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ABSTRACT 

 Electromyography (EMG) provides an alternative way of providing signal 

responses from the muscle. As such, the recent trend in developing myoelectric devices 

have spark the interest in this specific field of study. This is because the traditional 

controllers lack in certain parts which reduce the utilization of limbs to control devices 

mainly the robotic arm. However, noise such as crosstalk, motion artifact, ambient 

noise and inherent noise have become a major issue when handling EMG signals. The 

preparation of electromyography requires more attention in terms of muscle group 

selection, electrode placement and condition of the surrounding as it will affect the 

signal output. The aim of this study was to develop a 4 degree-of-freedom (DOF) 

robotic arm that can be controlled using EMG signals. The correlation between the 

EMG signal and the robotic arm are required to identified to analyze the performance 

of robotic arm. Review on the actuator, electromyography methods and 

microcontroller are done to evaluate the techniques used from past researches. The 

methods of this project include identification the error percentage of the actuator, 

classification and validation of EMG signals based on hand gestures, the correlation 

between the characteristic of the EMG signals with the functionality and performance 

of the robotic arm. The experiment showed that the actuator produced minor 

percentage error and does not affect the robotic arm accuracy significantly. The 

sampling rate and arm position affect the EMG signal output. In addition, the 

controllability of the robotic arm was low because the motors are controlled 

independently. The objectives of the project are achieved as the EMG-controlled 

robotic arm has been successfully developed.  The robotic arm is still available for 

improvement by adding multiple channel sensor and implementing a wireless system. 
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ABSTRAK 

Elektromilogi (EMG) menyediakan cara untuk mendapatkan bacaan isyarat 

daripada otot. Sehubungan dengan itu, penghasilan peranti myoelektrik telah menarik 

minat terhadap bidang ini. Hal ini kerana pengawal yang sedia ada mempunyai 

kekurangan yang menghadkan kadar penggunan anggota badan untuk mengawal 

pergerakkan peranti terutamanya tangan robotik. Walau bagaimanapun, isyarat EMG 

adalah terdedah kepada gangguan seperti pertembungan isyarat dari otot yang lain, 

pergerakkan otot dan radiasi daripada peranti elektrik. Penyediaan elektromilogi 

memerlukan lebih perhatian terutama pada pemilihan kumpulan otot, penempatan 

elektrod pada tubuh badan dan keadaan persekitaran kerana ia akan menggangu isyarat 

EMG. Tujuan utama projek ini ialah untuk membuat tangan robotik yang mempunyai 

empat darjah kebebasan yang dikawal menggunakan isyarat EMG. Hubungan antara 

isyarat EMG dan tangan robotik perlu diketahui untuk mengkaji prestasi tangan 

robotik. Kajian semula tentang mesin penggerak, teknik elektromilogi dan 

mikropengawal dilaksanakan untuk menilai teknik yang digunakan dalam kajian lepas. 

Antara kaedah yang digunakan ialah mengenalpasti tahap keberkesanan mesin 

penggerak, pengkelasan dan pengesahan isyarat EMG berdasarkan isyarat tangan dan 

mengenal pasti hubungan diantara ciri isyarat EMG dengan fungsi serta prestasi tangan 

robotik. Hasil eksperimen ini menunjukkan bahawa mesin penggerak mempunyai 

peratus kesilapan yang kecil dan tidak menggangguu ketepatan tangan robotik. 

Tambahan pula, kadar pengambilan sampel dan kedudukan tangan mempengaruhi 

isyarat EMG. Tahap kawalan tangan robotik pula adalah rendah kerana mesin 

penggerak perlu dikawal satu persatu. Objektif projek ini telah dicapai kerana tangan 

robotik yang dikawal menggunakan isyarat EMG dapat dihasilkan. Tangan robotik 

boleh lagi diperbaiki dengan menambahkan jumlah pengesan dan 

mengimplimentasikan sistem tanpa wayar. 
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INTRODUCTION 

1.1 Overview 

This section contains five parts which are project background, motivation 

problem statement, objectives and scopes. The project background highlights on some 

key aspects and fundamental of electromyography (EMG). The motivation discusses 

on the purpose of conducting the project based on the recent trend that associates with 

myoelectric devices. The problem statement discusses the problem regarding the 

preparation and development of EMG controlled devices. The objectives are sets of 

goal that needs to be achieved at the end of this project and is associated with limitation 

from the scope. 

