

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CONVERSION OF CARBURETTED ENGINE TO FUEL INJECTION SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

MOHAMAD NORSYAHMI BIN RAMLI B071510726 940107-01-7313

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: CONVERSION OF CARBURETTED ENGINE TO FUEL INJECTION SYSTEM

Sesi Pengajian: 2018/2019

Saya **MOHAMAD NORSYAHMI BIN RAMLI** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD

Yang benar,

Disahkan oleh penyelia:

MOHAMAD NORSYAHMI BIN RAMLI ADNAN BIN KATIJAN Alamat Tetap: Cop Rasmi Penyelia NO 41, Jalan Bintang 10, Taman Koperasi Bahagia, 83000 Batu Pahat, Johor

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

iii

DECLARATION

I hereby, declared this report entitled CONVERSION OF CARBURETTED ENGINE TO FUEL INJECTION SYSTEM is the results of my own research except as cited in references.

Signature:	
Author :	MOHAMAD NORSYAHMI BIN
	RAMLI

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	ADNAN BIN KATIJAN

ABSTRAK

Sejak abad ke-21, enjin karburetor telah digunakan untuk pelbagai jenis kenderaan terutamanya kereta dan motorsikal. Karburetor adalah komponen utama yang digunakan sebagai sistem penghantaran bahan api untuk enjin automotif. Walaupun kos rendah, enjin karburetor mempunyai beberapa kelemahan seperti penggunaan bahan api yang tinggi, pelepasan asap berbahaya dan kecekapan operasi yang rendah. Suntikan bahan api elektronik (EFI) telah dicipta untuk mengatasi masalah tersebut. Sistem EFI dibuat untuk meningkatkan kecekapan bahan api dan mengurangkan perlepasan asap yang berbahaya. Sistem EFI dibahagikan ke dalam dua (2), iaitu liang suntikan bahan api (PFI) dan suntikan petrol terus (GDI) bagi motorsikal. Komponen utama bagi sistem EFI, contohnya, Unit Kawalan Elektronik (ECU), Kapasitor Melaksanakan Pencucuhan (CDI), pam minyak, badan pencekik dan sensor, penyuntik bahan api, pancarongga pengambilan, talian bahan api bertekanan tinggi dan abah-abah pendawaian. Setiap komponen perlu disambungkan kepada ECU bagi mendapatkan perjalanan sistem yang betul. Sensor akan memberi isyarat kepada ECU dan mentafsirkan data sebelum membuat sebarang keputusan. Sebagai contoh, jumlah campuran udara dan bahan api yang diperlukan akan dikira sebelum ia masuk ke dalam kebuk pembakaran dan tindakan serta keputusan dilakukan berdasarkan prestasi motosikal. Penukaran suntikan bahan api elektronik telah memberikan hasil yang baik. Selepas proses penukaran, motosikal telah diuji dan ia lulus semua dalam ujian yang telah dijalankan bagi tiga (3) operasi berbeza.

ABSTRACT

Since 21st century, the carbureted engine has been used for many type of vehicle especially cars and motorcycle. Carburettor is a main component that used as a fuel delivery system for automotive engine. Even though the cost is low, carbureted engine has some disadvantages such as, it is high fuel consumption, hazardous emission and low operating efficiency.

Electronic Fuel Injection (EFI) has been invented to overcome the problems. The EFI system is made to improve the fuel efficiency and decreasing the hazardous emissions. The EFI system was divided into two (2), Port Fuel Injection (PFI) and Gasoline Direct Injection (GDI) for motorcycles. The main components for EFI system were, Electronic Control Unit (ECU), Capacitor Discharge Ignition (CDI), Fuel pump, Throttle body and its sensor, Fuel injector, Intake manifold, High pressure fuel line and wiring harness. Each of the components needs to be connected with the ECU to properly operate. The sensors will give a signal to the ECU and interpreted the data before it making any decision. For example, the amount of air and fuel mixture needed to be calculated before it enters into the conversion that has been made gave a good result. After the conversion process, the motorcycle has been tested and it passed all the run testing for three (3) different operations.

DEDICATION

I would like to dedicate this thesis to my beloved family especially my parents Mr. Hj. Ramli bin Hj Hambali and my mother Mdm Hjh. Rosemini binti Joji for supporting me and give me strength to finish this thesis very well. I am also would like to give an appreciation to my supervisor, Mr. Adnan bin Katijan, friends and those people who have guided and inspired me throughout my journey of education.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah for the strengths and His blessing for me to complete this project even though there are many difficulties and hardship along the way to finish this project.

