 1.486 

13 79.91 158 1.61 

14 79.86 158 1.733 

15 79.18 158 1.856 

16 78.08 157 1.98 

17 77.37 156 2.103 

18 76.48 155 2.226 

19 74.46 152 2.35 

20 74.02 151 2.472 

21 74.68 152 2.595 

22 76.04 154 2.718 

23 73.98 151 2.842 

24 73.64 151 2.965 

25 77.15 156 3.089 

26 75.77 154 3.212 

27 71.86 148 3.335 

28 71.91 148 3.459 

29 71.58 148 3.581 

30 67.91 141 3.704 

31 69.97 145 3.827 

32 70.15 145 3.951 

33 66.95 139 4.074 

34 66.06 137 4.197 

35 69.52 144 4.321 

36 65.75 136 4.444 

37 65.11 135 4.567 

38 68.74 142 4.689 

39 66.31 138 4.812 

40 64.75 135 4.936 

41 64.94 135 5.059 

42 69.88 145 5.182 

43 67.89 141 5.306 

44 64.04 134 5.429 

45 68.46 142 5.552 

46 67.9 141 5.675 

47 65.33 136 5.798 

48 68.19 141 5.921 

49 70.92 147 6.044 

50 66.66 138 6.167 

51 69.91 145 6.291 
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52 71.17 147 6.414 

53 67.44 140 6.537 

54 67.83 141 6.661 

55 67.08 139 6.784 

56 63.52 133 6.906 

57 66.82 139 7.029 

58 67.76 140 7.153 

59 66.49 138 7.276 

60 67.45 140 7.399 

61 68.03 141 7.522 

62 69.04 143 7.646 

63 68.95 143 7.769 

64 69.21 143 7.891 

65 71.05 147 8.015 

66 73.81 151 8.138 

67 74.42 152 8.261 

68 74.84 153 8.385 

69 75.51 154 8.508 

70 75.73 154 8.631 

71 75.75 154 8.755 

72 75.68 154 8.878 

73 75.97 154 9 

74 76.88 155 9.124 

75 79.04 158 9.247 

76 82.62 157 9.37 

77 86.73 156 9.494 

78 87.03 156 9.617 

79 88.22 156 9.74 

APPENDIX F EXPERIMENT 2 OPEN LOOP RESULT 

Actual 

Distance 

(cm) 

Calculated 

Echo 

Duration 

(µs) 

Echo Duration Reading (µs) 

 

Calculated 

Distance 

(cm) 1 2 3 Average Standard 

Deviation 

0 0 13435
7 

13429
2 

13444
5 

134364.6
6 

-134364.66 35.8 

1 58.30904 292 317 317 308.66 14.43375673 5.29 

2 116.61808 174 174 174 174 0 2.98 

3 174.92711 201 201 201 201 0 3.44 

4 233.23615 253 253 226 244 15.58845727 4.18 

5 291.54519 314 314 313 313.66 0.577350269 5.37 
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6 349.85423 372 371 368 370.33 2.081665999 6.35 

7 408.16327 420 420 420 420 0 7.2 

8 466.4723 502 478 475 485 14.79864859 8.31 

9 524.78134 533 533 533 533 0 9.14 

10 583.09038 593 594 594 593.66 0.577350269 10.18 

11 641.39942 648 649 648 648.33 0.577350269 11.11 

12 699.70845 706 731 730 722.33 14.15391583 12.38 

13 758.01749 761 786 787 778 14.73091986 13.34 

14 816.32653 840 839 867 848.66 15.88500341 14.55 

15 874.63557 899 898 900 899 1 15.41 

16 932.94461 955 956 931 947.33 14.15391583 16.24 

17 991.25364 986 1013 987 995.33 15.30795 17.06 

18 1049.56268 1046 1045 1046 1045.66 0.577350269 17.93 

19 1107.87172 1126 1126 1125 1125.66 0.577350269 19.3 

20 1166.18076 1184 1185 1183 1184 1 20.3 

21 1224.4898 1266 1265 1239 1256.66 15.30795 21.55 

22 1282.79883 1344 1319 1344 1335.66 14.43375673 22.9 

23 1341.10787 1329 1353 1354 1345.33 14.15391583 23.07 

24 1399.41691 1414 1439 1415 1422.66 14.15391583 24.39 

25 1457.72595 1476 1497 1474 1482.33 12.7410099 25.42 

26 1516.03499 1485 1485 1484 1484.66 0.577350269 25.46 

27 1574.34402 1600 1622 1598 1606.66 13.31665624 27.55 

28 1632.65306 1610 1609 1609 1609.33 0.577350269 27.6 

29 1690.9621 1692 1693 1695 1693.33 1.527525232 29.04 

30 1749.27114 1728 1729 1727 1728 1 29.63 

31 1807.58017 1756 1782 1779 1772.33 14.2243922 30.39 

32 1865.88921 1829 1806 1808 1814.33 12.7410099 31.11 

33 1924.19825 1918 1917 1919 1918 1 32.89 

34 1982.50729 1948 1950 1949 1949 1 33.42 

35 2040.81633 1980 2005 1979 1988 14.73091986 34.09 

36 2099.12536 2088 2114 2086 2096 15.62049935 35.94 

37 2157.4344 2125 2126 2126 2125.66 0.577350269 36.45 

38 2215.74344 2195 2217 2194 2202 13 37.76 

39 2274.05248 2230 2231 2256 2239 14.73091986 38.39 

40 2332.36152 2308 2310 2284 2300.66 14.46835628 39.45 

41 2390.67055 2367 2368 2391 2375.33 13.57694124 40.73 

42 2448.97959 2426 2453 2403 2427.33 25.02665246 41.62 

43 2507.28863 2458 2483 2458 2466.33 14.43375673 42.29 

44 2565.59767 2534 2560 2559 2551 14.73091986 43.74 

45 2623.90671 2614 2591 2589 2598 13.89244399 44.55 

46 2682.21574 2652 2650 2652 2651.33 1.154700538 45.47 

47 2740.52478 2680 2706 2704 2696.66 14.46835628 46.24 
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48 2798.83382 2767 2768 2766 2767 1 47.45 

