

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION OF BUCKLING BEHAVIOUR OF AXIALLY COMPRESSED CYLINDER WITH UNEVEN LENGTH HAVING TRIANGULAR WAVES

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

NURUL AINHIDAYAH BINTI ZULKEFLI B071510327 960112-03-6146

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Investigation of Buckling Behaviour of Axially Compressed Cylinder with Uneven Length Having Triangular Waves

Sesi Pengajian: 2018

Saya NURUL AINHIDAYAH BINTI ZULKEFLI mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

□ _{TERHAD*}	Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
TERHAD Yang benar,	Disahkan oleh penyelia:
NURUL AINHIDAY	AH BINTI
ZULKEFLI	DR. OLAWALE IFAYEFUNMI
Alamat Tetap:	Cop Rasmi Penyelia
No9, Jalan Danau 43	,
Taman Desa Jaya,	
81100 Johor Bahru, .	ohor.
Tarikh:	Tarikh:
*Jika Laporan PSM ir	i SULIT atau TERHAD, sila lampirkan surat daripada pihak

DECLARATION

I hereby, declared this report entitled Investigation of Buckling Behaviour of Axially Compressed Cylinder with Uneven Length Having Triangular Waves is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	DR. OLAWALE IFAYEFUNMI

ABSTRAK

Kajian ini bertujuan untuk menyiasat kesan panjang yang tidak sempurna pada kelakuan gelang silinder shell yang mempunyai bentuk ombak segi tiga. Tujuh belas keluli ringan silinder dihasilkan dengan panjang gelombang tidak sempurna yang berterusan, 2A =0.56. Semua sampel dibuat dengan plat keluli ringan 1mm dan dipotong dengan menggunakan mesin laser jet. Semua sampel silinder telah diuji di bawah mampatan paksi. Beban runtuh telah disahkan dengan membandingkan hasil percubaan dan hasil berangka. Dalam projek ini, semua hasil menunjukkan peratusan perbezaan kecil yang hampir sama, yang kurang daripada 10 peratus antara keputusan percubaan dan berangka. Keputusan ini dapat disahkan dengan membandingkan graf dan bentuk cacat. Dari hasilnya, dapat disimpulkan bahwa beban runtuh menurun seiring dengan peningkatan jumlah gelombang.

ABSTRACT

This research aims to investigate the effect of imperfect length on the buckling behaviour of cylindrical shell having triangular waves. Seventeen mild steel cylinders were manufactured with a constant imperfect wavelength, 2A = 0.56. All of the samples were manufactured with 1mm mild steel plate and were cut using laser jet machine. Next, the cylindrical samples were all tested under axial compression. The collapse loads of all samples were validated by comparing the experimental results and the numerical results. In this project, all of the results show a small difference percentage of similarity, which is less than 10 percent between the experimental and numerical results. These results can be validated comparing the load versus displacement plot and the deformed shapes. From the results, it can be concluded that the collapsed load decreases as the number of waves increases.

DEDICATION

This report I dedicate to my beloved parents, Fatimah Binti Mohd Affandi, Zulkefli bin Abd Rahman and Shahril Anuar. Also dedicate to my little brother, cats and friends who always support me during this final year project process. In addition, my final year group mates, who always help, guide and assists me to complete my final year project investigation.

ACKNOWLEDGEMENTS

First and foremost, I would like to grab this chance to express my sincere gratitude to my supervisor, Dr. Olawale Ifayefunmi from the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) for his essential guidance, support and encouragement towards the completion of the final year project report.

Special thanks to UTeM for giving fund required to complete this project. In addition, I would like to thank the technicians from Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM)sincerely for guiding us to use the machine in laboratory.

Last but not least, I would like to thank my beloved parents, siblings and my friends for providing mental support throughout this final year project. Thanks to everyone who have been a significant part for the realization of this project.

