

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EXAMINATION OF BUCKLING BEHAVIOUR OF AXIALLY COMPRESSED CYLINDER WITH UNEVEN LENGTH HAVING SQUARE WAVES

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

NUR FATIKAH HANIM BINTI MASYOP B071510505 961012085754

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: EXAMINATION OF BUCKLING BEHAVIOUR OF AXIALLY COMPRESSED CYLINDER WITH UNEVEN LENGTH HAVING SQUARE WAVES

Sesi Pengajian: 2018

Saya NUR FATIKAH HANIM BINTI MASYOP mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

ii

	SULIT*	Mengandungi kepentingan M RAHSIA RASI	maklumat alaysia seba MI 1972.	yang gaiman	berdarjah a yang term	keselamatan aktub dalam A	atau .KTA
	TERHAD*	Mengandungi organisasi/bada	maklumat a	ГERHA benyelid	D yang tel likan dijalar	lah ditentukan 1kan.	oleh
\boxtimes	TIDAK						
	TERHAD						
Yang benar,			Disa	ahkan o	leh penyelia	a:	
 NUR I	FATIKAH HA	NIM BINTI	 DR	OLAW	ALE IFAY	EFUNMI	
MASY	OP						
Alama	t Tetap:		Сор	Rasmi	Penyelia		
NO. 2 ⁷	7 JLN VISTA	1/6,					
DESA VISTA,							
BDR BARU SALAK TINGGI, 43900,							
SEPA	NG, SELANG	OR.					
Tarikh	.:		Tari	kh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

iii

DECLARATION

I hereby, declared this report entitled EXAMINATION OF BUCKLING BEHAVIOUR OF AXIALLY COMPRESSED CYLINDER WITH UNEVEN LENGTH HAVING SQUARE WAVES is the results of my own research except as cited in references.

Signature:	
Author :	NUR FATIKAH HANIM BINTI
	MASYOP

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:

Supervisor :

DR OLAWALE IFAYEFUNMI

ABSTRACT

This research intends to examine the effect of the buckling behavior of cylindrical shell with uneven length having square waves. Eighteen mild steel cylinders were manufactured with a constant imperfect wavelength, which is 2A = 0.56mm. All of the samples were manufactured from 1mm mild steel plate. The cylindrical samples were all tested under axial compression. The collapse loads of all samples were validated by comparing the experimental results with numerical results. Results show a small percentage different between experiment and numerical result, where the percentage is less than 10 percent. In addition, comparison of load versus deflection curve and deformed shapes are in good agreement. From the results, it can be concluded that imperfection in the form of square waves results in reduction of the buckling load of the cylinder subjected to axial compression.

ABSTRAK

Kajian ini berhasrat untuk mengkaji kesan kelakuan gelang shell silinder dengan panjang yang tidak rata yang mempunyai gelombang persegi. Lapan belas silinder keluli ringan dihasilkan dengan panjang gelombang tidak sempurna yang tetap, iaitu 2A = 0.56mm. Semua sampel dihasilkan dari plat besi 1mm. Sampel silinder semuanya telah diuji di bawah mampatan paksi. Beban keruntuhan semua sampel telah disahkan dengan membandingkan hasil eksperimen dengan keputusan berangka. Hasil menunjukkan peratusan kecil yang berbeza antara eksperimen dan hasil berangka, di mana peratusan kurang daripada 10 peratus. Di samping itu, perbandingan beban berbanding lengkung ubah bentuk dan bentuk cacat adalah dalam persetujuan yang baik. Dari hasilnya, dapat disimpulkan bahwa ketidaksempurnaan dalam bentuk gelombang persegi mengakibatkan pengurangan beban tangki silinder yang tertakluk kepada pemampatan aksial.

DEDICATION

This report is dedicated to my beloved parents, my siblings and my friends, who always support me during this final year project work. Last but not least, my final year report group mates who were always with me to complete my final year project research.

ACKNOWLEDGEMENT

First and foremost, I would like to grab this chance to express my sincere gratitude to my supervisor, Dr. Olawale Ifayefunmi from the Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM) for his essential guidance, support and encouragement towards the completion of the final year project report.

Special thanks to UTeM for giving fund required to complete this project. In addition, I would like to thank Mr. Wan, Mr. Azizul, Mr. Shahrizan and Mr. Basri, the technicians from fabrication laboratory, Faculty of Mechanical and Manufacturing Engineering Technology sincerely.

Last but not least, I would like to thank my beloved parents, siblings and my friends for providing mental support throughout this final year project. Thanks to everyone who have been a significant part for the realization of this project.