49 2857.14286 2822 2823 2825 2823.33 1.527525232 48.42 

50 2915.4519 2878 2853 2877 2869.33 14.15391583 49.2 

51 2973.76093 2908 2933 2909 2916.66 14.15391583 50.02 

52 3032.06997 2998 2997 2974 2989.66 13.57694124 51.27 

53 3090.37901 3051 3026 3050 3042.33 14.15391583 52.17 

54 3148.68805 3092 3117 3114 3107.66 13.65039682 53.29 

55 3206.99708 3170 3195 3169 3178 14.73091986 54.5 

56 3265.30612 3231 3230 3231 3230.66 0.577350269 55.4 

57 3323.61516 3286 3311 3262 3286.33 24.50170062 56.36 

58 3381.9242 3303 3304 3329 3312 14.73091986 56.8 

59 3440.23324 3329 3330 3406 3355 44.17012565 57.53 

60 3498.54227 3433 3469 3444 3448.66 18.44812547 59.14 

61 3556.85131 3469 3471 3470 3470 1 59.51 

62 3615.16035 3528 3527 3551 3535.33 13.57694124 60.63 

63 3673.46939 3584 3609 3585 3592.66 14.15391583 61.61 

64 3731.77843 3667 3644 3667 3659.33 13.27905619 62.75 

65 3790.08746 3721 3698 3697 3705.33 13.57694124 63.54 

66 3848.3965 3755 3756 3782 3764.33 15.30795 64.55 

67 3906.70554 3810 3835 3836 3827 14.73091986 65.63 

68 3965.01458 3900 3899 3950 3916.33 29.16047553 67.16 

69 4023.32362 3931 3976 3954 3953.66 22.50185178 67.8 

70 4081.63265 3909 3931 3909 3916.33 12.70170592 67.16 

71 4139.94169 4016 4066 4040 4040.66 25.00666578 69.29 

72 4198.25073 4096 4072 4098 4088.66 14.46835628 70.12 

73 4256.55977 4156 4180 4158 4164.66 13.31665624 71.42 

74 4314.8688 4188 4211 4164 4187.66 23.50177298 71.81 

75 4373.17784 4285 4312 4263 4286.66 24.54248018 73.51 

76 4431.48688 4311 4338 4389 4346 39.61060464 74.53 

77 4489.79592 4244 4270 4436 4316.66 104.1601331 74.03 

78 4548.10496 4459 4508 4483 4483.33 24.50170062 76.88 

79 4606.41399 4440 4490 4463 4464.33 25.02665246 76.56 

80 4664.72303 4563 4513 4540 4538.66 25.02665246 77.83 

81 4723.03207 4673 4649 4700 4674 25.51470164 80.15 

82 4781.34111 4611 4635 4660 4635.33 24.50170062 79.49 

83 4839.65015 4695 4745 4721 4720.33 25.00666578 80.95 

84 4897.95918 4808 4784 4807 4799.66 13.57694124 82.31 

85 4956.26822 4834 4856 4835 4841.66 12.42309677 83.03 

86 5014.57726 4992 5041 4971 5001.33 35.92121008 85.77 

87 5072.8863 4903 4880 4881 4888 13 83.82 

88 5131.19534 5058 5031 5058 5049 15.58845727 86.59 

89 5189.50437 5145 5094 5074 5104.33 36.61056314 87.53 
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90 5247.81341 5166 5142 5115 5141 25.51470164 88.16 

91 5306.12245 5247 5223 5200 5223.33 23.50177298 89.58 

92 5364.43149 5251 5179 5060 5163.33 96.45897228 88.55 

93 5422.74052 5183 5307 5257 5249 62.38589584 90.02 

94 5481.04956 5232 5395 5373 5333.33 88.44395589 91.46 

95 5539.3586 4984 5007 4982 4991 13.89244399 85.59 

96 5597.66764 5453 5429 5031 5304.33 237.0175802 90.96 

97 5655.97668 5534 5557 5558 5549.66 13.57694124 95.17 

98 5714.28571 5558 5572 5549 5559.66 11.59022577 95.34 

99 5772.59475 5060 4986 4960 5002 51.88448708 85.78 

100 5830.90379 5785 5760 5758 5767.66 15.0443788 98.91 

150 8746.35 8561 8557 8557 8558.33 188.02 146.77 

200 11661.8 11405 11422 11374 11400.33 261.47 195.51 

250 14577.25 14369 14342 14341 14350.66 226.59 246.11 

300 17492.71 17283 17284 17340 17302.33 190.38 296.73 

350 20408.16 20113 20147 20216 20158.66 249.5 345.72 

400 23323.61 23024 23137 23087 23082.66 240.95 395.86 

 

APPENDIX G EXPERIMENT 2 CLOSE LOOP TEST RESULT 

 

No Distance (cm) Motor Speed 

(PWM) 

