

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PERFORMANCE ANALYSIS OF CAR AIR CONDITIONING SYSTEM UNDER SCHEDULED MAINTENANCE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

MUHAMAD ALI AQIL BIN MAT SAIDI B071511091 941015-10-5003

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: PERFORMANCE ANALYSIS OF CAR AIR CONDITIONING SYSTEM UNDER SCHEDULED MAINTENANCE

Sesi Pengajian: 2018/2019

Saya **MUHAMAD ALI AQIL BIN MAT SAIDI** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

ii

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
		kepentingan M	alaysia seba	gaiman	a yang term	aktub dalam A	KTA
	SULIT*	RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat]	FERHA	D yang te	lah ditentukan	oleh
	I EKHAD [*]	organisasi/bad	an di mana p	enyelic	likan dijala	nkan.	
\square	TIDAK						
	TERHAD						
Yang	Yang benar,			Disahkan oleh penyelia:			
MUH	AMAD ALI A	QIL BIN MAT	PRO	OFESO	R MADYA	TS. DR.	
SAIDI			MU	MUHAMMAD ZAHIR BIN HASSAN			N
Alamat Tetap:		Сор	Cop Rasmi Penyelia				
No. 1, Jalan 2/4A-2,							
43650), Bandar Baru	Bangi,					
Selangor Darul Ehsan.							
Tarikł	n: 3rd Decemb	er 2018	Tari	kh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled PERFORMANCE ANALYSIS OF CAR AIR CONDITIONING SYSTEM UNDER SCHEDULED MAINTENANCE is the results of my own research except as cited in references.

Signature:	
Author :	MUHAMAD ALI AQIL BIN MAT
	SAIDI
Date:	3 rd December 2018

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	PROFESOR MADYA TS. DR.
	MUHAMMAD ZAHIR BIN HASSAN

v

ABSTRACT

Automotive air-conditioning system has been a major concern in servicing issues to keep the quality of air and give a comfortable to the passengers. A variety of tools have been developed which include the experimental studies to tackle the problem. The aim of this project is to investigate the scheduled and unscheduled maintenance performance of the car air conditioning system by using the design of experiments (DOE) method in the static instability of a car leading to their performance. A present methodology is introduced whereby a 3M Series Environmental Monitor is carried out to monitor the temperature and dust level within the air conditioner in the AC system of Proton Wira. The study of the ambient indoor temperature is investigated in to predict the right pressure inside the system since the different surrounding temperature have an affect towards the performance of the car air conditioning system. An experimental investigation using a thermometer is also carried out to measure the panel register airflow temperature which leads to a validation of the results. Measurements for the present experimental investigation were set for the period of 16 minute. Parametric settings on the changing the expansion valve, receiver drier and cleaning the evaporator coil fins effect determine the performance of each of these factors to air conditioning system. The results of the temperature, pressure and the dust level inside car cabin area are extracted from the experimental work and show a significant decrease. The approach then can be used as a reference to evaluate AC performance for most type of vehicle.

ABSTRAK

Sistem penyaman udara automotif telah menjadi kebimbangan utama dalam menangani masalah untuk menjaga kualiti udara dan memberi keselesaan kepada para penumpang. Pelbagai alat telah dibangunkan yang merangkumi kajian eksperimen untuk mengatasi masalah ini. Tujuan projek ini adalah untuk menyiasat prestasi penyelenggaraan berjadual dan tidak berjadual sistem penyaman udara kereta dengan menggunakan reka bentuk kaedah percubaan (DOE) dalam ketidakstabilan statik kereta yang membawa kepada prestasi mereka. Metodologi yang sedia ada diperkenalkan di mana Monitor Alam Sekitar 3M dijalankan untuk melihat suhu dan tahap habuk di dalam sistem penghawa dingin AC Proton Wira. Kajian terhadap suhu luaran kereta diselidik untuk meramalkan tekanan yang tepat sepatutnya berada di dalam sistem kerana suhu persekitaran yang berbeza akan menjejaskan prestasi sistem penghawa dingin kereta. Penyelidikan eksperimen menggunakan termometer juga dilakukan untuk mengukur suhu aliran udara register panel yang mengarah ke pengesahan hasil yang dinyatakan oleh peneliti lain. Pengukuran telah diambil dalam tempoh percubaan selama 16 minit untuk suhu dalaman yang berbeza. Pengaturan parametrik pada perubahan injap pengembangan, penghawa penerima dan membersihkan kesan sirip penyejat penyejat menentukan prestasi setiap faktor ini kepada sistem penghawa dingin. . Keputusan suhu, tekanan dan tahap habuk di dalam kawasan kabin kereta pada dasarnya didapati dari kerja eksperimen dan menunjukkan penurunan ketara. Pendekatan ini boleh digunakan sebagai rujukan untuk menilai prestasi AC terhadap kebanyakan jenis kereta.

