

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF HARDWARE IN ENERGY HARVESTING FROM BURNING PROCESS VIA IOT BASED SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal

Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology

(Telecommunication) with Honours.

by

AMARDEEP SINGH DHILLON A/L GURDIR SINGH

B071510080

930414-08-6109

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2018

C Universiti Teknikal Malaysia Melaka

and and	New West	THE	_	
1 100			To	М
C. Anna		V	10	IVI

Universiti Teknikal Malaysia Melaka

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK:	DEVELOPMENT OF HARDWARE IN ENERGY HARVESTING FROM BURNING
	PROCESS VIA IoT BASED SYSTEM

SESI PENGAJIAN: 2018/19 Semester 1

Saya AMARDEEP SINGH DHILLON A/L GURDIR SINGH

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.

 Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
 Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran

 Perpustakaan dibenarkan membuat sainan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
 HOle tendeken (LC)

4.	Sila	tandakan	(*)

 SULIT
 (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

 TIDAK TERHAD
 (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

 Disahkan oleh:

Alamat Tetap:

106, BLOCK B

CHERRY APARTMENT CHERRY PARK

30100 IPOH, PERAK

Cop Rasmi:

DECLARATION

I, hereby, declared this report entitled "**Development of Hardware in Energy Harvesting from Burning Process via IoT Based System**" is the results of my own research except as cited in references.

Signature	:
Name	:
Date	:

i

APPROVAL

This report is submitted to the Faculty of Electrical & Electronic Engineering Technology of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunications) with Honours. The member of the supervisory is as follow:

> Mdm. Rahaini Binti Mohd Said (Project Supervisor)

Sir. Shamsul Fakhar Bin Abd Gani (Project Co - Supervisor)

ii

ABSTRAK

Pada masa kini, pembakaran terbuka, bencana seperti banjir dan gangguan elektrik menjadi agak biasa yang di kawasan luar bandar dengan kadar yang membimbangkan. Oleh itu satu projek dicadangkan untuk menangani masalah ini dan bertujuan untuk mewujudkan mekanisme pembakaran yang terkawal dan berkesan mengurangkan bahan berbahaya yang dikeluarkan dari pembakaran dan mencipta teknik penuaian baru menggunakan tenaga biomas seperti ranting, daun, kayu, kertas dan arang dan pada masa yang sama menuai tenaga dari tenaga haba yang dibebaskan. Selain itu, produk ini menjanjikan banyak dari segi aplikasinya di mana memenuhi keperluan komuniti semasa bencana terutamanya semasa gangguan banjir atau kuasa di mana elektrik adalah keperluan untuk kesejahteraan penduduk di seluruh dunia. Di samping itu bukan sahaja menyediakan bekalan elektrik semasa bencana, penemuan ini boleh digunakan untuk alat elektronik semasa aktiviti luar seperti berkhemah dengan menghapuskan untuk membawa bahan bakar gas sepanjang aktiviti luar. Produk ini boleh muncul sebagai kaedah baru untuk menuai tenaga kerana kos penjana termoelektrik modul yang digunakan dalam produk ini menghasilkan tenaga murah berbanding dengan kaedah penuaian sedia ada seperti panel solar, turbin air atau turbin stim. Projek ini juga akan mengumpulkan data yang berharga seperti suhu, asap, voltan, dan berat bahan buangan. Ini dimungkinkan dengan WiFi ESP Arduino menggunakan modul bersama Uno yang akan melaksanakan pemprosesan yang diperlukan untuk membolehkan operasi ini berlaku. Selepas memeriksa jenis bahan arang yang berbeza dipilih sebagai bahan terbaik untuk pelepasan kuasa. Untuk membuktikan analisis regresi kenyataan ini telah dijalankan dan garis regresi linear dihasilkan.