TABLE OF CONTENTS

	PAGE
TABLE OF CONTENTS	X
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF APPENDICES	xix
LIST OF SYMBOLS	XX
LIST OF ABBREVIATIONS	xxi
LIST OF PUBLICATION	xxii
CHAPTER 1 INTRODUCTION	1
1.1. Paakaround	-
1.1 Background	1
1.2 Problem Statement	3
1.3 Objectives	4
1.4 Scopes	4
CHAPTER 2 LITERATURE REVIEW	6
2.1 Introduction of Thin Walled Structures	6
2.2 Buckling of Cylindrical Structures	7
2.3 Types of Buckling	8
2.4 Buckling Behaviour of Compressed Cylinder	10

2.5 Summary of Literature Review	13
CHAPTER 3 METHODOLOGY	15
3.1 Research Design	15
3.2 Design Sketching	16
3.3 Material Selection	16
3.3.1 Advantages of Mild Steel	17
3.4 Manufacturing Process	18
3.4.1 Design Sketching for Cutting Process	18
3.4.2 Cutting Process	19
3.4.3 Tensile Test	21
3.4.4 Polishing of Specimens	23
3.4.5 Grinding of Specimens	25
3.4.6 Thickness Measurement of Specimens	25
3.4.7 Rolling Process	26
3.4.8 Welding Process	28
3.4.9 Height and Diameter Measurement of Specimens	29
3.5 Axial Compression Test	31
3.6 Numerical Analysis	32
3.6.1 Procedure of Numerical Analysis	32

xi

CHAPTER 4 RESULT AND DISCUSSION	48
4.1 Introduction	48
4.2 Pre-Test Measurement	48
4.2.1 Thickness Measurement	48
4.2.2 Diameter Measurement	50
4.2.3 Height Measurement	53
4.3 Experimental Results	54
4.3.1 Material Testing	54
4.3.2 Compression Testing	54
4.4 Numerical Analysis Result	65
4.5 Comparison of Experimental and Numerical Result	66
4.6 Discussion	74
CHAPTER 5 CONCLUSION AND RECOMMENDATION	75
5.1 Conclusion	75
5.2 Future Works	76
REFERENCES	77
APPENDIX	83

xii

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 Differenc	es of Research	14
Table 3.1 Properties	s of Mild Steel	16
Table 3.2 Composit	tion of Mild Steel	17
Table 3.3 Properties	s of Material	34
Table 4.1 Measured	Thickness and Standard Deviation for All Specimens	49
Table 4.2 Measuren	nent of Internal Diameter	51
Table 4.3 Measuren	nent of External Diameter	52
Table 4.4 Measuren	nent of Height	53
Table 4.5 Experime	ental Result for All Samples	55
Table 4.6 Numerica	l Results for All Samples	65
Table 4.7 Comparis	on of Data	66
Table 4.8 Comparis	on of Deformed Shape	73

xiii

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1 Perfect	Cylinder and SGI Cylinder (Hu and Burgueno, 2016)	12
Figure 2.2 Cylind	ers in Different Boundary Condition (Skukis et. al, 2013)	12
Figure 3.1 Project	Flow Chart	15
Figure 3.2 2D Ske	etching of Cylinder with Waves	18
Figure 3.3 Laser C	Cutting Machine	19
Figure 3.4 Set Up	Before Cutting Process	20
Figure 3.5 Cutting	g Process of All Specimens	20
Figure 3.6 Mild S	teel Plate After the Cutting Process	21
Figure 3.7 INSTR	.ON Machine	22
Figure 3.8 Tensile	e Test Specimens	22
Figure 3.9 Tensile	e Test Process	23
Figure 3.10 WD-4	10 Antirust Lubricant	24
Figure 3.11 Coatin	ng the Specimens with Antirust Lubricant	24
Figure 3.12 Gridd	ed Specimens	25
Figure 3.13 Measu	uring Thickness of Specimen	26
Figure 3.14 The R	Rolling Machine	26