DEDICATION

To my beloved parents, my supervisor, lecturer and my cherished friends.

viii

ACKNOWLEDGEMENTS

This work is dedicated to my parents and family whose give endless supports and prayers during a long period of my studies. Thank you very much for providing me with the best education.

Sincere thanks are due to my academic supervisors, Associate Professor Ts. Dr. Muhammad Zahir Hassan and Mr. Muhammad Nur, for unmatched guidance, expert advice and knowledge during this research. I am also indebted to the technical staff, especially to the Mr. Khairil Fitri for utility, technical and laboratory supports as well as their great sense of humor for giving me a constructive suggestion on experimental work throughout my project period. I am also grateful for the help and support from my classmates, BMMA 2/1.

My special thanks to Mat Saidi Bin Mohamed and Juvita Binti Abdul Majid whom always be with me beside my heart from the start with full support and encouragement during these difficult times. Thank to everyone that keeps me smile and happy throughout my period of study in Melaka. Finally, I would like to thank Universiti Teknikal Malaysia Melaka (UTeM) for the opportunity to study at this beautiful campus.

ix

TABLE OF CONTENTS

		PAGE
TAB	LE OF CONTENTS	х
LIST	FOF TABLES	xiv
LIST	COF FIGURES	XV
LIST	FOF APPENDICES	xix
LIST	FOF SYMBOLS	xx
LIST	COF ABBREVIATIONS	xxi
LIST	FOF PUBLICATIONS	xxii
~~~		
СНА	APTER 1 INTRODUCTION	1
1.1	Overview	1
1.2	Research Background	2
1.3	Aim and Objectives of the Resear	ch 3
	1.3.1 Aim	3
	1.3.2 Objectives	4
1.4	Scope of study	4
СНА	<b>PTER 2</b> LITERATURE RE	VIEW 5
2.1	Introduction	5
2.2	Car Air-Conditioning System	7 X

СНАН	PTER 3	8 METHODOLOGY	30
2.7	Summ	ary	29
	2.6.2	Effect of the condenser size	28
	2.6.1	Effect of the refrigerant charge	26
2.6	Simul	ation	26
	2.5.3	Effect of inlet air temperature to the evaporator	25
	2.5.2	Effect of rotating speed of the compressor	25
	2.5.1	Effect of condenser water temperature	24
2.5	Exper	imental Investigation	24
	2.4.6	Thermostatic Expansion Valve	21
	2.4.5	Receiver Drier	19
	2.4.4	Condenser	17
	2.4.3	Compressor	15
	2.4.2	Orifice Tube	13
	2.4.1	Evaporator Coil	11
2.4	Comp	onents of Car Air Conditioning System	11
	2.3.2	Thermostatic Expansion Valve and Receiver Drier	10
	2.3.1	Orifice Tube and Accumulator	8
2.3	Туре о	of Car Air Conditioning System	8
	2.2.1	History Background	7

30

xi

3.1	Introduction to Present Methodology	30
3.2	Maintenance of Car Air Conditioning System	33
3.3	Experimental Work: Pre Set-Up	34
3.4	Parametric performance experimental setting	45
	3.4.1 Expansion valve	45
	3.4.2 Evaporator coil	48
	3.4.3 Receiver drier	53
3.5	Experimental Result: Comparative Analysis	56
	3.5.1 Panel register airflow temperature	56
	3.5.2 Cabin area air temperature	57
	3.5.3 Dust level inside the cabin area	58
	3.5.4 The pressure inside the system	59
3.6	Summary	61
СНАТ	PTER 4 RESULT AND DISCUSSION	62
CHAI	TER 7 RESULT AND DISCUSSION	02
4.1	Overview	62
4.2	Parameter components of replacement and work	64
4.3	Ambient Indoor Temperature	67
4.4	Data Analysis	69
	4.4.1 Panel register airflow temperature	69
	4.4.2 Cabin area air temperature	71
	xii	

4.4.4	The pressure inside the system	76
	Dust level inside the cabin area	74

CHAPTER 5		CONCLUSIONS	AND	RECOMMENDATIONS	FOR
		FURTHER WORK			81
5.1	Conclusion	ns			81
5.2	Recommen	ndation for Further Res	earch		83

- **REFERENCES** 84
- APPENDIX 88

## LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 Information for con	npressors used in car air conditioners (Shah, 2006)	) 17
Table 4.1 The average ambier	nt indoor temperature	68

xiv

## **LIST OF FIGURES**

FIGURE	TITLE	PAGE
Figure 2.1 Overvi	ew of Literature Review	6