1 209 251 

2 209 251 

3 209 251 

4 209 251 

5 207 251 

6 207 251 

7 209 251 

8 208 251 

9 208 251 

10 208 251 

11 208 251 

12 209 251 

13 209 251 

14 208 251 

15 211 251 

16 211 251 

17 210 251 

18 210 251 
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19 209 251 

20 211 251 

21 209 251 

22 209 251 

23 211 251 

24 210 251 

25 209 251 

26 210 251 

27 208 251 

28 209 251 

29 210 251 

30 209 251 

31 252 253 

32 174 246 

33 175 246 

34 175 246 

35 126 207 

36 141 227 

37 130 213 

38 124 204 

39 126 207 

40 132 216 

41 129 212 

42 124 204 

43 123 202 

44 128 210 

45 127 209 

46 127 209 

47 128 210 

48 128 210 

49 128 210 

50 127 209 

51 115 185 

52 125 205 

53 118 192 

54 124 204 

55 124 204 

56 175 246 

57 289 253 

58 212 251 

59 209 251 

60 209 251 
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61 210 251 

62 210 251 

63 209 251 

64 209 251 

65 210 251 

66 210 251 

67 211 251 

68 211 251 

69 248 253 

70 173 246 

71 125 205 

72 124 204 

73 115 185 

74 114 183 

75 110 176 

76 111 177 

77 110 176 

78 111 177 

79 110 176 

80 112 179 

81 113 181 

82 110 176 

83 111 177 

84 111 177 

85 113 181 

86 61 92 

87 59 92 

88 58 92 

89 59 92 

90 109 174 

91 109 174 

92 123 202 

93 115 185 

94 113 181 

95 112 179 

96 112 179 

97 112 179 

98 122 200 

99 215 252 

100 214 252 

101 212 251 
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102 214 252 

103 213 251 

104 211 251 

105 209 251 

106 209 251 

107 209 251 

108 210 251 

109 210 251 

110 211 251 

111 210 251 

112 210 251 

113 210 251 

114 210 251 

115 211 251 

116 210 251 

117 212 251 

118 210 251 

119 215 252 

120 211 251 

121 212 251 

122 211 251 

123 210 251 

124 210 251 

125 211 251 

126 212 251 

127 211 251 

128 211 251 

129 212 251 

130 211 251 

131 212 251 

132 211 251 

133 211 251 

134 211 251 

135 212 251 

136 211 251 

137 211 251 

138 212 251 

139 210 251 

140 211 251 

141 211 251 

142 211 251 

143 212 251 
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144 213 251 

145 211 251 

146 211 251 

147 210 251 

148 213 251 

149 211 251 

150 212 251 

151 211 251 

152 214 252 

153 215 252 

154 123 202 

155 124 204 

156 124 204 

157 112 179 

158 110 176 

159 112 179 

160 111 177 

161 111 177 

162 0 89 

163 61 92 

164 59 92 

165 57 92 

166 71 90 

167 56 92 

168 62 91 

169 61 92 

170 109 174 

171 109 174 

172 122 200 

173 114 183 

174 110 176 

175 111 177 

176 110 176 

177 112 179 

178 112 179 

179 112 179 

180 125 205 

181 123 202 

182 112 179 

183 123 202 

184 112 179 

185 124 204 
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186 126 207 

187 125 205 

188 124 204 

189 125 205 

190 115 185 

191 26 89 

192 25 89 

193 23 89 

194 23 89 

195 22 89 

196 22 89 

197 22 89 

198 23 89 

199 23 89 

200 24 89 

201 24 89 

202 24 89 

203 24 89 

204 24 89 

205 78 89 

206 24 89 

207 31 90 

208 26 89 

209 29 89 

210 27 89 

211 27 89 

212 28 89 

213 29 89 

214 28 89 

215 31 90 

216 30 90 

217 29 89 

218 28 89 

219 27 89 

220 26 89 

221 24 89 

222 26 89 

223 27 89 

224 27 89 

225 27 89 

226 29 89 

227 29 89 
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228 106 170 

229 30 90 

230 30 90 

231 31 90 

232 106 170 

233 49 92 

234 109 174 

235 107 171 

236 106 170 

237 106 170 

238 108 173 

239 150 234 

240 155 238 

241 152 236 

242 156 238 

243 152 236 

244 157 239 

245 155 238 

246 164 242 

247 175 246 

248 156 238 

249 130 213 

250 153 236 

251 131 215 

252 157 239 

253 151 235 

254 151 235 

255 25 89 

256 25 89 

257 23 89 

258 23 89 

259 25 89 

260 27 89 

261 24 89 

262 24 89 

263 25 89 

264 34 90 

265 20 89 

266 19 89 

267 22 89 

268 20 89 

269 21 89 
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270 21 89 

271 57 92 

272 19 89 

273 15 89 

274 15 89 

275 15 89 

276 15 89 

277 14 89 

278 14 89 

279 14 89 

280 50 92 

281 53 92 

282 52 92 

283 7 89 

284 7 89 

285 6 89 

286 6 89 

287 8 89 

288 9 89 

289 13 89 

290 13 89 

291 82 89 

292 22 89 

293 25 89 

294 22 89 

295 22 89 

296 20 89 

297 17 89 

298 16 89 

299 15 89 

300 16 89 

301 18 89 

302 127 209 

303 126 207 

304 126 207 

305 125 205 

306 114 183 

307 113 181 

308 114 183 

309 119 194 

310 114 183 

311 119 194 
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312 117 189 

313 125 205 

314 126 207 

315 131 215 

316 128 210 

317 127 209 

318 152 236 

319 174 246 

320 175 246 

321 210 251 

322 208 251 

323 207 251 

324 208 251 

325 209 251 

326 208 251 

327 210 251 

328 208 251 

329 207 251 

330 211 251 

331 210 251 

332 176 246 

333 174 246 

334 154 237 

335 130 213 

336 128 210 

337 126 207 

338 127 209 

339 127 209 

340 131 215 

341 124 204 

342 118 192 

343 116 187 

344 118 192 

345 117 189 

346 118 192 

347 117 189 

348 118 192 

349 128 210 

350 120 196 

351 117 189 

352 117 189 

353 116 187 
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354 117 189 

355 116 187 

356 129 212 

357 126 207 

358 127 209 

359 174 246 

360 177 247 

361 210 251 

362 209 251 

363 208 251 

364 207 251 

365 208 251 

366 207 251 

367 207 251 

368 208 251 

369 207 251 

370 207 251 

371 207 251 

372 207 251 

373 207 251 

374 208 251 

375 207 251 

376 207 251 

377 208 251 

378 160 241 

379 158 239 

380 208 251 

381 157 239 

382 209 251 

383 209 251 

384 208 251 

385 207 251 

386 207 251 

387 208 251 

388 209 251 

389 208 251 

390 208 251 

391 209 251 

392 208 251 

393 209 251 

394 209 251 

395 209 251 
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396 188 249 

397 189 249 

398 184 248 

399 174 246 

400 145 230 

401 128 210 

402 126 207 

403 129 212 

404 126 207 

405 126 207 

406 128 210 

407 132 216 

408 129 212 

409 132 216 

410 126 207 

411 121 198 

412 119 194 

413 118 192 

414 117 189 

415 118 192 

416 119 194 

417 117 189 

418 118 192 

419 117 189 

420 117 189 

421 118 192 

422 118 192 

423 128 210 

424 116 187 

425 126 207 

426 129 212 

427 117 189 

428 122 200 

429 117 189 

430 116 187 

431 118 192 

432 42 91 

433 117 189 

434 119 194 

435 25 89 

436 21 89 

437 21 89 
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438 20 89 

439 20 89 

440 20 89 

441 21 89 

442 116 187 

443 129 212 

444 128 210 

445 117 189 

446 116 187 

447 121 198 

448 117 189 

449 118 192 

450 118 192 

451 118 192 

452 119 194 

453 118 192 

454 121 198 

455 127 209 

456 129 212 

457 174 246 

458 209 251 

459 210 251 

460 207 251 

461 208 251 

462 208 251 

463 209 251 

464 208 251 

465 208 251 

466 208 251 

467 209 251 

468 209 251 

469 208 251 

470 208 251 

471 208 251 

472 208 251 

473 208 251 

474 208 251 

475 208 251 

476 208 251 

477 209 251 

478 211 251 

479 213 251 
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480 171 245 

481 126 207 

482 0 89 

483 114 183 

484 118 192 

485 114 183 

486 112 179 

487 116 187 

488 112 179 

489 115 185 

490 116 187 

491 113 181 

492 124 204 

493 114 183 

494 112 179 

APPENDIX H EXPERIMENT 2 HEADING SELECTION SCAN RESULT 

Heading Direction (°) Distance (cm) 