1.2 Background 

Electromyography (EMG) has been commonly used in biomedical and clinical 

application. EMG is a process of measuring electrical activity in the muscles. An EMG 

signal[1]  is basically the summation of all the action potential recorded from the 

muscle fiber. The motor units[2] which is made up of muscle fiber exhibits electrical 

properties when muscles undergoes contraction. The raw EMG signal is measured in 

terms of voltage and typically displayed in waveform. Figure 1.1 shows an example of 

EMG signal waveform. 

 

Figure 1.1 Example of EMG signal waveform 
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 There are two known methods of extracting EMG signals which are the 

invasive and non-invasive methods. The invasive method uses wired electrodes that is 

inserted into the muscle’s fibers. The non-invasive method uses surface electrodes that 

are placed on the skin surface. The methods still use the same concept of recording 

EMG signal despite using different technique. The non-invasive method has been the 

more popular approach because the method is easier to conduct. However, both 

.techniques still share a common problem which is the EMG signals are highly exposed 

to noise [3]   

 There are several processes required before the EMG signal is readable. Pre-

processing is the initial step in EMG signal data acquisition. The process includes 

amplification, filtration, rectification and analog to digital conversion. The EMG 

signal amplitude usually ranges from 0-10mV and the frequency ranges from 0 -500 

Hz. The parameters depend of the type of electrode used. Signal that have been 

processed are transferred to the computer for real-time signal monitoring.  

1.3 Motivation  

In recent years, the usage of EMG signal for automation control, prosthetics 

and robotic arms has been more frequent. EMG signals have been used mostly in 

clinical application to diagnose muscles disorders in the past. Multiple researches have 

been conducted which aims to control devices using EMG signals. Table 1.1 shows a 

list of projects that have implemented electromyography in their device system.  

Table 1.1 List of recent projects related with electromyography 

Year Projects 

2015 Bilateral rehabilitation using an EMG-controlled robotic hand 

exoskeleton[4] 

 

2016 Intelligent wheelchair controlled by EMG [5] 

2017 EMG-controlled prosthetic hand with sensory system[6] 

2018 Gait Robotic Exoskeleton[7] 

2019 Robotic Arm movement using EMG signals[8] 
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The sudden interest in this field of studies is because the potential EMG signals 

have not yet been fully explored. The advantage of electromyography is that the signal 

is produced naturally by the movement of body parts. Controlling a device mainly a 

robotic arm would be more interactive compared to the standard controller because it 

utilizes the movement of the human body parts. In addition, this will also provide a 

more fluid control over the devices because traditional controllers restrict the 

movement to a certain body segment. 

Lack of physical sensation of controlling a manipulator is also one of the 

factors that lead researches towards the usage of EMG signal. Most of the robotic arms 

are currently controlled by mechanical controllers and vision controllers. Examples of 

these controllers are joystick, buttons and image processing-based controllers. Both 

mechanical and vision controllers can control the robotic arm but lacks control over 

the transmission of force to the manipulator. EMG signals enable the user to control 

the devices via gesture which is influenced by the amount of force exerted by the 

muscle. 

Hence, conducting this project will help in improving the control over 

myoelectric devices mainly the robotic arm. The behavior of manipulator based on the 

EMG signal from performing limb movement is the main aspect that is used to 

determine controller functionality and efficiency. The study on EMG-based controller 

will also help in overcoming the limitation of the previous controller. 

1.4 Problem Statement 

Electromyography exhibit several issues that affect the outcome of the signal. 

The placement of electrode is one of the main concerns of electromyography. Both 

method, invasive and non-invasive electromyography requires accurate positioning in 

order to get a quality EMG signal. The muscle group[9] needs to be identified initially 

before applying the electrode. The effect of electrode misplacement is cross talk which 

leads to misinterpretation of EMG signals.  

Another problem when using electromyography is that the EMG signals are 

easily exposed to noise. Some examples of the noises are motion artifact, ambient noise 
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and inherent noise. The motion artifact[10] produces the most noise compare to the 

other noises. Motion artifacts is the involuntary movement of the body that causes the 

muscles to contract randomly. This leads to the interference of the contact between the 

muscle fiber and the electrode. 