Figure 3.15 The Rolling Process	27
Figure 3.16 Rolled Specimens in Cylindrical Shell	27
Figure 3.17 MIG Welding Machine	28
Figure 3.18 Samples of Welded Specimens	28
Figure 3.19 Vernier Caliper	29
Figure 3.20 The Measurement of Outer Diameter	30
Figure 3.21 The Measurement of Inner Diameter	30
Figure 3.22 Universal Testing Machine	31
Figure 3.23 Procedure of Imported the 3D Drawing	33
Figure 3.24 Sample Imported in ABAQUS	33
Figure 3.25 (a) Create Material (b) and (c) Insert The Material Properties	35
Figure 3.26 (a) Create Section and (b) Edit the Section	36
Figure 3.27 (a) Assign The Section (b) Edit Section Assignment	36
Figure 3.28 Create Instance In Assembly Module	37
Figure 3.29 Create The Top Sets for Cylinder	37
Figure 3.30 Create The Toppest Set	38
Figure 3.31 Create The Bottom Set	38
Figure 3.32 (a) Create Plate Part (b) Edit revolution for Plate	39
Figure 3.33 Reference Point Set on Plate	39
Figure 3.34 Plate and Cylinder Assembly	40
Figure 3.35 Create Set for Plate	40

XV

Figure 3.36 Create Set for Reference Point	41
Figure 3.37 Creation of Step	41
Figure 3.38 Creation of Field Output	42
Figure 3.39 Creation of History Output	42
Figure 3.40 The Process of Creating the Interaction Between 2 Surfaces	43
Figure 3.41 The Interaction Property	44
Figure 3.42 Creation of Boundary Condition	45
Figure 3.43 Inserting Mesh Size	46
Figure 3.44 Meshing Completed	47
Figure 3.45 Creation of Job	47
Figure 4.1 Parts divided for Measurement	50
Figure 4.2 Result of Load (kN) versus Compression Extension (mm) Specimen 0-1	56
Figure 4.3 Result of Load (kN) versus Compression Extension (mm) Specimen 0-2	56
Figure 4.4 Result of Load (kN) versus Compression Extension (mm) Specimen 4-1	57
Figure 4.5 Result of Load (kN) versus Compression Extension (mm) Specimen 4-2	57
Figure 4.6 Result of Load (kN) versus Compression Extension (mm) Specimen 4-3	58
Figure 4.7 Result of Load (kN) versus Compression Extension (mm) Specimen 6-1	58
Figure 4.8 Result of Load (kN) versus Compression Extension (mm) Specimen 6-2	59
Figure 4.9 Result of Load (kN) versus Compression Extension (mm) Specimen 6-3	59
Figure 4.10 Result of Load (kN) versus Compression Extension (mm) Specimen 8-1	60
Figure 4.11 Result of Load (kN) versus Compression Extension (mm) Specimen 8-2 xvi	60

Figure 4.12 Result of Load (kN) versus Compression Extension (mm) Specimen 8-3	61
Figure 4.13 Result Load (kN) versus Compression Extension (mm) Specimen 10-1	61
Figure 4.14 Result Load (kN) versus Compression Extension (mm) Specimen 10-2	62
Figure 4.15 Result Load (kN) versus Compression Extension (mm) Specimen 10-3	62
Figure 4.16 Result Load (kN) versus Compression Extension (mm) Specimen 12-1	63
Figure 4.17 Result Load (kN) versus Compression Extension (mm) Specimen 12-2	63
Figure 4.18 Result Load (kN) versus Compression Extension (mm) Specimen 12-3	64
Figure 4.19 Comparison Between Experiment and Numerical Load (kN) versus Compression Extension (mm) Specimen 0-1	67
Figure 4.20 Comparison Between Experiment and Numerical Load (kN) versus Compression Extension (mm) Specimen 0-2	67
Figure 4.21 Comparison Between Experiment and Numerical Load (kN) versus Compression Extension (mm) Specimen 4-2	68
Figure 4.22 Comparison Between Experiment and Numerical Load (kN) versus Compression Extension (mm) Specimen 4-3	68
Figure 4.23 Comparison Between Experiment and Numerical Load (kN) versus Compression Extension (mm) Specimen 6-1	69
Figure 4.24 Comparison Between Experiment and Numerical Load (kN) versus Compression Extension (mm) Specimen 6-3	69
Figure 4.25 Comparison Between Experiment and Numerical Load (kN) versus Compression Extension (mm) Specimen 8-1	70
Figure 4.26 Comparison Between Experiment and Numerical Load (kN) versus Compression Extension (mm) Specimen 8-2	70