ABSTRACT

Nowadays, open burning, disasters such as floods and power outage tends to be a relatively common eye soring experience that is often practiced in rural area in an alarming rate. Therefore a project was proposed to counter this issue and aims to recreate a controlled burning mechanism which effectively reduce the harmful substances that is emitted from the burning and to recreate a new harvesting technique using biomass energy such as twigs, leaves, wood, paper and charcoal emitted from the burning and simultaneously harvest the energy from this heat energy that is released. In addition this product promises a lot in terms of its application whereby it serve the community need during disaster especially during flood or power outages whereby electricity is a necessity for well-being of population around the world. In addition not only providing electricity during disaster this invention can charge your electronic gadgets during outdoor activities such as camping and the plus point here is by eliminating to carry gas fuel along during outdoor activities In addition this product can be emerge as new method to harvest energy as the cost of the thermoelectric generator module used in this product to produce the energy is cheap than the existing harvesting method such as solar panel, water turbine or steam turbine. Furthermore, this project will also collect valuable data and information such as temperature, smoke, voltage, current and weight of the waste material. This is made possible by using a ESP WiFi module alongside Arduino Uno which will perform the processing that is necessary to allow this operation to occur. After examining different type of material charcoal was selected as the best material for power emission. In order to prove this statement regression analysis was conducted and linear regression line was produced.

DEDICATION

To my beloved parents,

Gurdir Singh and Ranjit kaur

All my lectures, especially Rahaini Binti Mohd Said and friends

v

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my appreciation to those who helped me to complete my project. I would like to thank my supervisor Rahaini Binti Mohd Said and co-supervisor Shamsul Fakhar Bin Abd Gani from Electronic and Computer Engineering Technology Department in UTeM for the significant guidance, patience and suggestion to make sure that my project achievable. I have gain a lot of information and knowledge from both of my lectures along this project.

Furthermore, I would like to thank my beloved parents for their motivation and financial support along this project. Lastly but not least, I would to like to thank my friends and everyone that had been supporting and helping me during the progress of my project.

TABLE OF CONTENT

DECLARATION	i
APPROVAL	ii
ABSTRAK	iii
ABSTRACT	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
TABLE OF CONTENT	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLA	ГURE xvii
LIST OF APPENDICES	xix
CHAPTER 1: INTRODUCTION	1
1.0 Background	1
1.1 Problem Statement	2
1.2 Objective	7
1.3 Scope	7
CHAPTER 2: LITERATURE REVIEW	9
2.0 Introduction	9
2.1 Overview of Harvesting Energy Mechanism	9
2.2 Review on the application of Thermoelectric Generator(T	EG) 10
2.2.1 Study of the Economical Feasibility and the	
Performance of Thermoelectric Devices	
under Different Conditions	10

	2.2.2	Review of Micro Thermoelectric Generator	11
	2.2.3	Low Power Renewable Energy System used	
		for Power Back-up Applications Thermoelectric	
		Generator System with Geothermal Water in Simulations	13
	2.2.4	Prediction and Analysis of Energy Generation	
		from Thermoelectric Energy Generator with	14
		Operating Environmental Parameters	
	2.2.5	Energy Harvesting Using Thermoelectric Generators	15
	2.2.6	A Prototype Thermoelectric Co-Generation Unit	16
	2.2.7	Effects of temperature in the performance of	
		the Thermoelectric devices	17
	2.2.8	Electricity Generation Using Thermoelectric	
		Generator – TEG	18
2.3	Review	on the application of Arduino	19
	2.3.1	Arduino Wi-Fi network analyzer	19
	2.3.2	Review on Sensor Cloud and its Integration with	
		Arduino based Sensor Network	21
2.4	Review	w on the application of DC to AC Inverter	23
	2.4.1	A Novel DC-to-AC Controlled Multi-level Inverter	23
2.5	Review	on the application of Voltage Regulator- Battery	
	Energy	v Storage System	25
	2.5.1	A Novel Voltage Regulator- Battery Energy	
		Storage System for Renewable Energy System	25
2.6	Review	on the application of Heat Sink	27
	2.6.1	Using Phase Change Material in Heat Sinks	
	t	o Cool Electronics Devices with Intermittent	
	τ	Jsage	27
2.7	Review	on the application of ESP 8266 Wi-Fi	28
		viii	