The controller requires to read EMG signal which then will be transmitted to 

the actuator to produce movement. The EMG signals have an infinite value which 

mean that the signals produced are random and hardly the same for the same gesture. 

The signals need to be allocated into a certain range value for the controller to 

distinguish the gesture. This process requires proper EMG signal classification as the 

signal will also be affected by noise.  

The precision of the robotic arm also needs to be considered. This is more 

focused on the selection of actuators as they handle the rotational movement of the 

robotic arm. Some of the motors may have major defects which will cause the motors 

to have a higher percentage error. A higher error will reduce the performance rate of 

the robotic arm as well as make it harder to manipulate.  Hence, there are several 

problems in developing an EMG controlled robotic arm which are the electrode 

placement, noise exposure, classification of EMG signals and accuracy of the robotic 

arm.  

1.5 Objectives 

1. To design and develop a functional 4-DOF robotic arm that is controlled using 

EMG signals 

2. To perform analysis on the operation of the Robotic Arm based on the 

characteristic of EMG signal collected from the forearm. 

3. To test the effectiveness of the actuators based on the instruction given by the 

controller 
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1.6 Scopes 

1. Developing a 4 degree of freedom (DOF) robotic arm with base, shoulder, 

elbow, wrist and gripper motion. 

2. The movement of the robotic arm is controlled using EMG signals that are 

collected from the upper limb 

3. The system will use a microcontroller to process the input and output data. 

4. Surface electrodes will use to collect EMG signals that is interfaced by a 

single channel EMG sensor 

5. A total of five actuators will be used to actuate the robotic arm joints.  

6. The robotic arm forward kinematic will be developed using the DH 

convention method. 
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LITERATURE REVIEW 

2.1 Overview  

This section discusses on the review of information from other journals and 

papers. The topic that is reviewed are actuator, electromyography and controller. The 

actuator consists of three parts which are servo motor, DC motor and stepper motor. 

The electromyography section consists of three parts which are invasive 

electromyography, non-invasive electromyography and electrode placement. Lastly, 

the microcontroller section consists of three parts which are Arduino UNO, Raspberry 

Pi and Arduino Mega 2560. The summary of the reviews is discussed in in the final 

section of this chapter. 

2.2 Actuator  

An actuator is a device that convert energy into motion. The actuators are 

required to move the robotic links and joints in order to replicate the real human limbs. 

Different types of actuator have their own advantage and disadvantages. Three types 

of actuator will be discussed in this part which are servo motor, DC motor and Stepper 

motor. 

2.2.1 Servo Motor  

The servo motor is a type of rotary actuator that can have a precise control over 

angular position. There are two types of servo motor, a DC servo motor and an AC 

servo motor. Both types operate on PWM (Pulse Width Modulation) which is activated 

when a pulse is sent to its respective output pins. The motor can produce high torque 

which can generate enough force to move medium weighted loads. The servo motors 

are commonly used in robotic applications. Figure 2.1 shows a typical servo motor.  
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Figure 2.1 Servo motor 

 Several research projects have used the servo motor for its ease of control. 

The robotic arm in [11] used servo motors as actuators which is controlled using 

internet connection. The angle of rotation is inserted into the program and transferred 

to the controller. The manipulator was able to rotate based on the value given by the 

researchers. The voiced controlled prosthetic arm[12] is another example of servo 

motor application. The prosthetic consists of six standard servo motors which are 

controlled by human speech. It is possible to generate a range of PWM signals by 

classification of different voice sample. 

 Servo motors also have a very high accuracy in terms of angle rotation. It uses 

a close loop negative feedback system using a potentiometer to return the current angle 

of the servo motor. In paper [13], the servo motor is used to actuate the gripper which 

used a geared system. The gripper is locked when the servo reached the desired angle. 

Another example of servo motor accuracy is the chess playing robot[14] which uses 

servo motor to lower down the end effector. The servo motor pushes the manipulator 

tip to reach the top of the chess piece without overshooting. 

 The servo motors in general have high torque, high accuracy and easy to 

control in which is suitable for a control operation. The common rectangular shape of 

a servo motor is also an advantage for some cases as it is easier to install it in the 

system. Any standard microcontroller with PWM output can control a servo motor. 

2.2.2 DC Motor 

A DC Motor is a rotary actuator that converts electrical energy into mechanical 

energy. The motor main components are axle, rotor, commutator, field magnets, and 