Figure 2.2 Schema	atic of Orifice Tube/Accumulator (Shah, 2006)	9
Figure 2.3 Schema	atic of TXV Expansion Valve/Receiver Drier (Shah, 2006)	10
Figure 2.4 Evapor	rator Coil (Shah, 2006)	13
Figure 2.5 Fixed (	Drifice Tube (Shah, 2006)	14
Figure 2.6 Wobble	e Plate type of Compressor	16
Figure 2.7 Paralle	l Type of Condenser (MACS, 2010)	18
Figure 2.8 Histori	cal Developments of Condenser (Shah, 2006)	18
Figure 2.9 Receiv	er/Dehydrator (MACS, 2010)	20
Figure 2.10 Intern	ally Controlled Thermostatic Expansion Valve (Shah, 2006)	22
Figure 2.11 Extern	nally Controlled Thermostatic Expansion Valve (Shah, 2006)	23
Figure 3.1 Concer	ot flow chart for performance analysis of car air-conditioning	32
Figure 3.2 Type o	f car used Proton Wira 1.6L	34
Figure 3.3 Non-fu	nctioning condenser fan	35
Figure 3.4 Fusebo	x of Proton Wira	36
Figure 3.5 Conder	nser and radiator fan motor single socket	37
Figure 3.6 Replac	ing motor fan condenser	37

XV

Figure 3.7 Proton Wira's air-conditioner panel	38
Figure 3.8 Recover, vacuum and recharge R-134a machine	39
Figure 3.9 Low discharge side and high discharge side	40
Figure 3.10 The reading of low- and the high-pressure side	40
Figure 3.11 Type of refrigerant gas used	41
Figure 3.12 Specifications of the air-conditioning	41
Figure 3.13 Hygro-thermometer	42
Figure 3.14 Humidity and temperature sensor	43
Figure 3.15 Type of the thermometer used	44
Figure 3.16 The knob was placed at the pipelines	44
Figure 3.17 The old expansion valve	46
Figure 3.18 The new O-ring	46
Figure 3.19 Installation of the pipe	47
Figure 3.20 Installation of the capillary tube	47
Figure 3.21 Installation of the tape at the capillary tube	48
Figure 3.22 The inlet and outlet pipes of the evaporator coil	49
Figure 3.23 The dash board of Proton Wira	50
Figure 3.24 A set of ratchet wrench is used	50
Figure 3.25 The evaporator coil is taken out from the casing	51
Figure 3.26 Brushing the evaporator coil's fins	51
Figure 3.27 The inlet and the outlet pipes of the evaporator coil xvi	52

Figure 3.28 The evaporator coil is inserted back	52
Figure 3.29 The inlet and the outlet pipes inside the engine compartment	53
Figure 3.30 The inlet side of the evaporator coil	54
Figure 3.31 The pipe that needed to be open	54
Figure 3.32 The old receiver drier	54
Figure 3.33 The pressure switch	55
Figure 3.34 The receiver drier's holder	55
Figure 3.35 Data of the panel register is taken	56
Figure 3.36 3M EVM Environmental monitor	58
Figure 3.37 The monitor is placed at the center console	58
Figure 3.38 The monitor is placed	59
Figure 3.39 Connected hose to the low and high side valve	60
Figure 4.1 Overview of experimental outcome comparative study and analysis	63
Figure 4.2 Condition of work before service and after service	66
Figure 4.3 First attempt of unscheduled and scheduled maintenance's data	70
Figure 4.4 Second attempt of unscheduled and scheduled maintenance's data	70
Figure 4.5 First attempt of unscheduled and scheduled maintenance's data	72
Figure 4.6 Second attempt of unscheduled and scheduled maintenance's data	73
Figure 4.7 First attempt of unscheduled and scheduled maintenance's data	75
Figure 4.8 Second attempt of unscheduled and scheduled maintenance's data	75
Figure 4.9 First attempt data of the low-pressure side versus time taken xvii	76

Figure 4.10 Second attempt data of the low-pressure side versus time taken	77
Figure 4.11 First attempt data of the high-pressure side versus time taken	78
Figure 4.12 Second attempt data of the high-pressure side versus time taken	78

xviii

## LIST OF APPENDICES

APPENDIX

TITLE

PAGE

xix

C Universiti Teknikal Malaysia Melaka

## LIST OF SYMBOLS

D, d	-	Diameter
F	-	Force
g	-	Gravity = 9.81 m/s
Ι	-	Moment of inertia
1	-	Length
m	-	Mass
Ν	-	Rotational velocity