I would like to express my appreciation and deep respects to my supervisor, Mr. Adnan bin Katijan, for his constant guidance and encouragement as well as critical comment throughout this project. My thanks also go to all my lecturers and friends who have taught me, directly or indirectly and support me for this past 4 years.

Lastly, I also would like to dedicate my appreciation to my beloved father, mother and my family that always gave me the constant support, love, care and inspiration throughout my campus life. To all that I mentioned above, May Allah bless all of you.

Thank you.

ix

TABLE OF CONTENTS

			PAGE
TABL	LE OF CON	ΓENTS	х
LIST	OF TABLES	5	XV
LIST	OF FIGURE	es	xvi
LIST	OF APPENI	DICES	xix
LIST	OF SYMBO	DLS	xx
CHA	PTER 1	INTRODUCTION	1
1.1	Backgroun	d	1
1.2	Problem St	tatement	2
1.3	Objective		3
1.4	Scope of w	vork	3
CHA	PTER 2	LITERATURE REVIEW	5
2.1	Introductio	n	5
2.2	Fuel Syster	n	7
2.3	Carburetto	r	7
2.3.1	Carburetto	r Operation	8
2.3.2	Types of C	arburettor	8
	2.3.2.1 Slic	de Type Carburettor	8

Х

	2.3.2.2 Vacuum Type Carburettor	9
	2.3.2.3 Butterfly Type Carburettor	10
2.4	Electronic Fuel Injection (EFI)	11
2.4.1	Types of Electronic Fuel Injection (EFI)	12
	2.4.1.1 Gasoline Direct Injection (GDI)	12
	2.4.1.2 Port Fuel Injection (PFI)	13
	(Source: http://www.climatetechwiki.org/technology/ice_improvements/ 4App	il,
	2011)13	
2.5	Comparison between Carburetted Fuel System and Electronic Fuel Injection	
Syster	m (EFI)	14
2.6	Conversion Components	15
2.6.1	Electronic Control Unit (ECU)	15
2.6.2	Capacitor Discharge Ignition (CDI)	16
2.6.3	Fuel pump	18
	2.6.3.1 Internal fuel pump	19
	2.6.3.2 External fuel pump	20
2.6.4	Fuel injector	21
2.6.5	Throttle Body	22
2.6.6	Intake Manifold	23
2.6.7	Fuel Pressure Regulator	24
	2.6.7.1 Plunger type fuel regulator	25

	2.6.7.2 Flow through fuel regulator	25
	2.6.7.3 Diaphragm and spring type fuel regulator	26
2.6.8	Sensors	26
	2.6.8.1 Intake Pressure Sensor	27
	2.6.8.2 Atmospheric Pressure Sensor	27
	2.6.8.3 Coolant Temperature Sensor	28
	2.6.8.4 Intake Temperature Sensor	28
	2.6.8.5 Throttle Position Sensor	28
	2.6.8.6 Oxygen Sensor	29
	2.6.8.7 Camshaft and Crankshaft Sensors	30
	2.6.8.8 Fuel filter	30
2.6.9	High Pressure Fuel Line	31
2.6.10	0 Wiring Harness	
CHAP	TER 3 METHODOLOGY	34
3.1	Introduction	34
3.2	Diagram for the Carburetted Component	36
3.3	Proposed EFI Components for Conversion	37
3.3.1	Intake Assembly	37
3.3.2	Electronic Control Unit (ECU)	37
3.3.3	External Fuel Pump Assembly	38