0 82 

10 81 

20 73 

30 324 

40 329 

50 44 

60 43 

70 42 

80 42 

90 42 

100 42 

110 43 

120 71 

130 68 

140 69 

150 68 

160 72 

170 275 

180 327 

APPENDIX I EXPERIMENT 3 FLC BEHAVIOR ON TILES SURFACE 



84 

 

 

No Pitch (°) Distance (cm) Motor Speed 

(PWM) 

Time Taken 

(s) 

1 16.89 123 92 0.319 

2 30.57 122 98 0.629 

3 41.49 121 131 0.94 

4 50.43 122 131 1.25 

5 57.27 121 133 1.56 

6 62.77 122 132 1.87 

7 66.92 121 144 2.181 

8 70.59 123 153 2.491 

9 73.4 122 159 2.801 

10 75.87 122 159 3.111 

11 77.85 113 147 3.421 

12 79.3 123 159 3.732 

13 80.55 121 159 4.042 

14 81.68 122 158 4.353 

15 82.22 121 158 4.663 

16 82.99 122 158 4.973 

17 83.39 108 134 5.282 

18 83.84 123 157 5.593 

19 84.08 121 158 5.903 

20 84.48 122 158 6.213 

21 84.52 121 158 6.523 

22 84.74 122 158 6.834 

 

APPENDIX JEXPERIMENT 3 FLC BEHAVIOR ON ASPHALT SURFACE 

No Pitch (°) Distance (cm) Motor Speed 

(PWM) 

Time Taken 

(s) 

1 16.87 122 92 0.319 

2 30.8 122 100 0.629 

3 41.49 121 131 0.94 

4 50.37 122 131 1.25 

5 57.87 121 132 1.56 

6 63.77 121 135 1.87 

7 67.4 113 146 2.18 

8 71.39 122 156 2.49 

9 74.21 122 159 2.8 

10 76.89 122 159 3.11 

11 77.8 121 159 3.421 

12 80.12 122 159 3.732 
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13 79.8 122 159 4.042 

14 80.19 122 158 4.353 

15 81.63 113 147 4.662 

16 82.69 121 158 4.972 

17 82.44 122 158 5.282 

18 84.76 121 158 5.594 

19 83.31 121 158 5.904 

20 85.27 114 150 6.213 

21 83.62 121 158 6.523 

22 85.49 122 158 6.834 

 

APPENDIX K EXPERIMENT 3 FLC BEHAVIOR ON ROCKY SURFACE 

No Pitch (°) Distance (cm) Motor Speed 

(PWM) 

Time Taken 

(s) 

1 17.13 124 92 0.319 

2 30.67 123 98 0.629 

3 41.8 121 131 0.94 

4 52.18 122 133 1.25 

5 60.87 122 130 1.56 

6 62.87 122 132 1.87 

7 64.72 121 138 2.181 

8 73.3 123 159 2.491 

9 73.41 122 159 2.801 

10 75.03 122 159 3.111 

11 82.19 121 158 3.423 

12 82.64 122 158 3.733 

13 77.01 121 159 4.043 

14 81.68 122 158 4.354 

15 88.24 122 158 4.664 

16 87.7 122 158 4.974 

17 84.56 121 158 5.284 

18 82.99 41 91 5.587 

19 86.53 122 158 5.898 

20 89.97 122 158 6.208 

21 88.46 122 158 6.519 

22 89.14 123 157 6.83 

23 95.19 121 198 7.14 

24 91.88 122 200 7.45 

25 95.29 121 198 7.76 

26 95.43 122 200 8.071 
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27 92.17 123 202 8.381 

 

APPENDIX L EXPERIMENT 3 FLC BEHAVIOR ON HILL SURFACE 

No Pitch (°) Distance (cm) Motor Speed 

(PWM) 

Time Taken 

(s) 

1 16.72 73 90 0.315 

2 31.42 72 90 0.62 

3 42.44 72 91 0.925 

4 52.2 72 90 1.23 

5 57.48 71 90 1.536 

6 62.23 72 90 1.84 

7 57.27 74 90 2.145 

8 53.01 77 89 2.45 

9 49.85 80 89 2.756 

10 49.09 87 133 3.064 

11 49.06 89 133 3.373 

12 49.74 92 133 3.681 

13 49.38 93 133 3.989 

14 49.17 100 133 4.298 

15 48.4 101 132 4.606 

16 47.24 99 130 4.916 

17 48.25 103 131 5.225 

18 49.25 101 132 5.534 

19 49.81 104 133 5.842 

20 49.69 98 133 6.152 

21 49.55 106 132 6.461 

22 49.76 100 133 6.77 

23 49.36 108 131 7.079 

24 49.53 100 133 7.388 

25 49.43 100 133 7.697 

26 49.83 103 133 8.006 

27 52.99 101 137 8.314 

28 53.68 105 137 8.624 

29 56.89 105 136 8.933 

30 65.2 102 130 9.242 

31 77.49 93 123 9.55 

32 83.27 80 89 9.857 

33 83.9 90 122 10.165 

34 83.8 91 122 10.473 

35 83.88 91 122 10.781 



87 

 

 

36 83.97 91 122 11.089 

37 83.98 91 122 11.398 

38 84 91 122 11.706 

39 83.96 91 122 12.014 

40 84.03 90 122 12.322 

41 84.12 91 122 12.632 

42 84.17 91 122 12.94 

43 84.13 91 122 13.248 

44 84.15 91 122 13.556 

45 84.21 91 122 13.864 

46 84.25 91 122 14.173 

47 84.34 90 122 14.481 

 

APPENDIX M MAIN PROGRAMMING CODE FOR MOTION CONTROL 

#include <Servo.h> 

#include "L298N.h" 

#include "HCSR04.h" 

#include "ADXL345.h" 

#include "ITG3200.h" 

#include "fis_header.h" 

 

Motor ML(6,7,8); 

Motor MR(13,12,11); 

HCSR04 UsSen(9,10); 

 

Servo servo; 

//---IMU Raw Variable 

double Ax, Ay, Az; 

float Gx, Gy, Gz, LGx, LGy; 

unsigned long lastTime; 

float dt; 

 

//--- Filtered Variable 

 

float AngleX, AngleY, AngleZ; 

float LastAngleX, LastAngleY, LastAngleZ; 

 

//---- HCSR04 variable 

int dist; 

long pulse; 

 

//--- Motor variable 

int p; // motor speed in pwm pulses 0-255 
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// Number of inputs to the fuzzy inference system 

const int fis_gcI = 2; 

// Number of outputs to the fuzzy inference system 

const int fis_gcO = 1; 

