

# Faculty of Electrical Engineering

Universiti Teknikal Malaysia Melaka

**Kinematics Analysis of Fish Robot Movements** 

## SAIDATUL NUR AISYAHTUN SAKINAH BINTI AHMAD JAMAL

**Bachelor of Mechatronics Engineering** 

2018

C Universiti Teknikal Malaysia Melaka

"I hereby declare that I have read through this report entitle "Kinematics Analysis of Fish Robot Movements" and found that it has comply the partial fulfilment for awarding the degree of Bachelor of Mechatronics Engineering."

| Signature         | : |                         |
|-------------------|---|-------------------------|
| Supervisor's Name | : | AINAIN NUR BINTI HANAFI |
| Date              | : |                         |

i

## KINEMATICS ANALYSIS OF FISH ROBOT MOVEMENT

## SAIDATUL NUR AISYAHTUN SAKINAH BINTI AHMAD JAMAL

A report submitted in partial fulfilment of the requirements for the degree of Bachelor of Mechatronics Engineering

**Faculty of Electrical Engineering** 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

I declare that this report entitle "*Kinematics Analysis of Fish Robot Movement*" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | : |                                |
|-----------|---|--------------------------------|
| C         |   |                                |
|           |   |                                |
| Name      | • | SAIDATUL NUR AISYAHTUN SAKINAH |
|           |   | BINTI AHMAD JAMAL              |
| Date      | : |                                |
|           |   |                                |

To my beloved father and mother



### ACKNOWLEDGEMENT

Firstly, Alhamdulillah, praised to Allah for giving me a chance to finish my final year project for this phase. He is the Almighty that give me strength to be patience and learnt a lot of moral values on doing the final year project.

I also would like to thank my lecturers and supervisor, Mdm. Ainain Nur binti Hanafi for supervising and guiding me in the project. All the knowledge gained from the sessions will be a precious lesson for the future,

Moreover, big thanks to my friends, for supporting and giving a motivation for doing the project. They also helping to install the needed software for free during the project period.

Lastly, a very precious appreciation to my family, Mr. Ahmad Jamal bin Idris and Miss Fatimah binti Mohamad for praying for me and always implement positive spirit inside me.

#### ABSTRACT

Fish robot is type of the famous robot that has been developed since 90's era. Most of the fish robot are used to explore ocean resources, remote on vehicle (ROV) for oil and gas activities and autonomous underwater vehicle (AUV) to explore the underwater. The aim of this project is to develop a 2 DOF of fish robot in terms of forward kinematics and inverse kinematics of the fish robot movements. The former method is used to obtain the forward and inverse kinematics, while the latter is used to derive kinematic velocities and simulations. A fish robot drawing was produced based on the analysis and simulated graphically in VREP software. Based on the result, the forward kinematics indicated the position of the fish robot in coordinate of X and Y with known value of angle's range ( $\theta_1 = [-40:0.1:40]$  and  $\theta_2 = [-30:0.1:40]$ ), while inverse kinematics showed the angle of movement of the robot with known coordinates of world frame. In addition, the kinematics velocity indicated the velocity of the fish robot in (one degree per seconds) towards the position specified (by the coordinated X and Y). The singularities experiments showed the maximum angles for the fish robots movements i.e. if the robot moves more than maximum reach limit ( $\theta_1 = [-40:0.1:40]$ ) and  $\theta_2 = [-30:0.1:40]$ ), the fish robot might damage. After that, the drawing was created based on the kinematics analysis and simulated graphically in robotics software. The impact of the kinematics analysis of fish robot movement is useful for design purpose and improvement in efficiency of motor used in robot for ideal condition.