TABLE OF CONTENTS

			PAGE
DEC	CLARATION	Ň	iv
APP	ROVAL		V
ABS	TRACT		vi
ABS	TRAK		vii
DED	ICATION		viii
ACK	KNOWLED	GEMENT	ix
TAB	SLE OF COM	NTENTS	Х
LIST	FOFTABL		xiii
LIST	r of figuf	RES	xiv
LIST	F OF APPEN	NDICES	xviii
LIS	I OF ABBR	EVIATIONS	XIX
CHA	APTER 1	INTRODUCTION	1
1.1	Backgrou	nd	1
1.2	Problem S	Statement	2
1.3	Project Ob	pjective	3
1.4	Project Sc	ope	4
CHA	APTER 2	LITERATURE REVIEW	5
2.1	Introducti	on of Thin Shell Structure	5
2.2	2.2 Material of Cylinder		5
2.3	Buckling	of Cylindrical Structure	6
2.4	Buckling	Behaviour of Cylinder under Axial Compression	7
	2.4.1	Geometrical Imperfection of Cylinder	8
	2.4.2	Cracked Cylinder	9
	2.4.3	Imperfect Loading	11
	2.4.4	Uneven Length	11
2.5	Summary of Literature Review		

СНА	PTER 3	METHODOLOGY	13
3.1	Research D	Design	13
3.2	Design Sketching		13
3.3	Material Se	election	14
3.4	Manufactur	ring Process	15
	3.4.1	Cutting Process	16
	3.4.2	Rust Proof	18
	3.4.3	Grid All Specimen	19
	3.4.4	Thickness Measurement	20
	3.4.5	Rolling Process	20
	3.4.6	Welding Process	22
	3.4.7	Measurement of Thin Cylinder	22
3.5	Testing wit	h INSTRON machine	23
3.6	Numerical	Analysis	25
	3.6.1	Module: Part	25
	3.6.2	Module: Property	26
	3.6.3	Module: Assembly	28
	3.6.4	Module: Step	28
	3.6.5	Module: Interaction	29
	3.6.6	Module: Load	30
	3.6.7	Module: Mesh	31
	3.6.8	Module: Job	32
СНА	PTER 4	RESULT AND DISCUSSION	33
4.1	Introductio	n	33
4.2	Pre-Test M	easurement	33
	4.2.1	Thickness Measurement	33
	4.2.2	Diameter Measurement	34
	4.2.3	Height Measurement	36
4.3	Compressio	on Test	37
	4.3.1	Experiment Result	38

4.4	Numerical Analysis	44
4.5	Comparison of Experimental and Numerical	45
4.6	Discussion on Effect of the Uneven Length Square Waves	
СНАР	PTER 5 CONCLUSION AND RECOMMENDATION	54
5.1	Conclusion	54
5.2	Future Work	
REFE	RENCES	55
APPE	NDIX	60

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1	Composition of the Mild Steel	14
Table 3.2	Mild Steel Properties	15
Table 3.3	The Properties of Material	27
Table 4.1	Thickness Data	34
Table 4.2	Measurement of Internal Diameter	35
Table 4.3	Measurement of External Diameter	36
Table 4.4	Measurement of Height	37
Table 4.5	Experiment Results	44
Table 4.6	Results of Numerical Analysis	45
Table 4.7	The Comparison between Numerical and Experimental Result	s 46
Table 4.9	The Variation of Collapsed Load as the Number of Waves Changing	53

xiii

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	Steel Tanks in Practical Engineering (Zhao and Lin, 2014)	3
Figure 2.1	Photograph Aluminium Cylinders (Blachut, 2014)	6
Figure 2.2	The Simulation Result (Allahbakhsh and Shariati, 2012)	10
Figure 3.1	Flow Chart of Research	13
Figure 3.2	Final drawing in DXF format	16
Figure 3.3	Laser Machine	17
Figure 3.4	Computer of Laser Machine	17
Figure 3.5	Platform of the Plate	18
Figure 3.6	Laser Machine Cut the Specimen	18
Figure 3.7	Coated Specimen with WD-40	19
Figure 3.8	Grid Specimen	19
Figure 3.9	Measurement of the Thickness Specimen	20
Figure 3.10	Cleaning the Roller	21
Figure 3.11	Rolling Process	21
Figure 3.12	Rolled Cylinder	22
Figure 3.13	Tensile Testing	23
Figure 3.14	Coupon after Testing	23