// Number of rules to the fuzzy inference system 

const int fis_gcR = 15; 

 

FIS_TYPE g_fisInput[fis_gcI]; 

FIS_TYPE g_fisOutput[fis_gcO]; 

 

void setup()  

{ 

  ADXL.init(); 

  ITG.init(); 

   

  servo.attach(3); 

  servo.write(80); 

   

  Serial.begin(9600); 

   

  LastAngleX = 0.0; 

  LastAngleY = 0.0; 

  LastAngleZ = 0.0; 

  lastTime = millis(); 

  LGy=90; 

 

} 

 

void loop()  

{ 

  AngleRead(AngleX, AngleY, AngleZ); 

  UsSen.scan(dist,pulse); 

 

  //---Update Fuzzy Logic input/output data 

  g_fisInput[0] = AngleX;  

  g_fisInput[1] = dist;  

  g_fisOutput[0] = 0; 

 

  if (dist>=60) 

  { 

    fis_evaluate();      

    p = g_fisOutput[0]; // Set output value: Speed 

    if(p>=255) 

    { 

      p=255; 

    } 

    else if(p<=80) 
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    { 

      p=80; 

    } 

  } 

  else if(dist<60) 

  { 

    p=0; 

    //do LIDAR scanning subroutine 

  } 

     

  ML.CCW(p); 

  MR.CCW(p); 

 

  Serial.print(AngleX); 

  Serial.print("\t"); 

  Serial.print(dist); 

  Serial.print("\t"); 

  Serial.println(p); 

 

} 

 

void AngleRead(float &X, float &Y, float &Z) 

{ 

  ADXL.scan(Ax, Ay, Az); 

  ITG.scan(Gx,Gy,Gz,dt,lastTime); 

 

  X = 0.8*(LastAngleX+Gy)+0.2*(Ax); 

  Y = 0.8*(LastAngleX+Gx)+0.2*(Ay); 

  Z = 0.8*(LastAngleX+Gz)+0.2*(Az); 

 

  LastAngleX = X; 

  LastAngleY = Y; 

  LastAngleZ = Z; 

} 

 

 

 

//*********************************************************************** 

// Support functions for Fuzzy Inference System                           

//*********************************************************************** 

// Z-shaped Member Function 

FIS_TYPE fis_zmf(FIS_TYPE x, FIS_TYPE* p) 

{ 

    FIS_TYPE a = p[0], b = p[1]; 

    FIS_TYPE m = ((a + b) / 2.0); 

    FIS_TYPE t = (b - a); 

    if (x <= a) return (FIS_TYPE) 1; 

    if (x <= m) 
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    { 

        t = (x - a) / t; 

        return (FIS_TYPE) (1.0 - (2.0 * t * t)); 

    } 

    if (x <= b) 

    { 

        t = (b - x) / t; 

        return (FIS_TYPE) (1.0 - (2.0 * t * t)); 

    } 

    return (FIS_TYPE) 0; 

} 

 

 

// Trapezoidal Member Function 

FIS_TYPE fis_trapmf(FIS_TYPE x, FIS_TYPE* p) 

{ 

    FIS_TYPE a = p[0], b = p[1], c = p[2], d = p[3]; 

    FIS_TYPE t1 = ((x <= c) ? 1 : ((d < x) ? 0 : ((c != d) ? ((d - x) / (d - c)) : 0))); 

    FIS_TYPE t2 = ((b <= x) ? 1 : ((x < a) ? 0 : ((a != b) ? ((x - a) / (b - a)) : 0))); 

    return (FIS_TYPE) min(t1, t2); 

} 

 

// S-Shaped membership function 

FIS_TYPE fis_smf(FIS_TYPE x, FIS_TYPE* p) 

{ 

    FIS_TYPE a = p[0], b = p[1]; 

    FIS_TYPE m = ((a + b) / 2.0); 

    FIS_TYPE t = (b - a); 

    if (a >= b) return (FIS_TYPE) (x >= m); 

    if (x <= a) return (FIS_TYPE) 0; 

    if (x <= m) 

    { 

        t = (x - a) / t; 

        return (FIS_TYPE) (2.0 * t * t); 

    } 

    if (x <= b) 

    { 

        t = (b - x) / t; 

        return (FIS_TYPE) (1.0 - (2.0 * t * t)); 

    } 

    return (FIS_TYPE) 1; 

} 

 

// Generalized Bell Member Function 

FIS_TYPE fis_gbellmf(FIS_TYPE x, FIS_TYPE* p) 

{ 

    FIS_TYPE a = p[0], b = p[1], c = p[2]; 

    FIS_TYPE t = (x - c) / a; 
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    if ((t == 0) && (b == 0)) return (FIS_TYPE) 0.5; 

    if ((t == 0) && (b < 0)) return (FIS_TYPE) 0; 

    return (FIS_TYPE) (1.0 / (1.0 + pow(t, b))); 

} 

 

FIS_TYPE fis_min(FIS_TYPE a, FIS_TYPE b) 

{ 

    return min(a, b); 

} 

 

FIS_TYPE fis_max(FIS_TYPE a, FIS_TYPE b) 

{ 

    return max(a, b); 

} 

 

FIS_TYPE fis_array_operation(FIS_TYPE *array, int size, _FIS_ARR_OP pfnOp) 

{ 

    int i; 

    FIS_TYPE ret = 0; 

 

    if (size == 0) return ret; 

    if (size == 1) return array[0]; 

 

    ret = array[0]; 

    for (i = 1; i < size; i++) 

    { 

        ret = (*pfnOp)(ret, array[i]); 

    } 

 

    return ret; 

} 

 

 

//*********************************************************************** 

// Data for Fuzzy Inference System                                        

//*********************************************************************** 

// Pointers to the implementations of member functions 

_FIS_MF fis_gMF[] = 

{ 

    fis_zmf, fis_trapmf, fis_smf, fis_gbellmf 

}; 

 

// Count of member function for each Input 

int fis_gIMFCount[] = { 5, 3 }; 

 

// Count of member function for each Output  

int fis_gOMFCount[] = { 3 }; 
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// Coefficients for the Input Member Functions 

FIS_TYPE fis_gMFI0Coeff1[] = { 20, 90 }; 

FIS_TYPE fis_gMFI0Coeff2[] = { 60, 80, 100, 120 }; 

FIS_TYPE fis_gMFI0Coeff3[] = { 90, 160 }; 

FIS_TYPE fis_gMFI0Coeff4[] = { 30, 50, 70, 90 }; 

FIS_TYPE fis_gMFI0Coeff5[] = { 90, 110, 130, 150 }; 