	2.7.1	Wireless Environmental Parameters Monitoring	
		and SMS Alert System	28
	2.7.2	Data Centre Temperature Monitoring with ESP8266	
		Based Wireless Sensor Network and Cloud Based	
		Dashboard with Real Time Alert System	32
2.8	Review	v on the application of IoT and Big Data	35
	2.8.1 Il	lustration of IOT with Big Data	35
	2.8.2 R	eal-time Big Data Technologies of Energy	
	In	ternet Platform	36
	2.8.3 De	evelopment of an IoT Device for Monitoring	
	El	ectrical Energy Consumption	37
	2.8.4 A	Comparative Study of Arduino, Raspberry Pi	
	an	d ESP8266 as IoT Development Board	38
2.9	Compari	ison of Literature Review	41
2.10	Sum	nmary	44
CH	APTER	3: METHODOLOGY	45
3.0	Introd	luction	45
3.1	Plann	ing	46
	3.1.1	Work plan of the project	46
	3.1.2	Data collection	49
3.2	Desig	n	49
	3.2.1	Block diagram of Energy Harvesting Mechanism	49
3.3	Imple	ment	50
	3.3.1	Project implementations	50
3.4	The C	peration Flowchart	51
3.5	Hardv	vare specification	52
	3.5.1	Thermoelectric Generator (TEG) module	52

	3.5.2	Microcontroller	54
		3.5.2.1 Comparison between Arduino Uno and	
		PIC16F877A Microcontroller	54
		3.5.2.2 Comparison between Arduino Uno and	
		Arduino Nano	54
	3.5.3	Arduino Uno	56
	3.5.4	ESP 8266 Wi-Fi Module	58
	3.5.5	Wi-Fi Modules Comparison	60
	3.5.6	Integration of Arduino with ESP 8266	61
	3.5.7	LCD Display	62
	3.5.8	Related Sensor's	63
		3.5.8.1 Smoke sensor	63
		3.5.8.2 DS18B20 Temperature Sensor	65
		3.5.8.3 Load cell Amplifier HX 711 module with load	
		Sensor	65
		3.5.8.4 Current sensor	67
		3.5.8.5 Voltage sensor	69
3.6	Meth	od of Analysis	69
	3.6.1	Regression	69
3.7	Sum	mary	70
CHA	APTER -	4: RESULTS AND DISCUSSION	72
4.0	Introd	uction	72
4.1	Schem	natic Diagram and Wiring Diagram	72
4.2	Energ	y Harvesting system hardware design	74
4.3	Result	S	80
4.4	Data A	Analysis	85
	4.4.1	Regression analysis on types of variables in different types of	

		material	85
	4.4.2	Analysis on the power(W) in different material	85
	4.4.3	Analysis on the voltage(V) in different material	88
	4.4.4	Comparison of power(W) in different materials	88
	4.4.5	Analysis on the best fit line based on the Charcoal regression	89
	4.4.6	Mathematical equation based on the Charcoal regression	90
4.5	Analys	is on overview of the product and to provide us a feedback regard	ing
	this nev	vinnovation	91
	4.5.1	Awareness of cost for harvesting energy is high	91
	4.5.2	Awareness of biomass as a source for renewable energy	92
	4.5.3	The important of extra energy source during emergency	
		situation	92
	4.5.4	As a potential product to sustain the energy productive and	
		environmental protection	93
	4.5.5	As innovation product to serve community need	94
4.6	Survey	summary	94
4.7	Discus	sion	95
4.8	Limita	tion	97
CHA	PTER 5	: CONCLUSION AND FUTURE WORK	98
5.0	Introdu	iction	98
5.1	Conclu	sion	98
5.2	Recom	mendation for future work	99
	REFER	ENCES	100
	APPEN	DICES	103
	Append	lix A	104
	Append	lix B	110
	Append	lix C	115

xi

LIST OF TABLES

Table	Title	Page
2.9.1	Comparison of Literature Review	43
3.1	Gantt chart for the progress of the project	49
3.2	Examination of the properties and measurements for the product of thermoelectric modules	55
3.3	Comparison between Arduino Uno and Arduino Nano	57
3.4	Technical Specification of Arduino Uno	58
3.5	Pin with specialized function	60
3.6	Pin out details	61
3.7	Wi-Fi modules comparison	62
3.8	LCD Pin Description	65
4.1	Comparison of power in different materials	89
4.2	Regression statistics	90
4.3	Summary output	90