Figure 3.15	INSTRON Machine	24	
Figure 3.16	Import drawing in igs File		
Figure 3.17	Model Sample of Wave 4	26	
Figure 3.18	Fill the Average Thickness Value Of Specimen.	27	
Figure 3.19	Assembly Model and Plate	28	
Figure 3.20	Create Field and History Output	29	
Figure 3.21	The Interaction between 2 Surfaces Were Created	29	
Figure 3.22	The Different Boundary Condition Was Set To the Different Parts	30	
Figure 3.23	The Approximate Global Size for the Cylinder with 4 Waves	31	
Figure 3.24	The Model in a Blue Colour	31	
Figure 3.25	The Job Set Up	32	
Figure 4.1	Parts Divided for Measurement	35	
Figure 4.2	Specimen Was Under Compression Testing	37	
Figure 4.3	Graph of Load versus Compression Extension for Specimen (0-1)	38	
Figure 4.4	Graph of Load versus Compression Extension for Specimen (0-2)	38	
Figure 4.5	Graph of Load versus Compression Extension for Specimen (0-3)	39	
Figure 4.6	Graph of Load versus Compression Extension for Specimen (4-1)	39	
Figure 4.7	Graph of Load versus Compression Extension for Specimen (4-2)	39	
Figure 4.8	Graph of Load versus Compression Extension for Specimen (4-3)	40	
Figure 4.9	Graph of Load versus Compression Extension for Specimen (6-1)	40	
Figure 4.10	Graph of Load versus Compression Extension for Specimen (6-2)	40	

Figure 4.11	Graph of Load versus Compression Extension for Specimen (6-3)	41
Figure 4.12	Graph of Load versus Compression Extension for Specimen (8-1)	41
Figure 4.13	Graph of Load versus Compression Extension for Specimen (8-2)	41
Figure 4.14	Graph of Load versus Compression Extension for Specimen (8-3)	42
Figure 4.15	Graph of Load versus Compression Extension for Specimen (10-1)	42
Figure 4.16	Graph of Load versus Compression Extension for Specimen (10-2)	42
Figure 4.17	Graph of Load versus Compression Extension for Specimen (10-3)	43
Figure 4.18	Graph of Load versus Compression Extension for Specimen (12-1)	43
Figure 4.19	Graph of Load versus Compression Extension for Specimen (12-2)	43
Figure 4.20	Graph of Load versus Compression Extension for Specimen (12-3)	44
Figure 4.21	The Comparison Graph of Load versus Extension of Zero Wave (0-2)	46
Figure 4.22	The Comparison Graph of Load versus Extension of Zero Wave (0-3)	47
Figure 4.23	The Comparison Graph of Load versus Extension of Four Waves (4-3)	47
Figure 4.24	The Comparison Graph of Load versus Extension of Six Waves (6-2)	48
Figure 4.25	The Comparison Graph of Load versus Extension of Eight Waves (8-3)	48
Figure 4.26	The Comparison Graph of Load versus Extension of Ten Waves (10-1)	49

xvi

Figure 4.27	The Comparison Graph of Load versus Extension of Ten Waves	
	(10-2)	49
Figure 4.28	The Comparison Graph of Load versus Extension of Twelve Waves (12-1)	50
Figure 4.29	The Comparison Graph of Load versus Extension of Twelve Waves (12-3)	50
Figure 4.30	The Comparison between Experimental and Numerical Buckling Behaviour	51
Figure 4.31	The Graph of Collapse Load against the Number of Waves	53

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
	Appendix A	2D Design Specimen	60
	Appendix B	Thickness of Specimen	61
	Appendix C	Diameter Measurement of Specimen	67
	Appendix D	Height of Specimen	71

xviii

LIST OF ABBREVIATIONS

DXF	-	Drawing Exchange Format

MIG - Metal Inert Gas

CHAPTER 1

INTRODUCTION

1.1 Background

Buckling is one of the major failure phenomenon of cylindrical shells when in use; it may be influenced by the type of applied load, material properties of the shell and imperfections in construction. Investigation of buckling behavior towards cylindrical shells proved that rolling and construction-induced imperfections give the direct effect to the cylindrical structures.

Thin shells are efficient structures that can withstand very high buckling loads. However, unlike columns and plates, shells usually have a very unstable postbuckling behavior, which strongly affects their buckling characteristics. Therefore, their buckling and postbuckling behavior has presented scientific and engineering challenges for decades (Singer et al, 2004).