FIS_TYPE* fis_gMFI0Coeff[] = { fis_gMFI0Coeff1, fis_gMFI0Coeff2, 

fis_gMFI0Coeff3, fis_gMFI0Coeff4, fis_gMFI0Coeff5 }; 

FIS_TYPE fis_gMFI1Coeff1[] = { 20, 85 }; 

FIS_TYPE fis_gMFI1Coeff2[] = { 31.26, 3.278, 85 }; 

FIS_TYPE fis_gMFI1Coeff3[] = { 85, 150 }; 

FIS_TYPE* fis_gMFI1Coeff[] = { fis_gMFI1Coeff1, fis_gMFI1Coeff2, fis_gMFI1Coeff3 

}; 

FIS_TYPE** fis_gMFICoeff[] = { fis_gMFI0Coeff, fis_gMFI1Coeff }; 

 

// Coefficients for the Output Member Functions 

FIS_TYPE fis_gMFO0Coeff1[] = { 80, 167.5 }; 

FIS_TYPE fis_gMFO0Coeff2[] = { 40, 2, 167.5 }; 

FIS_TYPE fis_gMFO0Coeff3[] = { 167.5, 255 }; 

FIS_TYPE* fis_gMFO0Coeff[] = { fis_gMFO0Coeff1, fis_gMFO0Coeff2, 

fis_gMFO0Coeff3 }; 

FIS_TYPE** fis_gMFOCoeff[] = { fis_gMFO0Coeff }; 

 

// Input membership function set 

int fis_gMFI0[] = { 0, 1, 2, 1, 1 }; 

int fis_gMFI1[] = { 0, 3, 2 }; 

int* fis_gMFI[] = { fis_gMFI0, fis_gMFI1}; 

 

// Output membership function set 

int fis_gMFO0[] = { 0, 3, 2 }; 

int* fis_gMFO[] = { fis_gMFO0}; 

 

// Rule Weights 

FIS_TYPE fis_gRWeight[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; 

 

// Rule Type 

int fis_gRType[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; 

 

// Rule Inputs 

int fis_gRI0[] = { 2, 3 }; 

int fis_gRI1[] = { 4, 3 }; 

int fis_gRI2[] = { 5, 3 }; 

int fis_gRI3[] = { 3, 3 }; 

int fis_gRI4[] = { 1, 3 }; 

int fis_gRI5[] = { 2, 2 }; 

int fis_gRI6[] = { 4, 2 }; 

int fis_gRI7[] = { 5, 2 }; 

int fis_gRI8[] = { 1, 2 }; 



93 

 

 

int fis_gRI9[] = { 3, 2 }; 

int fis_gRI10[] = { 2, 1 }; 

int fis_gRI11[] = { 4, 1 }; 

int fis_gRI12[] = { 5, 1 }; 

int fis_gRI13[] = { 1, 1 }; 

int fis_gRI14[] = { 3, 1 }; 

int* fis_gRI[] = { fis_gRI0, fis_gRI1, fis_gRI2, fis_gRI3, fis_gRI4, fis_gRI5, fis_gRI6, 

fis_gRI7, fis_gRI8, fis_gRI9, fis_gRI10, fis_gRI11, fis_gRI12, fis_gRI13, fis_gRI14 }; 

 

// Rule Outputs 

int fis_gRO0[] = { 3 }; 

int fis_gRO1[] = { 2 }; 

int fis_gRO2[] = { 2 }; 

int fis_gRO3[] = { 1 }; 

int fis_gRO4[] = { 1 }; 

int fis_gRO5[] = { 2 }; 

int fis_gRO6[] = { 2 }; 

int fis_gRO7[] = { 2 }; 

int fis_gRO8[] = { 1 }; 

int fis_gRO9[] = { 1 }; 

int fis_gRO10[] = { 1 }; 

int fis_gRO11[] = { 1 }; 

int fis_gRO12[] = { 1 }; 

int fis_gRO13[] = { 1 }; 

int fis_gRO14[] = { 1 }; 

int* fis_gRO[] = { fis_gRO0, fis_gRO1, fis_gRO2, fis_gRO3, fis_gRO4, fis_gRO5, 

fis_gRO6, fis_gRO7, fis_gRO8, fis_gRO9, fis_gRO10, fis_gRO11, fis_gRO12, 

fis_gRO13, fis_gRO14 }; 

 

// Input range Min 

FIS_TYPE fis_gIMin[] = { 0, 0 }; 

 

// Input range Max 

FIS_TYPE fis_gIMax[] = { 180, 250 }; 

 

// Output range Min 

FIS_TYPE fis_gOMin[] = { 20 }; 

 

// Output range Max 

FIS_TYPE fis_gOMax[] = { 300 }; 

 

//*********************************************************************** 

// Data dependent support functions for Fuzzy Inference System            

//*********************************************************************** 

FIS_TYPE fis_MF_out(FIS_TYPE** fuzzyRuleSet, FIS_TYPE x, int o) 

{ 

    FIS_TYPE mfOut; 

    int r; 
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    for (r = 0; r < fis_gcR; ++r) 

    { 

        int index = fis_gRO[r][o]; 

        if (index > 0) 

        { 

            index = index - 1; 

            mfOut = (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]); 

        } 

        else if (index < 0) 

        { 

            index = -index - 1; 

            mfOut = 1 - (fis_gMF[fis_gMFO[o][index]])(x, fis_gMFOCoeff[o][index]); 

        } 

        else 

        { 

            mfOut = 0; 

        } 

 

        fuzzyRuleSet[0][r] = fis_min(mfOut, fuzzyRuleSet[1][r]); 

    } 

    return fis_array_operation(fuzzyRuleSet[0], fis_gcR, fis_max); 

} 

 

FIS_TYPE fis_defuzz_centroid(FIS_TYPE** fuzzyRuleSet, int o) 

{ 

    FIS_TYPE step = (fis_gOMax[o] - fis_gOMin[o]) / (FIS_RESOLUSION - 1); 

    FIS_TYPE area = 0; 

    FIS_TYPE momentum = 0; 

    FIS_TYPE dist, slice; 

    int i; 

 

    // calculate the area under the curve formed by the MF outputs 

    for (i = 0; i < FIS_RESOLUSION; ++i){ 

        dist = fis_gOMin[o] + (step * i); 

        slice = step * fis_MF_out(fuzzyRuleSet, dist, o); 

        area += slice; 

        momentum += slice*dist; 

    } 

 

    return ((area == 0) ? ((fis_gOMax[o] + fis_gOMin[o]) / 2) : (momentum / area)); 