## **TABLE OF CONTENT**

| CHAPTER | TITLE                                       | PAGE |
|---------|---------------------------------------------|------|
|         | ACKNOWLEDGEMENT                             | iii  |
|         | ABSTRACT                                    | iv   |
|         | LIST OF TABLES                              | X    |
|         | LIST OF FIGURES                             | ix   |
|         | LIST OF ABBREVIATION                        | xii  |
|         | LIST OF APPENDICES                          | xiii |
| 1       | INTRODUCTION                                | 1    |
|         | 1.1 Motivation                              | 1    |
|         | 1.2 Problem Statement                       | 3    |
|         | 1.2.1 Kinematics Analysis of Fish Robot     | 3    |
|         | 1.2.2 Type of fish movements for fish robot | 4    |
|         | 1.3 Objective                               | 5    |
|         | 1.4 Scope                                   | 5    |
| 2       | LITERATURE REVIEW                           | 6    |
|         | 2.1 Theoretical Review                      | 6    |
|         | 2.1.1 The Anatomy of Fishes                 | 6    |
|         | 2.1.2 Robotics                              | 11   |
|         | 2.2 Synthesis of Fish Robot Studies         | 14   |
|         | 2.3 Evaluation of the fish robot studies    | 17   |
| 3       | METHODOLOGY                                 | 18   |
|         | 3.1 Flow chart                              | 18   |
|         | 3.2 Design Consideration                    | 22   |
|         | 3.2.1 Movement of Fish Robot Behaviour      | 22   |
|         |                                             |      |

|            | 3.2.2 The Drawing of Fish Robot                   | 22 |
|------------|---------------------------------------------------|----|
|            | 3.2.3 Number of joints and link                   | 23 |
|            | 3.3 Kinematics Analysis                           | 24 |
|            | 3.3.1 Forward Kinematics                          | 25 |
|            | 3.3.2 Inverse Kinematics                          | 28 |
|            | 3.3.3 Kinematics Velocities                       | 32 |
|            | 3.3.4 Singularities                               | 33 |
|            | 3.3.5 Error and Accuracy                          | 33 |
|            | 3.4 Graphical Simulation Method                   | 34 |
|            | 3.4.1 Forward Kinematics Experiments              | 35 |
|            | 3.4.2 Inverse Kinematics Experiments              | 37 |
|            | 3.4.3 Singularities Experiment.                   | 38 |
| 4          | <b>RESULT AND DISCUSSION</b>                      | 40 |
|            | 4.1 Forward Kinematics                            | 40 |
|            | 4.1.1 Position of The Fish Robot                  | 40 |
|            | 4.1.2. Kinematics Velocities of Fish Robot        | 49 |
|            | 4.1.3. Singularities                              | 58 |
|            | 4.2 Inverse Kinematics                            | 60 |
|            | 4.3 The comparison of C-shape fish robot movement | 68 |
|            | graphically.                                      |    |
| 5          | CONCLUSION AND RECOMMENDATION                     | 71 |
|            | 5.1 Conclusion                                    | 71 |
|            | 5.2 Future Work                                   | 72 |
| REFERENCES |                                                   | 73 |
| APPENDICES |                                                   | 78 |

## LIST OF TABLES

| TABLE      | TITLE                                                               | PAGE |
|------------|---------------------------------------------------------------------|------|
| 2.1        | The summary of the past studies on fish robot.                      | 14   |
| 3.1        | Explanation of DH-Parameter.                                        | 25   |
| 3.2        | The D-H parameters table.                                           | 26   |
| 4.1        | A comparison of fish robot's position between VREP and              | 42   |
|            | MATLAB when $\theta 1$ is varied                                    |      |
| 4.2        | The average of accuracy of fish robot's position when $\theta_1$ is | 42   |
| 4.3        | A comparison of fish robot's position between VREP and              | 44   |
|            | MATLAB when $\theta_2$ is varied 44                                 |      |
| 4.4        | The average of accuracy of fish robot's position when $\theta_2$ is | 44   |
|            | varied                                                              |      |
| 4.5        | The comparison of fish robot's position when both angles            | 46   |
|            | are varied.                                                         |      |
| 4.6        | The accuracy of fish robot's position when both angles are          | 47   |
|            | varied                                                              |      |
| 4.7        | A comparison of fish robot's translational velocities               | 51   |
|            | between VREP and MATLAB when $\theta_1$ is varied.                  |      |
| 18         | The average of accuracy of figh robot's translational               | 52   |
| 4.0        | velocities when A is varied                                         | 52   |
| <i>1</i> 9 | A comparison of fish robot's translational velocities               | 53   |
| ч.У        | hetween VREP and MATLAB when <i>A</i> is varied                     | 55   |
| 4 10       | The average of accuracy of fish relational                          | 54   |
| 4.10       | the average of accuracy of fish foot's translational                | 54   |
| 4 1 1      | velocities when $\theta_2$ is varied 54                             | -    |
| 4.11       | The comparison of translational velocities between                  | 56   |
|            | MAILAB and VKEP.                                                    |      |