3.3.4	Wiring Harness and Connectors	38
3.3.5	Fuel Lines and Hose Clamps	39
3.3.6	Mechanical Fittings Set	39
3.4	Installation Procedures	40
3.4.1	Removing the Carburettor	41
3.4.2	Installing the Fuel Injection Kit	42
3.4.3	Installing the External Fuel Pump	43
3.4.4	Connecting the Electronic Parts	44
3.5	Diagram of Typical Fuel Injection System and Delivery System	45
CITAT	PTER 4 RESULT AND DISCUSSION	47
CHAI	PTER 4 RESULT AND DISCUSSION	
CHAF 4.1	Injection System and Components	47
4.1	Injection System and Components	47
4.1 4.1.1	Injection System and Components Connection of Wiring Diagram	47 48
4.14.1.14.2	Injection System and Components Connection of Wiring Diagram Electrical Wiring System	47 48 52
4.14.1.14.24.2.1	Injection System and Components Connection of Wiring Diagram Electrical Wiring System Electrical connection for Capacitor Discharge Ignition (CDI)	47 48 52 53
 4.1 4.1.1 4.2 4.2.1 4.3 	Injection System and Components Connection of Wiring Diagram Electrical Wiring System Electrical connection for Capacitor Discharge Ignition (CDI) Fuel System	47 48 52 53 54
 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 	Injection System and Components Connection of Wiring Diagram Electrical Wiring System Electrical connection for Capacitor Discharge Ignition (CDI) Fuel System Fuel System Diagram	47 48 52 53 54 54
 4.1 4.1.1 4.2 4.2.1 4.3 4.3.1 	Injection System and Components Connection of Wiring Diagram Electrical Wiring System Electrical connection for Capacitor Discharge Ignition (CDI) Fuel System Fuel System Diagram	47 48 52 53 54 54 55

СНАР	TER 5 CONCLUSION	58
5.1	Introduction	58
5.2	Summary of Research	58
5.3	Achievement of Research Objective	58
5.4	Recommendation for Future Work	59
5.5	Project Potential	60
REFE	RENCES	61
APPE	NDIX	63
Gantt (Chart	63

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1: Test Run Ta	able of Motorcycle Condition	46
Table 2: Test Run Ta	able of Motorcycle Condition After Conversion	57

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Overvie	w of literature review	6
Figure 2.2: The con	nponent of motorcycle carburettor	7
Figure 2.3: Slide Ca	arburettor diagram	9
Figure 2.4: Vacuum	n type of carburettor	10
Figure 2.5: Butterfl	y Type Carburettor (Bruce A. Johns 1999)	11
Figure 2.6: The injective the combustion cha	ector is mounted at the cylinder head and directly sprayed the mber	e fuel at 13
Figure 2.7: PFI diag	gram shows the injector sprayed fuel in the intake manifold	14
Figure 2.8: The mai	in components of ECU	16
Figure 2.9: CDI sch	nematic diagram	18
Figure 2.10: The in	ternal type of fuel pump and its component	19
Figure 2.11: Extern	al fuel pump (Mohd Faisal Husim 2012)	20
Figure 2.12: Typica	al Fuel injector (Bruce A. Johns 1999)	21
Figure 2.13 Type of	f throttle body used in single cylinder of motorcycle	22
Figure 2.14: The pa	arts of the intake manifold	23
Figure 2.15: Typica	al fuel injector (Bruce A. Johns 1999)	24
Figure 2.16: Typica	al parts of an intake pressure sensor (Bruce A. Johns 1999)	27
Figure 2.17: Typica	ll Oxygen Sensor (Bruce A. Johns 1999) xvi	29

Figure 2.18: Parts of fuel filter that used fine nylon (Bruce A. Johns 1999)	31
Figure 2.19: Wiring harness for typical motorcycle	33
Figure 3.1: Methodology flowchart	35
Figure 3.2: Typical carburetted control and delivery system	36
Figure 3.3: Intake Manifold Assembly	37
Figure 3.4: Electronic Control Unit (ECU)	37
Figure 3.5: External fuel pump assembly	38
Figure 3.6: Wiring and connector diagram	39
Figure 3.7: Fuel Lines and Hose Clamps diagram	39
Figure 3.8: Mechanical fitting set	40
Figure 3.9: Flowchart of Retrofitting the Fuel injection System	40
Figure 3.10 : Carburettor parts	41
Figure 3.11: Fuel injector kit	42
Figure 3.12: Pump assembly	43
Figure 3.13: Wiring Harness	44
Figure 3.14: Typical fuel injection and delivery system	45
Figure 4.1: Injection System and Components	47
Figure 4.2: Connection to Throttle Position Sensor (TPS)	48
Figure 4.3: Adding and Attach the Ground Wire to Body Frame	49
Figure 4.4: Sensor Connect to Injector	49
Figure 4.5: Connection of Fuel Pump Wires	50