LIST OF FIGURES

Figure	Title	Page
1.1.1	Flood at Kelantan(Article adapted from Utusan, 2015)	4
1.1.2	Flood at Terengganu(Article adapted from Berita Harian, 2014)	4
1.1.3	Statistics of Asia countries does not have access to electricity	
	(Article adapted from Asia Times, 2016)	5
1.1.4	Statistics of Africa and it does not have access to electricity	
	(Article adapted from Asia Times, 2016)	5
1.1.5	A group of boys use the light of a lantern to study in a house in	
	Chowkipur, India (Adapted from Simon de Trey-White/For The	
	Washington Post,2016)	6
1.1.6	An instructor directs a lesson by the light of lamp oil lights and a	
	flame in Mumbai, India (Adapted from Times India newspaper, 2014)	6
1.1.7	Dark stress in Africa (Adapted from City Press newspaper, 2017)	7
2.2.1.1	Structure of TEG Module	11
2.2.2.1	Schematic overview of µ-TEG structure	12
2.2.3.1	TEG unit	13
2.2.4.1	Graphic illustration for the setup of the experimental	14
2.2.5.1	Schematic diagram	16
2.2.6.1	Arrangement of TEG unit	17
2.2.7.1	TEG unit	18
2.3.1.1	Scan for the available networks	20
2.3.1.2	Display the available networks	21
2.3.1.3	When you move from one place to another it might introduce	
	to new networks	21

2.3.2.1	Information from Arduino is transferred to this three sensor clouds	22
2.4.1.1	Block diagram of inverter	23
2.4.1.2	Matlab simulation model of dc to ac inverter	24
2.4.1.3	Output of proposed dc to ac inverter	25
2.5.1.1	Diagram of the proposed system	26
2.5.1.2	Simulation model of the proposed system	26
2.6.1.1	Overview of PCM against Temperature	28
2.7.1.1	System Framework	29
2.7.1.2	2 System operation	29
2.7.1.3	Site page facilitated on server	31
2.7.1.4	Page from the hub	31
2.7.1.5	Recorded reading from the server	31
2.7.2.1	Architecture of the system	33
2.7.3.1	Thingspeak Monitoring System	34
2.8.1.1	IoT with Big Data Chart	35
2.8.2.1	Overview	36
2.8.3.1	IoT Device Block Diagram	38
2.8.4.1	Contrast of different parameters	39
2.8.4.2	2 IoT block diagram	40
3.1	Major step in methodology	45
3.2	Flowchart of overall flow of PSM	48
3.3	Overview of the project	50
3.4	Process of the project	51
3.5	Structure of TEG	52
3.6	TEG module	53
3.7	Front view of the Arduino Uno	56
3.8	The Arduino Uno board with part label	57
3.9	ESP8266 Pin out	59

3.10	ESP8266 Pin out (Top View)	59
3.11	ESP8266 chip	60
3.12	Communication process	61
3.13	Serial connection of Arduino with ESP 8266	61
3.14	16x2 LCD display	62
3.15	Smoke sensor	63
3.16	Pin description	64
3.17	Working mechanism	64
3.18	Temperature sensor	65
3.19	Three type of cabled sensor and the connection	65
3.20	A load cell (left side) and a HX711 breakout board (right side)	66
3.21	Load cell Amplifier	66
3.22	Connection of Load cell and HX711 module	67
3.23	Current sensor	68
3.24	Illustration of how current sensor looks inside	68
3.25	Voltage sensor	69
3.26	Simple linear regression model	70
4.1	Sensor and Arduino interface simulation diagram	73
4.2	Schematic simulation diagram	74
4.3	Hardware Design	74
4.4	Voltage regulator and Inverter circuit after etching process	75
4.5	Implementation of inverter and voltage regulator circuit with lamp and	
	USB	75
4.6	Circuit after soldering process	75
4.7	TEG module arrangement	76
4.8	Implementation of heat sink	76
4.9	Voltage regulator and Inverter circuit	77
4.10	Sensors and ESP 8266 Integrated with Arduino	77