- 4.12 The comparison of accuracy of translational velocities 57 between MATLAB and VREP.
- 4.13 The value of maximum and minimum angle that cause 59 singularities
- 4.14 The comparison on forward and inverse kinematics of fish 65 robot between measured and calculated version
- 4.15 The comparison between forward kinematics and inverse 65 kinematics in VREP
- 4.16 The comparison on inverse kinematics of fish robot between 66 measured and calculated version
- 4.17 The accuracy of the coordinate between MATLAB and 66 VREP

viii

## LIST OF FIGURES

| FIGURE | TITLE                                                                         | PAGE |
|--------|-------------------------------------------------------------------------------|------|
| 1      | C-Shape fast Start fish [7]                                                   | 2    |
| 2.1    | The anatomy of basic climbing perch species [10]                              | 6    |
| 2.2    | The classification of fish (Nelson 2006) [10]                                 | 8    |
| 2.3    | The picture of Puyu [10]                                                      | 9    |
| 2.4    | The summary of fish movement                                                  | 10   |
| 2.5    | The fish movement [11]                                                        | 9    |
| 2.6    | Diagram illustrating the various types of fast-start [1]                      | 10   |
| 2.7    | The C-Shape Movement Analysis [7]                                             | 11   |
| 2.8    | The Kinematics sketch of the fish.                                            | 14   |
| 2.9    | The fish robot in by using application of GIM [22]                            | 17   |
| 3.1    | The flowchart of the derivation and MATLAB process.                           | 19   |
| 3.2    | Continue the process of flowchart.                                            | 20   |
| 3.3    | Process of extracting data from VREP.                                         | 21   |
| 3.4    | The fish robot design by using Solidworks.                                    | 23   |
| 3.5    | The graphical representation of the fish robot.                               | 25   |
| 3.6    | The shape of fish robot when transferred via VREP.                            | 34   |
| 3.7    | The properties of the joints.                                                 | 34   |
| 3.8    | The parameter of the fish robot to be measured.                               | 35   |
| 3.9    | The dummy named as tip and target.                                            | 37   |
| 3.10   | The location of target.                                                       | 38   |
| 3.11   | The dummy named as tip and target.                                            | 39   |
| 4.1    | Position of the fish robot when $\theta_1$ is varied and $\theta_2$ is 0 from | 41   |
|        | VREP                                                                          |      |
| 4.2    | Position of the fish robot when $\theta_1$ is varied and $\theta_2$ is 0 from | 41   |
|        | MATLAB.                                                                       |      |

| 43<br>45<br>45                             |
|--------------------------------------------|
| <ul><li>43</li><li>45</li><li>45</li></ul> |
| 45<br>45                                   |
| 45<br>45                                   |
| 45                                         |
| 45                                         |
|                                            |
|                                            |
| 46                                         |
|                                            |
| 48                                         |
|                                            |
| 50                                         |
|                                            |
| 50                                         |
|                                            |
| 51                                         |
|                                            |
| 52                                         |
|                                            |
| 53                                         |
|                                            |
| 54                                         |
|                                            |
| 55                                         |
|                                            |
| 55                                         |
|                                            |
| 56                                         |
|                                            |
| 58                                         |
| 59                                         |
| 59                                         |
|                                            |

| 4.21 | The fish robot with specified the target linked to the tip at tail                                                                                 | 60 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | of the fish robot.                                                                                                                                 |    |
| 4.22 | The fish robot position in inverse kinematics in VREP                                                                                              | 61 |
| 4.23 | The angles of fish robot in inverse kinematics.                                                                                                    | 61 |
| 4.24 | The fish robot position in forward kinematics in VREP                                                                                              | 62 |
| 4.25 | The angles of fish robot for forward kinematics in VREP                                                                                            | 62 |
| 4.26 | The fish robot position in inverse kinematics in MATLAB.                                                                                           | 63 |
| 4.27 | Figure 4.27: The angles of fish robot in inverse kinematics MATLAB.                                                                                | 63 |
| 4.28 | The fish robot position in inverse kinematics in VREP.                                                                                             | 64 |
| 4.29 | The angles of fish robot in inverse kinematics in VREP.                                                                                            | 64 |
| 4.30 | The relation of forward and inverse kinematics [49]                                                                                                | 67 |
| 4.31 | The C Shape movement model of the carp (P.Nilas, N. Suwanchit &, R. Lumpuprakarn, 2011). [50]                                                      | 68 |
| 4.32 | The C-shape movement example from PF-300 for 2 DOF (Warashina, 1999) [42]                                                                          | 69 |
| 4.33 | The swimming behaviour of 3 DOF biomimetic fish robot (Baodong Lou,. Yujie Ni, et. al, 2017). [51]                                                 | 69 |
| 4.34 | The C-Shape of the fish robot movement when both angles are varied for positive quadrant on the left and negative quadrant on the right for 2 DOF. | 70 |

