DEVELOPMENT AND EXPERIMENT STUDY OF ELECTRONIC WATER BOAT FOR EDUCATION PURPOSE

NG CHOK TONG B071510778

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2019

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT AND EXPERIMENTAL STUDY OF ELECTRONIC WATER BOAT FOR EDUCATION PURPOSE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Industrial Electronics) with Honours.

by

NG CHOK TONG B071510778 941121-08-5763

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: development and experimental study of electronic water boat for education purpose

Sesi Pengajian: 2019

Saya **ng chok tong** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam

ii

AKTA RAHSIA RASMI 1972.

	TERHAD*	Mengandungi makluma organisasi/badan di mana		
\mathbf{X}	TIDAK			
	TERHAD			
Yang l	benar,	D	isahkan oleh penyel	ia:
ng chok tong			S. Wan Norhisyam I	
Alamat Tetap:		С	Cop Rasmi Penyelia	
38, Pe	rsiaran 12			
Arena	Kepayang Putr	ra		
31400	Ipoh, Perak			
Tarikh	.:	T	arikh:	

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

iii

DECLARATION

I hereby, declared this report entitled development and experimental study of electronic water boat for education purpose is the results of my own research except as cited in references.

Signature:

Author : ng chok tong

Date:

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Industrial Electronics) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	TS. Wan Norhisyam Bin Abd Rashid

Signature:	
Co-supervisor:	En. Farees Izwan Bin Mohd Sani @ Ariffin

v

ABSTRAK

Bot air elektronik boleh digunakan dalam pelbagai aplikasi untuk tujuan yang berbeza. Dalam makalah ini, tumpuan utama adalah lebih kepada pendidikan di mana pelajar boleh membina bot mereka yang mesra pengguna, sambungan tanpa wayar (Bluetooth) dan bot autonomi. Bot harus mudah dipasangkan dan memainkan konsep supaya bahagian dapat dilampirkan dan dilepaskan dengan mudah untuk simpanan yang mudah. Selain itu, telefon pintar pengguna boleh disambungkan ke bot sebagai pengawal. Bot ini boleh menjadi autonomi dengan kebolehan mengelakkan halangan dan mengikuti arah yang telah ditetapkan dengan menggunakan sistem Unit Pengukuran Awal (IMU). Arduino Uno R3 akan menjadi otak bot yang mengendalikan dua 180 motor melalui pemandu motor, sensor ultrasonik, IMU dan peranti Bluetooth. Modul juga dibincangkan di atas kertas ini supaya pelajar dapat membina dengan mudah. Akhir sekali, garis panduan ini termasuk pengenalan, kajian literatur, metodologi, hasil dan perbincangan, kesimpulan, lampiran, pengakuan dan rujukan.

Terma Indeks-Sambungan tanpa wayar Bluetooth, bot autonomi, telefon pintar, penghalang mengelakkan kebolehan, IMU.

vi

ABSTRACT

Electronic water boat can be used in many application for different purpose. In this paper, the main focus are more into education where student can build their boat which are user friendly, Bluetooth wireless connection and autonomous boat. The boat should be easy to plug and play concept so that the part can be attach and detach easily for convenient storage. Besides, user's smart phone can be connected to the boat as controller. The boat can be autonomous with obstacle avoid abilities and following the heading which been set with Initial Measurement Unit (IMU) system. Arduino Uno R3 will be the brain of the boat which control two 180 motor via motor driver, ultrasonic sensor, IMU and Bluetooth device. A module also discussed on this paper so that student able to build easily. Lastly, this paper outline include the introduction, literature review, methodology, result and discussion, conclusion, appendices, acknowledgement and references.

Index Terms—Bluetooth wireless connection, autonomous boat, smart phone, obstacle avoid abilities, IMU.

DEDICATION

This project is dedicated to my parents who are Ng Kum Seong and Lik Chee Keon for the knowledge and wisdom that have been taught to me for embrace myself to be better. This dedication to my supervisor Mr. Wan Norhisyam Bin Abd Rashid. Without his mentorship and encouragement, none of this will go on perfectly and smoothly. Lastly, I also dedicate to all my friends on their encouragement during this project.

Thank you for everything!

ACKNOWLEDGEMENTS

Firstly, I need to thank my parents that always give me support and encouragement during this project. I also want to thank my supervisor who is TS. Wan Norhisyam Bin Abd Rashid for giving me the opportunity for doing this project. Besides, I really appreciate all the technicians for sharing all the technical skills and knowledge to me during this whole project. Lastly, I want to thank all my friends that always give me their aid.