Р	-	Pressure
Q	-	Volumetric flow-rate
r	-	Radius
Т	-	Torque
Re	-	Reynold number
V	-	Velocity
w	-	Angular velocity
X	-	Displacement
Z	-	Height
q	-	Angle

XX

## LIST OF ABBREVIATIONS

PCA	Principal Component Analysis
A/C	Air-Conditioner
ΟΤ	Orifice Tube
HVAC	Heating Ventilation and Air-Conditioning
СОР	Coefficient of Performance
FDC	Fixed Displacement Compressor
VDC	Variable Displacement Compressor
DOE	Design of Experiment
TXV	Thermostatic Expansion Valve

xxi

## LIST OF PUBLICATIONS

xxii

C Universiti Teknikal Malaysia Melaka

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Overview

The air conditioning system plays a major role in a vehicle for cooling the passengers and the driver throughout driving period. Now, cars have implemented modern technology in an air conditioning system to give a comfortable driving. There are several types of automotive air conditioning systems that available in a marketplace but only two major that are used in the vehicle. The first one is using the receiver drier – expansion valve system and the other one used accumulator – orifice tube system (Shah, 2006). In an air conditioner's refrigeration system, the refrigerant continuously changes its phase from liquid to gas and then back to liquid again. The air conditioning system consists of a compressor, condenser, evaporator coil, receiver drier and thermostatic expansion valve or orifice tube and accumulator (Lee and Yoo, 2000).

The system can adjust the temperatures and humidity of the air, besides controlling the temperature of the surrounding inside the cabin and provides fresh outdoor air. This happens to improve comfort and increase the efficiency of air circulation (Limperich *et al.*, 2005). Like in a human body, the heart is the key organ in the circulatory system. Same goes for compressor's role in car air conditioning system which continuously cycles on and off to provide cooling requirements for the cabin car (Kaynakli and Horuz, 2003). As car regular required maintenance on engine system, thus like air conditioning system. Keeping the performance of the system is important in terms of comfort, safety and

economy (Datta *et al.*, 2014). So, it depends on how proper attention to its maintenance and service needs to keep the system running smoothly. There are many types of service maintenance guide in the automotive world because of different types of car. One of it is Infiniti where the air conditioning system of the car needs to inspect for every 12 months (Infiniti, 2009).

Since this system in the vehicle filters both outside and recirculate air if a car drove in heavy traffic in an urban area that has poor air quality, cabin air filter "In-Cabin Micro-filter" needs to replace annually or for every 15,000 miles (Nissan, 2015). Dirty or clogged filters can cause a variety of problems, it is crucial to replace the filter before it gets bad. The new cabin air filter will help to trap any road dust, bacteria and other air pollutants from reaches dashboard vents, so that the driver and the passengers can breathe easier (Nissan, 2015).

#### 1.2 Research Background

The air conditioner is functioning as the mechanism to transfer heat from a cabin of the vehicle to the surrounding. Due to this operation in the system, it helps to retain the low-temperature condition in the vehicle and prevent hot temperature condition. This project focuses on the analysis performance of car air conditioning involved the experiment on the system by measuring the coefficient of performance (Wang *et al.*, 2005). The experiment will be done by taking the reading of temperature and pressure of a certain place in air conditioning system inside the engine like has been done by (Wang *et al.*, 2005).