4.11	Inner view of the product	78
4.12	Outer view of the product	78
4.13	Overall product view integrated with IoT based system	80
4.14	Hardware testing by using TEG module	81
4.15	LCD display the reading of the sensors	82
4.16	Desired DC and AC power is obtained	82
4.17	Live monitoring data using BLYNK server	83
4.18	Interfaces to monitor the data	84
4.19	Power(W) vs Leaves	85
4.20	Power(W) vs Twigs	85
4.21	Power(W) vs paper	86
4.22	Power(W) vs charcoal	86
4.23	Power(W) vs wood	86
4.24	The graph of voltage(V) versus type of materials	88
4.25	Charcoal regression best fit line	89
4.26	Pie chart responses on awareness of cost for harvesting energy is high	91
4.27	Pie chart responses on awareness of biomass as a source for renewable	
	energy	92
4.28	Pie chart responses on the important of extra energy source during	
	emergency situation	92
4.29	Pie chart responses as a potential product to sustain the energy productive	
	and environmental protection	93
4.30	As innovation product to serve community need	94

xvi

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

TEG	Thermoelectric Generator	ſ
μ-TEG	Micro Thermoelectric Ge	nerator
DC	Direct current	
ANN	Artificial neural network	
MPPT	Maximum power point tra	acking algorithm
PV	Photovoltaic	
Κ	Kelvin	
LCD	Liquid-crystal display	
UPS	Uninterruptible power sup	pplY
VR-BESS	Voltage Regulator- Batter	y Energy Storage System
PCM	Phase change material	
HTTP	Hypertext Transfer Protoc	ol
HTML	Hypertext Markup Langua	nge
PHP	Hypertext Preprocessor	
GPIO	General Purpose Input Ou	tput
SSID	Service set identifier	
IoT	Internet of Things	
USB	Universal Serial Bus	
I/O	Input/ Output	
ICSP	In-circuit serial programm	ing
EEPROM	Electrically erasable progr	rammable read-only memory
SRAM	Static random-access men	nory
PWM	Pulse Width Modulation	
	х	zvii

C Universiti Teknikal Malaysia Melaka

- SPI Serial Peripheral Interface
- LED Light emitting diode
- TTL Time to live
- MCU Micro Controller Unit
- TCP/IP Transmission Control Protocol/Internet Protocol
- PCB Printed Circuit Board
- GND Ground
- VCC Power Supply
- RX Receive Data
- TX Transmit Data

xviii

LIST OF APPENDICES

Appendix	Title	Page
А	Arduino Coding	104
В	ESP WIFI 8266 Coding	110
С	Survey Questionnaire	115

xix

CHAPTER 1

INTRODUCTION

1.0 Background

Since from the past century, electricity becomes a necessary source of living needed by humans. Hence, energy plays a vital role at focal point of our lives and protecting us whereby it enhances wellbeing, encounters environmental change and generate income. About a large portion of the planet needs electricity during disaster or power outages whereby electricity is a necessity for well-being of population around the world. With a smart and innovate design, this product promises a lot, not only providing electricity during disaster this invention can charge your electronic gadgets during outdoor activities such as camping and the plus point here is by eliminating to carry gas fuel along during outdoor activities. In addition carrying gas fuel is a major problems especially during camping whereby it can spill and ruin your trip if you are not careful. Moreover, fuel can start adding up pretty expensive if you regularly go camping. Therefore, by using this product as long you have a biomass energy such as leaves, twigs, wood, paper and charcoal around you this product can provide you with a power source for phones, radio, light and more. There's a creating enthusiasm for greener, more secure practical power sources to battle the developing danger of an unnatural weather change and other ecological issues. Sun, wind, water, biomass, waves and tides, and the glow of the soil, all give different choices to nonpractical power source