TABLE OF CONTENTS

TAB	BLE OF CONTENTS	PAGE x
LIST	T OF TABLES	xiv
LIST	T OF FIGURES	XV
LIST	Г OF APPENDICES	xviii
LIST	T OF SYMBOLS	xix
LIST	T OF ABBREVIATIONS	XX
CHA	APTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	5
1.3	Objective	5
1.4	Scope of Study	6
1.5	Thesis Outline	6
CHA	APTER 2 LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Toy Amphibious Boat	8
2.3	Cam- Controlled Boat	9
2.4	Remote Controlled Driving System for a Boat	10

2.5	Remotely Controllable Automatic Boat Bailer	10
2.6	Radio Controlled Boat Lift	11
2.7	Radio Controlled Fishing Boat	11
2.8	Remote Control Fishing Device with Automatic Line Retrieval	12
2.9	Underwater Radio Communication	13
2.10	Construct a Boat & Make it Float: Construction, Trial and Error, and Boat Revisions	14
2.11	Line Controllable Boat	14
2.12	Solar Boat / Solar Car - Challenging projects for first-year students	14
2.13	Design of Remote Controlled Solar Powered Boat	15
2.14	Boat Positioning and Anchoring System	17
2.15	Remote Control Unmanned Boat and Remote Control Device	17
2.16	Autonomous Navigation of a Small Boat Using IMU/GPS/Digital Compass Integration	18
2.17	Modelling and control of unmanned flying boat with sensor offsets	19
2.18	The Crab Boat Engineering Design Challenge	20
2.19	Simple underwater monitoring of shallow water using a spherical camera mounted on a radio-controlled boat	21
2.20	Modelica Based Naval Architecture Library for Small Autonomous Boat Design	21
2.21	Outrigger RC boat model hull development as a high speed craft based on resistance and lift force	22
2.22	Conclusion	23

СНАР	TER 3 METHODOLOGY	26
3.1	Introduction	26
3.2	Information Discovery	26
3.3	Source Code	35
3.4	System Design	44
3.5	Hardware Development	45
3.6	Hardware Testing	48
3.7	Report	48

CHA	APTER 4RESULT AND DISCUSSION	49
4.1	Introduction	49
4.2	Boat Movement	49
	4.2.1 Current Heading and Target Heading	50
	4.2.2 Acceleration X	52
	4.2.3 Yaw Movement	53
4.3	Bluetooth Connectivity	54
4.4	Ultrasonic	58
CHA	APTER 5 CONCLUSION AND RECOM	IANDATION 60
5.1	Introduction	60

5.2	Summary of Project	60
5.3	Limitation	61
5.4	Future Works	62

REFERENCES 63

APPENDICES 65

xiii

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Summary of Journal are related with project	24
Table 3.2.1:	HC-05 Pin Description and Function	29
Table 3.2.2:	HC-SR04 Pin Description.	30
Table 3.2.3:	IMU Pin Description	32
Table 3.3.1:	Source Code of Bluetooth Controlling the Boat	35
	and Autonomous Mode	
Table 4.2:	Success or Fail of Random Boat Movement	50
Table 4.3.1:	Bluetooth Connectivity Based on Distance and Point	54
Table 4.3.2:	MIT App Inventor Block Function	56
Table 4.4.1:	Ultrasonic Range Testing	58

xiv

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1.1:	Scale Boat	2
Figure 1.1.2:	Racing Boat	3
Figure 1.1.3:	Airboat	4
Figure 1.1.4:	Sailboat	4
Figure 2.2.1:	Toy Amphibious Boat	9
Figure 2.3.1:	Cam-Controlled Boat	9
Figure 2.6.1:	Inflating and Deflating tubes system	11
Figure 2.7.1:	Radio controlled fishing boat with controller	12
Figure 2.8.1:	Controlling the boat with remote control via line	13
Figure 2.12.1:	Solar Boat	15
Figure 2.12.2:	Solar car	15
Figure 2.13.1:	Boat with complete component allocation.	16
Figure 2.13.2:	Boat with solar panel	16
Figure 2.15.1:	Wireless unmanned boat and controller	18
Figure 2.16.1:	Small Boat Navigation System	19
Figure 2.17.1:	Unmanned Flying Boat	20

Figure 3.2.1:	Arduino Uno R3	27
Figure 3.2.2:	L298N Motor Driver Module	27
Figure 3.2.3:	180 DC Motor	27
Figure 3.2.4:	1 Meter PVC Pipe	28
Figure 3.2.5:	90 o angle PVC	28
Figure 3.2.6:	PVC T-joint	28
Figure 3.2.7:	Polystyrene	28
Figure 3.2.8:	Foam board	28
Figure 3.2.9:	HC-05 Bluetooth Module	29
Figure 3.2.10:	HC-SR04 Ultrasonic Sensor	30
Figure 3.2.11:	3 accelerometer and 3 gyroscope	31
Figure 3.2.12:	3 magnetometer	31
Figure 3.2.13:	MPU 9250	31
Figure 3.2.14:	Lipo 7.4V Battery	33
Figure 3.2.15:	Block Diagram of Boat System.	34
Figure 3.3.3:	Block code for Mobile Phone Interface.	44
Figure 3.4.1:	Circuit Design in Fritzing	44
Figure 3.4.2:	Interface to User Mobile Phone.	45
Figure 3.5.1:	Boat shape	45