} 

 

//*********************************************************************** 

// Fuzzy Inference System                                                 

//*********************************************************************** 

void fis_evaluate() 

{ 
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    FIS_TYPE fuzzyInput0[] = { 0, 0, 0, 0, 0 }; 

    FIS_TYPE fuzzyInput1[] = { 0, 0, 0 }; 

    FIS_TYPE* fuzzyInput[fis_gcI] = { fuzzyInput0, fuzzyInput1, }; 

    FIS_TYPE fuzzyOutput0[] = { 0, 0, 0 }; 

    FIS_TYPE* fuzzyOutput[fis_gcO] = { fuzzyOutput0, }; 

    FIS_TYPE fuzzyRules[fis_gcR] = { 0 }; 

    FIS_TYPE fuzzyFires[fis_gcR] = { 0 }; 

    FIS_TYPE* fuzzyRuleSet[] = { fuzzyRules, fuzzyFires }; 

    FIS_TYPE sW = 0; 

 

    // Transforming input to fuzzy Input 

    int i, j, r, o; 

    for (i = 0; i < fis_gcI; ++i) 

    { 

        for (j = 0; j < fis_gIMFCount[i]; ++j) 

        { 

            fuzzyInput[i][j] = 

                (fis_gMF[fis_gMFI[i][j]])(g_fisInput[i], fis_gMFICoeff[i][j]); 

        } 

    } 

 

    int index = 0; 

    for (r = 0; r < fis_gcR; ++r) 

    { 

        if (fis_gRType[r] == 1) 

        { 

            fuzzyFires[r] = FIS_MAX; 

            for (i = 0; i < fis_gcI; ++i) 

            { 

                index = fis_gRI[r][i]; 

                if (index > 0) 

                    fuzzyFires[r] = fis_min(fuzzyFires[r], fuzzyInput[i][index - 1]); 

                else if (index < 0) 

                    fuzzyFires[r] = fis_min(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]); 

                else 

                    fuzzyFires[r] = fis_min(fuzzyFires[r], 1); 

            } 

        } 

        else 

        { 

            fuzzyFires[r] = FIS_MIN; 

            for (i = 0; i < fis_gcI; ++i) 

            { 

                index = fis_gRI[r][i]; 

                if (index > 0) 

                    fuzzyFires[r] = fis_max(fuzzyFires[r], fuzzyInput[i][index - 1]); 

                else if (index < 0) 

                    fuzzyFires[r] = fis_max(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]); 
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                else 

                    fuzzyFires[r] = fis_max(fuzzyFires[r], 0); 

            } 

        } 

 

        fuzzyFires[r] = fis_gRWeight[r] * fuzzyFires[r]; 

        sW += fuzzyFires[r]; 

    } 

 

    if (sW == 0) 

    { 

        for (o = 0; o < fis_gcO; ++o) 

        { 

            g_fisOutput[o] = ((fis_gOMax[o] + fis_gOMin[o]) / 2); 

        } 

    } 

    else 

    { 

        for (o = 0; o < fis_gcO; ++o) 

        { 

            g_fisOutput[o] = fis_defuzz_centroid(fuzzyRuleSet, o); 

        } 

    } 

} 

APPENDIX N HEADER FILE FOR FLC INFERENCE SYSTEM 

#define FIS_TYPE float 

#define FIS_RESOLUSION 101 

#define FIS_MIN -3.4028235E+38 

#define FIS_MAX 3.4028235E+38 

typedef FIS_TYPE(*_FIS_MF)(FIS_TYPE, FIS_TYPE*); 

typedef FIS_TYPE(*_FIS_ARR_OP)(FIS_TYPE, FIS_TYPE); 

typedef FIS_TYPE(*_FIS_ARR)(FIS_TYPE*, int, _FIS_ARR_OP); 

 

APPENDIX O SOURCE CODE FOR ACCELEROMETER 

#include "Arduino.h" 

#include "I2C.h" 

#include "ADXL345.h" 

 

 

void ADXL::init() 

{ 
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  I2C.init();  

   

  //--- Configure Accelerometer ADXL345 

  I2C.write(ADXAddress, BW_Rate, 0x0A);  //Set Sampling rate to 100Hz 

  I2C.write(ADXAddress, Power_Register, 8);  //Enabling measuring mode 

  delay(10); 

} 

 

void ADXL::scan(double &X, double &Y, double &Z) 

{ 

  int xRaw, yRaw, zRaw; 

  double Rx, Ry, Rz, Racc, AccScale = 256.0; 

   

  xRaw = I2C.read(ADXAddress, ACC_XOUT_H)<<8;  // X-axis 

  xRaw |= I2C.read(ADXAddress, ACC_XOUT_L); 

  yRaw = I2C.read(ADXAddress, ACC_YOUT_H)<<8;  // Y-Axis 

  yRaw |= I2C.read(ADXAddress, ACC_YOUT_L); 

  zRaw = I2C.read(ADXAddress, ACC_ZOUT_H)<<8;  // Z-Axis 

  zRaw |= I2C.read(ADXAddress, ACC_ZOUT_L); 

 

  //---convert to g  

  Rx = xRaw/AccScale; 

  Ry = yRaw/AccScale; 

  Rz = zRaw/AccScale; 

 

  //---find angle between resultant and axes 

  Racc = sqrt(pow(Rx,2) + pow(Ry,2) + pow(Rz,2)); 

  X = (acos(Rx/Racc)*180)/3.14; 

  Y = (acos(Ry/Racc)*180)/3.14; 

  Z = (acos(Rz/Racc)*180)/3.14; 

} 

 

APPENDIX P HEADER FILE FOR ACCELEROMETER  

#ifndef ADXL345_h 

#define ADXL345_h 

#include "Arduino.h" 

 

//--- Accelerometer Register Addresses 

#define ADXAddress 0x53       // Sensor address 

#define BW_Rate 0x2C          // bandwith rate table 7 datasheet 

#define Power_Register 0x2D   // power control  

#define ACC_XOUT_L 0x32       // Xout low 

#define ACC_XOUT_H 0x33       // Xout high 

#define ACC_YOUT_L 0x34       // Yout low  

#define ACC_YOUT_H 0x35       // Yout high 
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#define ACC_ZOUT_L 0x36       // Zout low 

#define ACC_ZOUT_H 0x37       // Zout high 

 

 

 

class ADXL 

{ 

  public: 

    void init(); 

    void scan(double &X, double &Y, double &Z); 

 

  private: 

 

   

}; 

 

extern ADXL ADXL; 

 

#endif 

 