Next, this product also reserve power whereby this product come with a rechargeable battery whereby you can fully charge prior to leaving on your trip and it also help pretty good way during disaster's or other emergencies whereby it can sustain and provide electricity to the victims even without fire. In addition this product

can be emerge as new method to harvest energy as the cost of the module used in this product to produce the energy is cheap than the existing harvesting method such as solar panel or water turbine.

Therefore, the wasted heat energy that are released from the burning could be used again or recycled in other alternative form that is electrical energy form. This device has the capability to convert the DC voltage to AC voltage whereby it can be used for higher voltage appliances (AC voltage products) by only using the burning method in the form of wasted heat energy. By using this new harvesting method, it will be able to convert wasted heat energy into electricity, reduce smoke emission and improve the air quality in the output while simultaneously providing users with capability to use appliances that uses AC voltage. This project solves these problems by converting a fraction of the fire's thermal energy into electricity, enabling reductions in emissions and a corresponding improvement in health and living conditions.

This project comprises with three different application to monitor the system based on wireless technology which comprises data transmission from one point to another. Basically, the aim of this project is to collect data such AC voltage, AC current, DC voltage, DC current, Power and the temperature. Furthermore, a cloud or server will created to store all the data via three different ways of Internet of Things (IOT) which are Android app, Wi-Fi hotspot using ESP module and software pc base interface (GUI). Essentially, a circuit board will be created using Arduino, ESP module, relay, temperature sensor and all the required sensors for this project. Moreover, a weight sensor is added which will convert a load or force acting on it into an electronic signal. This electronic signal can be a voltage change, current change or frequency change depending on the type of load cell and circuitry used because different weight have different reading of data.

1.1 Problem Statement

Essentially, there are many existing method for harvesting energy such as solar panel and water turbine but due to its cost it has been a vital problem to all whereby it is costly to implement the method. Hence, it is necessary and inevitable to combat this ever growing problem of harvesting energy existing method and come up with a proper solution in terms of its cost of implementation for the well-being of our civilization in the 21st century. Thusly, a venture was proposed to recreate a new harvesting technique using biomass source such as twigs, leaves, wood, paper and charcoal emitted from the burning and simultaneously harvest the energy from this heat energy that is released. In addition this product promises a lot in terms of its application whereby it serve the community need during disaster especially during flood as shown in figure 1.1.1 and 1.1.2 or power outages whereby electricity is a necessity for well-being of population around the world. Around the globe, 1.3 billion individuals need access to power. In excess of 600 million are in sub-Saharan Africa, and in excess of 300 million are in India alone. Hence, giving electric energy to these unserved publics will cause a huge bounce sought after in the coming decades. India has guaranteed to put an accentuation on sustainable wellsprings of vitality; there are programs in Africa to make "small scale grids" utilizing renewables. In any case, as power producing limit unavoidably develops ever bigger, India and alternate nations of the creating scene won't have the capacity to dodge the expanded utilization of non-renewable energy sources particularly coal. Figure 1.1.3 shows, country which don't have access to electricity whereby India marks as the largest population that does not have access to electricity. Besides that, figure 1.1.4 demonstrates the percentage of people in Africa do not have access to electricity especially in rural areas. Below are some figures which shows the disaster strikes to countries such as India and Africa when populations does not have access to electricity. As a result of absence of access to power and present day vitality sources, individuals around the globe, particularly in provincial groups, battle to break out of the cycle of destitution. Reliable energy get to engages impressive financial advantages, empowering shops and organizations to remain open longer, giving groups access to better medicinal services, and giving youngsters household lighting for after-school study time. Hence this product will be a great use for them whenever the electricity is not available in those 3rd world countries. This can ideally be used as an inverter to regenerate back the power for a temporary period of time.