Figure 4.6: Connection for Signal Speed Wires	51
Figure 4.7: Electronic Control Unit (ECU) connection	52
Figure 4.8: Capacitor Discharge Ignition connection	53
Figure 4.9: Fuel System Diagram	54
Figure 4.10: Height of External Fuel Tank	55
Figure 4.11: Location of External Fuel Pump	56

xviii

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Table 3: Gantt Chart for Bachelor's Degree Project for semester 1 and semester 263

xix

C Universiti Teknikal Malaysia Melaka

LIST OF SYMBOLS

D, d	-	Diameter
F	-	Force
g	-	Gravity = 9.81 m/s
Ι	-	Moment of inertia
1	-	Length
m	-	Mass
Ν	-	Rotational velocity
Р	-	Pressure
Q	-	Volumetric flow-rate
r	-	Radius
Т	-	Torque
Re	-	Reynold number
V	-	Velocity
W	-	Angular velocity
X	-	Displacement
Z	-	Height
q	-	Angle

CHAPTER 1

INTRODUCTION

1.1 Background

Carburetor is the mechanical device which mixes up the gasoline and air together in proper ratio for internal combustion engine. Carburetors have generally supplanted in the automotive especially in cars, motorcycles and to a lesser extent, flight businesses by gasoline injection. It is still used in conventional small engines for a lot of machine, transportation and other equipment. However, the carburetor has the disadvantages such as high fuel consumption, hazardous emission and low operating efficiency.

Spark ignition engine is a system where fuel is either blended with the air preceding the admission stroke or not long after inlet valve closure and an electric start to ignite the air-fuel mixture. The air fuel proportion is the primary and critical variable that we should concentrated on to control the emissions. The air fuel proportion for the internal ignition motor is controlled by the fuelling system which is either via carburettor system and the air fuel injection system.

Thus, the EFI technology is implemented to improve the fuel economy and decreasing motor out contamination emissions. ECU which controls the EFI system also controls the injection system by special projects as per the estimation and examination of the contributions of different sensors. Be that as it may, the advanced fuel injection motorcycle's ECU costs are very high and utilize the utilization of lock up table stand complex numerical calculations.

The proposed of installation for fuel injection system includes three fundamental parts motor's system, port fuel injection (PFI) and ECU. The system is focused to work with the current carbureted motorcycles, case, the carbureted bike is modified with the fuel injection component by replacing the carburetor and complex parts while holding all the conventional components and electrical systems.

There are some findings and the previous challenges of the previous study for the fuel injection system. It is said that the additional cost of the FI system should not give an increment in total cost of automobile. Besides, it is also said that, the lower power of fuel pump must be use and small enough to fit into the fuel tank and the vaporization of the fuel must be forestalled because of higher encompassing temperature around the air-cooled motor. More than that, the FI system components must be sufficiently minimal in size to fit into the small bikes and it must have the ability to work by a kick-start when the battery is totally released (Mohd Faisal Husim 2012).

1.2 Problem Statement

In the 21st century, the usage of the transportation is huge. With the continuous increasing of the fuel prices, small-engine transportation especially the motorcycles is becoming more and more popular. The motorcycle is very popular vehicle transportation due to its mobility and convenience and high power to weight ratio which gives the good fuel economy compare to cars. Most of the motorcycles in the developing country use the carburettor system as the fuel delivery system especially for the models with the cubic capacity less than 125cc.

2

Even though the EFI technology had been invented and implemented in the certain motorcycle models, most of the people still preferring using the carburettor motorcycle with the small cylinder gasoline engine because the price is lowest and can be affordable for most of the people and also the low cost in the maintenance.

However, the small gasoline fuelled engine operators with the carburettor suffer from the low-operating efficiency, high fuel consumption and high level of hazardous emissions. The increased of the carburetted motorcycles had result the serious air pollutions and health problems related to humans.

Among these variables, the low operating efficiency that will produce less power on the engine is the main and important variable that we must focus besides the air-fuel consumption and how to control the emissions. The air fuel ratio for the internal combustion engine is controlled by the fuelling system which is either by carburettor system and the air fuel injection system. Thus, in this project, new system will be use to control the air fuel ratio by using the Port fuel injector that controlled by Electronic Control Unit.

1.3 Objective

- i. To convert the carburetted engine to fuel injection system.
- ii. To study and analyze the conversion process.

1.4 Scope of work

- i. Make sure the engine run in good condition without any minor or major problems.
- ii. Motorcycle engine with four-stroke cycle.

3

- iii. Motorcycle engine with capacity of 110cc.
- iv. Running the motorcycle engine using conventional fuel which is RON 95.
- v. Use EFI to get accurate air- fuel mixture ratio in combustion chamber.
- vi. Inspection of mechanical parts at the lab provided.