xvi

Figure 3.5.2:	Motor Installation	45
Figure 3.5.3:	Top View	46
Figure 3.5.4:	Side View	46
Figure 3.5.5:	Front View	46
Figure 3.5.6:	Back View	46
Figure 3.5.7:	Bottom view	46
Figure 3.5.8:	Electronic Installation	47
Figure 3.5.8:	Front view after electronic Installation	47
Figure 3.5.10:	Back view after electronic installation	47
Figure 4.2.1.1:	Current Heading during Obstacle Present and Absence with	50
	Target Heading of 90 Degree	
Figure 4.2.1.2:	Current Heading Change Based on Target Heading	52
Figure 4.2.2.1:	Acceleration X during Autonomous Mode	52
Figure 4.2.3.1:	YAW Orientation during Autonomous Mode	53

xvii

LIST OF APPENDICES

APPENDICE	TITLE	
Appendices 1	System Flowchart	65
Appendices 2	Quantity of Electronic Component and Material	
Appendices 3	pendices 3 Gantt chart of Bachelor Degree Project (BDP) Project Planr	
	of Year 2018-2019	
Appendices 4	BT BOAT USER GUIDE	69

xviii

LIST OF SYMBOLS

MHz	-	Mega-Hertz
D	-	Dimension
cm	-	Centimetre
mm	-	Millimetre
V	-	Voltage
mah	-	Milli-Ampere-Hours
c	-	Charge
F	-	Forward
FL	-	Forward Left
FR	-	Forward Right
S	-	Stop
L	-	Left
R	-	Right
В	-	Backward
BL	-	Backward Left
BR	-	Backward Right
g	-	Gravity
Y	-	Connected / Detected
Ν	-	Not Connected / Not Detected
kHz	-	Kilo-Hertz
μs	-	Microseconds

xix

LIST OF ABBREVIATIONS

- RC Radio Control
- ARF Almost Ready to Float
- RPM Revolutions per Minute
- STEM Science, Technology, Engineering and Mathematic
 - RF Radio Frequency
- IMU Initial Measurement Unit
- DC Direct Current
- GPS Global Positioning System
- PID Proportional, Integral, and Derivative control
- PVC Polyvinyl Chloride
- SPP Serial Port Protocol
- PC Personal Computer
- VCC Voltage Common Collector
- GND Ground
- TXD Transmitter
- RXD Receiver
- DOF Degree of Freedom
- MPU Motion Processing Unit
- MEMS Micro-Electro-Mechanical Systems
- SCL Serial Clock

- SDA Serial Data
- NCS Chip Selection
- AD0 Analog Digital 0
- INT Interrupt
- FSYNC Frame Synchronisation
- AUX_CL Clock Auxiliary Port
- AUX_DA Data Auxiliary Port
 - I2C Inter-integrated Circuit
 - SPI Serial Peripheral Interface
 - LSB Least Significant Bit
 - GUI Graphical User Interface
 - LED Light Emitting Diode
 - PWM Pulse Width Modulation
 - IOS IPhone Operating System
 - QR Quick Response

CHAPTER 1

INTRODUCTION

1.1 Background

Radio Control (RC) such as plane, drone, cars and trucks, helicopter and trains are famous in the world today but boat has the most popular aspect of RC Modelling for ages and have several form like scale replicas, racing hydroplanes, deep vees, airboats, and sail boats. These may move by either electric motor, glow engines, gas engines, or even steam engines and build by either wood, fibreglass, or moulded plastic.

Wood-made boat are known as the most complicated to assemble as the hull is normally created by numerous pieces of wood fitted onto a structure. So, the boat must be taken well care to make sure the hull is water-tight and the wood is completely painted or resin to protect it from the water. Wooden boats are usually the least highprice boat kits but need the most work to finish. Fibreglass-made boat come along with their hulls preformed with very little assembling require such as establish the deck and install running hardware and radio equipment. Fibreglass kits use to be the most high-price as most work is performed by the manufacturer in set up a fiberglass hull. Boats created from ABS plastic are becoming very famous as they combine the simplicity and easy of unite in very low production costs so the boat that is Almost Ready to Float (ARF) can be obtained for much less price than a fiberglass same goes to with much less job needed to complete. With these boats, both the hull and the deck are formed and usually will be already combine at the manufacture. Nevertheless, many of these equipment come along with motor and running hardware installed which is the radio and decals.