APPENDIX Q SOURCE CODE FOR ULTRASONIC  

#include "Arduino.h" 

#include "HCSR04.h" 

 

HCSR04::HCSR04(int trig, int echo) 

{ 

  pinMode(trig, OUTPUT); 

  pinMode(echo, INPUT); 

  _trig = trig; 

  _echo = echo; 

} 

 

void HCSR04::scan(int &dist, long &pulse) 

{ 

  digitalWrite(_trig, LOW); 

  delayMicroseconds(2); 

  digitalWrite(_trig, HIGH); 

  delayMicroseconds(10); 

  digitalWrite(_trig, LOW); 

  pulse = pulseIn(_echo, HIGH); 

  dist= pulse*0.034/2; 

} 

APPENDIX R HEADER FILE FOR ULTRASONIC  
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#ifndef HCSR04_h 

#define HCSR04_h 

 

#include "Arduino.h" 

 

class HCSR04 

{ 

  public: 

    HCSR04(int trig, int echo); 

    void scan(int &dist, long &pulse); 

   

  private: 

    int _trig; 

    int _echo; 

}; 

 

#endif 

APPENDIX S SOURCE CODE FOR I2C 

#include "I2C.h" 

#include "Arduino.h" 

 

#include <Wire.h> 

 

void I2C::init() 

{ 

  Wire.begin();  

} 

 

void I2C::write(char address, char registerAddress, char data) 

{ 

  Wire.beginTransmission(address); 

  Wire.write(registerAddress); 

  Wire.write(data); 

  Wire.endTransmission(); 

} 

 

unsigned char I2C::read(char address, char registerAddress) 

{ 

  unsigned char data=0; 

  Wire.beginTransmission(address); 

  Wire.write(registerAddress); 

  Wire.endTransmission(); 

  Wire.beginTransmission(address); 

  Wire.requestFrom(address, 1); 
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  if(Wire.available()) 

   

  { 

    data = Wire.read(); 

  } 

 

  Wire.endTransmission(); 

  return data; 

} 

 

 

 

APPENDIX T HEADER FILE FOR I2C  

#ifndef I2C_h 

#define I2C_h 

 

#include "Arduino.h" 

 

class I2C 

{ 

  public: 

    void init(); 

    void write(char address, char registerAddress, char data); 

    unsigned char read(char address, char registerAddress); 

     

}; 

 

extern I2C I2C; 

 

#endif 

APPENDIX U SOURCE CODE FOR GYROSCOPE 

#include "Arduino.h" 

#include "I2C.h" 

#include "ITG3200.h" 

 

void ITG::init() 

{ 

  I2C.init();  

  //--- Configure Accelerometer ADXL345 

  char DLPF_CFG = 1; 

  char DLPF_FS_SEL = 3<<3; 
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  I2C.write(ITGAddress, DLPF_FS, (DLPF_FS_SEL|DLPF_CFG));  //Set the gyroscope 

Full Scale Selection, Low Pass Filter and Internal Rate Sampling Configuration  

  I2C.write(ITGAddress, SMPLRT_DIV, 9);   //Set the sample rate divider to 100 hz 

} 

 

void ITG::scan(float &Gx, float &Gy, float &Gz, float &dt, unsigned long &lT) 

{ 

  int Gx_Raw, Gy_Raw, Gz_Raw; 

  float RxGyro, RyGyro, RzGyro, GyroFactor = 14.375; 

  unsigned long now; 

   

  //--- Gyroscope Reading 

  Gx_Raw =I2C.read(ITGAddress, GYRO_XOUT_H)<<8;  // X-axis 

  Gx_Raw |=I2C.read(ITGAddress, GYRO_XOUT_L); 

  Gy_Raw =I2C.read(ITGAddress, GYRO_YOUT_H)<<8;  // y-axis 

  Gy_Raw |=I2C.read(ITGAddress, GYRO_YOUT_L); 

  Gz_Raw =I2C.read(ITGAddress, GYRO_ZOUT_H)<<8;  // z-axis 

  Gz_Raw |=I2C.read(ITGAddress, GYRO_ZOUT_L); 

 

  now = millis(); 

  dt = now - lT; 

  lT = now; 

   

  //--- Compute Angle rate data from Gyroscope 

  Gx = ((Gx_Raw/GyroFactor)*dt)/1000; 

  Gy = ((Gy_Raw/GyroFactor)*dt)/1000; 

  Gz = ((Gz_Raw/GyroFactor)*dt)/1000; 

} 

APPENDIX V HEADER FILE FOR GYROSCOPE  

#ifndef ITG3200_h 

#define ITG3200_h 

#include "Arduino.h" 

 

//--- Gyroscope ITG 3200 Register Addresses 

#define ITGAddress 0x68 

#define SMPLRT_DIV 0x15 

#define DLPF_FS 0x16 

#define GYRO_XOUT_H 0x1D 

#define GYRO_XOUT_L 0x1E 

#define GYRO_YOUT_H 0x1F 

#define GYRO_YOUT_L 0x20 

#define GYRO_ZOUT_H 0x21 

#define GYRO_ZOUT_L 0x22 

 

class ITG 
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{ 

  public: 

    void init(); 

    void scan(float &Gx, float &Gy, float &Gz, float &dt, unsigned long &lT); 

 

  private: 

   

}; 

 

extern ITG ITG; 

 

#endif 

 

 

 

APPENDIX W SOURCE CODE FOR MOTOR CONTROLLER 

#include "Arduino.h" 

#include "L298N.h" 

 

Motor::Motor(int IN1,int IN2,int PWM) 

{ 

  pinMode(IN1, OUTPUT); 

  pinMode(IN2, OUTPUT); 

  pinMode(PWM, OUTPUT); 

  _in1 = IN1; 

  _in2 = IN2; 

  _pwm = PWM; 

} 

 

void Motor::CW(int Speed) 

{ 

  digitalWrite(_in1, HIGH); 

  digitalWrite(_in2, LOW); 

  analogWrite(_pwm, Speed); 

} 

 

void Motor::CCW(int Speed) 

{ 

  digitalWrite(_in1, LOW); 

  digitalWrite(_in2, HIGH); 

  analogWrite(_pwm, Speed); 

} 

APPENDIX X HEADER FILE FOR MOTOR CONTROLLER  
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#ifndef L298N_h 

#define L298N_h 

 

#include "Arduino.h" 

 

class Motor 

{ 

  public: 

    Motor(int IN1,int IN2,int PWM); 

    void CW(int Speed); 

    void CCW(int Speed); 

  private: 

    i 

t _in1; 

    int _in2; 

    int _pwm; 

}; 

 

#endif 