The interaction buckling curves of perfect composite shells subject to different combination of axial compression, bending, torsion and lateral pressure are obtained. The postbuckling analysis of composite cylinders with geometric imperfections of eigenmode shape is carried out to investigate the effect of imperfection amplitude on the critical buckling (Tafreshi and Bailey, 2007).

From the literature study, it is found that in buckling behaviour of cylinder shells the geometric imperfection plays a dominant. However, there are still other factors which are not explored yet. Hence, this experimental project work intend to examine the effect of uneven length with square waves on the buckling behaviour of axially compressed cylinder with.

1.2 Problem Statement

Cylindrical shells have been relatively less used since they require more rigorous modelling and because of the high sensitivity to imperfection. The postbuckling response of cylindrical shells is difficult to predict due to the random nature of the imperfection profile. Current effort have considered modelling imperfection in statistical manner to obtain a better estimate of postbuckling response (Hu and Burgueño, 2015).

Unstiffened thin walled shell structures under axial compression are prone to buckle. Within the first half of the last century, a significant deviation between buckling loads determined theoretically and buckling loads determined experimentally was identified. The reason for this discrepancy is explained by the presence of imperfections, i.e. any deviations of the real structure from the perfect shell structure. The presence of geometrical imperfections is found to have a high degrading effect even though the deviations from the perfect shell structure are within the limits of manufacturing tolerances (Friedrich et al, 2015).

Vertical cylindrical welded steel tanks are widely used for fluid and bulk storage in industrial and agricultural plants. Some of it, develop in oil industry (oil storage tanks) that are put into service in recent decades, especially large tanks (Figure 1.1). As typical thin-walled structures, tanks are very susceptible to buckling under wind load especially when they are empty or partially filled. Over the past few decades, buckling failures of cylindrical steel tanks and silos during windstorm have occurred in many countries and regions. Because of serious economic losses and environmental problems due to the destruction of storage tanks, studies about buckling of tanks under wind load have been conducted extensively over the past few decades. However, the changing of pattern can leads to the low structural strength possibility that has not been considered in details (Zhao and Lin, 2014).

Figure 1.1 Steel Tanks in Practical Engineering (Zhao and Lin, 2014)

From this several facts, an investigation must be carried out to identify the buckling strength between perfect cylinder and cylinder with uneven length having square wave.

1.3 Project Objective

Based on the problem statement discussed, the objectives of this study are:

1. To design and fabricate mild steel cylindrical shells with uneven length having square wave.

2. To examine the effects of uneven length on the buckling behavior of axially compressed mild steel cylinder.

3

3. To validate the experimental results by using numerical analysis.

1.4 **Project Scope**

This project intends to study the effect of buckling behaviour of axially compressed cylinder with uneven length. 1 mm mild steel plate was used in designing and fabricating the cylindrical shell. There are 6 different samples of cylindrical shell were designed in 2D and 3D drawing. The first one was perfect shell, and the other 5 samples were designed to have 4, 6, 8, 10 and 12 square waves.

Once the drawing was completed, the fabricating part was the next step of this research. The cylindrical shells were cut by using the laser machine. The drawing should be ensured to meet the format used in the laser machine which is DXF format to prevent any wrong cutting of shell. After that, the rolling and welding step should be done to continue the experiment.

Last part of the project was the testing for the effect of buckling behaviour of axially compressed cylindrical shell. All of the cylindrical shells were tested and the results were recorded. Numerical analysis was conducted to compare to the experimental results for the validation of data collected. Both results were compared in form of data, graphs and also deformed shape.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction of Thin Shell Structure

Thin-shell structure is common parts in the design fields because of it helps to ensure the component durability and stability structure. Paschero and Hyer, 2009, stated that thin-walled shells are particularly susceptible to loss of stability. In order to produce suitable design for practical purpose, loss of stability behaviour of shells is indispensable.

The thin shell structure has been improved progressively in engineering application because of this materials is often used in order to reduce cost. Cylindrical shells are the most commonly used thin-shell structure geometry. This due to its simple geometry and relative ease of manufacture (Ifayefunmi, 2016).

Thin shells are competent structures that can resist critical buckling loads. However, different of plates and columns, shells commonly have a very unstable postbuckling behaviour, which really affects their buckling characteristics. Because of this, many researcher are still interested in studying this field.

2.2 Material of Cylinder

There are several type of material that have been used by researchers in studying the behaviour of cylindrical shell such as aluminium, mild steel, carbon fibre and combined alloy. Blachut, (2014) carried out the study of buckling of cylinders by using aluminium as the type of material. Figure 2.1 shows the aluminium cylinder used in the experiment.