Figure 4.27 Comparison Between Experiment and Numerical Load (kN) versus	
Compression Extension (mm) Specimen 10-1	71
Figure 4.28 Comparison Between Experiment and Numerical Load (kN) versus	
Compression Extension (mm) Specimen 10-2	71
Figure 4.29 Comparison Between Experiment and Numerical Load (kN) versus	
Compression Extension (mm) Specimen 12-3	72
Figure 4.30 Graph of Collapse Load (kN) versus Number of Waves	74

xviii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Thickness Measurements	84
Appendix 2	Diameter Measurements	93
Appendix 3	Height Measurements	99

LIST OF SYMBOLS

Fcyl	-	Elastic Critical Buckling Load of Cylinder
E	-	Young Modulus
V	-	Poisson's Ratio
t	-	Wall Thickness
Fref	-	References Buckling Load to Cause Yield
D	-	Diameter of Cylinder
σур	-	Yield Stress
2A	-	Amplitude of Waves

LIST OF ABBREVIATIONS

SPLA	Single Perturbation Load Approach
DESICOS	New Robust Design Guideline for Imperfection Sensitive Composite Launcher Structures
SGI	Seeded Geometric Imperfection
DXF	Drawing Exchange Format
MIG	Metal Inert Gas

xxi

LIST OF PUBLICATION

 Ifayefunmi, O., Zulkefli N.A., 2019. Buckling of Cylinder with Uneven Length Subjected to Axial Compression, Proceeding of the International Offshore and Polar Engineering Conference, ISOPE-2019, Honululu, Hawaii, June 16-21 (Abstract Accepted).

CHAPTER 1

INTRODUCTION

1.1 Background

Thin walled cylindrical shell are widely used in the industries such as aerospace and nuclear power. In many situations, the thin walled cylindrical shells structures are subject to high speed wind and hydrostatic or hydrodynamic loads which might fluctuate with time and trigger instabilities in these structures (Kumar et. al, 2015). Thin walled cylindrical shells always use rings or stringer to increase the stiffness effectively (Zhou, 2012). The properties of shell structures included the efficiency of load carrying behaviors, high stiffness and aesthetic value (Guo & Zheng, 2018).

The applications of cylindrical shells in various industries is because the circular cylindrical shell combine light weight with high strength. This pros of the cylindrical shell also make they widely used in the most branches of engineering technologies (Aghajari et. al, 2006). Customarily, people usually use a cylindrical shell in real life. The cylindrical segments are interfaced to make a prime load bearing structure in many situations. For example, when the type of load is axial compression, the relation between two neighboring cylindrical segments becomes a key point (Blachut, 2015).

Thus, cylindrical shell nature of elastic stability under fundamentals loads of uniform axial compression, external pressure and torsion is strongly controlled by its length (Fajuyitan et. al, 2018). However, the buckling load of circular cylindrical shells subjected to axial compression is extremely sensitive to even very small geometric imperfections (Brush and Almroth, 1975).

1

The geometric imperfections would affect the buckling and post buckling behavior of cylindrical shell structure. Experimental studies show that the buckling strength of ideal shells without geometric imperfections is much more than that of imperfect shells. Therefore, the highly imperfections sensitivity behavior of these structures must be counted carefully and properly (Aghajari et. al, 2006). Cylindrical shells have been relatively less used since they require more rigorous modelling and, more importantly, because of their high sensitivity to imperfections. The post buckling response of cylindrical shells is difficult to predict due to the random nature of the imperfection profile (Hu and Burgueno, 2015)

Buckling is a phenomenon that has been known for centuries. Fully mature field in mechanics from the point of view of determining such critical event for avoidance in design is known as buckling. However, recognition of the positive features of buckling and post buckling response for use in smart and adaptive materials and structures began approximately 10 years ago. Such increasing interest has rekindled the popularity of studying buckling and elastic instability in general (Hu & Burgueño, 2015).

In order to investigate the effect of geometry imperfection on the buckling behavior of the cylindrical shell, numbers of experiments had been conducted. For example, a transverse device equipped with two diametrically restricted low pressure and linear contracting transducers are utilized to mount the cylindrical shell. Then, the result will be recorded and set into program. The effect of geometry imperfection could be then computed by analyzing the imperfection amplitudes and the line of power spectral density (Eglitis et. al, 2009).

From the literature study, geometric imperfections are the one that plays a main role in buckling behavior of cylindrical structures. However, there are still other factors