xi

## LIST OF ABBREVIATION

| Abbreviation | Name                                               |
|--------------|----------------------------------------------------|
| AUV          | Autonomous Underwater Vehicles                     |
| BCF          | Bodies Caudal Fin                                  |
| MCF          | Median Paired Fins                                 |
| DOF          | Degree Of Freedom                                  |
| D-H          | Denavit Hartenberg                                 |
| KORDI        | Korean Ocean Research and Development Institute    |
| VREP         | Virtual Experimentation Platform Coppelia Robotics |
| GIM          | Generated Internal Model                           |
| NLPP         | Non-Linear Path Planning                           |
| CAD          | Computer Aided Design                              |
| ROV          | Remote On Vehicle                                  |
| PID          | Proportional Integral Derivative                   |

## LIST OF APPENDICES

| APPENDIX | TITLE                                                                                  | PAGE |
|----------|----------------------------------------------------------------------------------------|------|
| А        | The Gantt chart of the project                                                         | 78   |
| B1       | The list position of fish robot when both angles are varied in MATLAB.                 | 79   |
| B2       | The list position of fish robot when $\theta_1$ are varied in MATLAB.                  | 80   |
| B3       | The list position of fish robot when $\theta_2$ are varied in MATLAB.                  | 81   |
| B4       | The list translational velocities of fish robot when both angles are varied in MATLAB. | 82   |
| B5       | The list translational velocities of fish robot when $\theta_1$ are varied in MATLAB.  | 83   |
| B6       | The list translational velocities of fish robot when $\theta_1$ are varied in MATLAB.  | 84   |
| B7       | The graph of singularities in MATLAB.                                                  | 85   |
| B8       | The list of position and angles of fish robot in inverse kinematics in MATLAB.         | 86   |
| B9       | The list position of fish robot when both angles are varied in VREP.                   | 87   |
| B10      | The list position of fish robot when $\theta_1$ are varied in VREP.                    | 88   |
| B11      | The list position of fish robot when $\theta_2$ are varied in VREP.                    | 89   |

| B12 | The list of translational velocities of fish robot when both                    | 90  |
|-----|---------------------------------------------------------------------------------|-----|
|     | angles are varied in VREP.                                                      |     |
| B13 | The list of translational velocities of fish robot when $\boldsymbol{\theta}_1$ | 91  |
|     | is varied in VREP.                                                              |     |
| B14 | The list of translational velocities of fish robot when $\boldsymbol{\theta}_2$ | 92  |
|     | is varied in VREP                                                               |     |
| B15 | The singularities data in VREP                                                  | 93  |
| C1  | Forward kinematics of fish robot Movement coding.                               | 94  |
| C2  | Position of fish robot when theta1 varied coding.                               | 94  |
| C3  | Position of fish robot when theta2 varied coding.                               | 95  |
| C4  | Translational Velocity of the fish robot Movement                               | 95  |
|     | coding.                                                                         |     |
| C5  | Translational Velocity when theta1 varied coding.                               | 96  |
| C6  | Translational Velocity when theta2 varied coding.                               | 96  |
| C7  | The Singularities Coding.                                                       | 97  |
| C8  | The inverse kinematics coding.                                                  | 97  |
| С9  | Forward Kinematics Coding for Joint 1.                                          | 98  |
| C10 | Forward Kinematics Coding for Joint 2.                                          | 99  |
| C11 | Inverse Kinematics and singularities coding for Joint 1                         | 101 |
|     | and Joint 2                                                                     |     |

### **CHAPTER 1**

### **INTRODUCTION**

### **1.1 Motivation**

Nowadays, robot is widely uses in various applications such as medicine, manufacturing, space and underwater exploration to encounter human limitation [1]. One of the famous robot being research is fish robots for underwater exploration. Human has limited capability to swim and breath in the water for a long time, hence the robotics studies for underwater exploration is carry out.

Kinematics analysis is essential in robotic fish because it is important to study the behaviour of the fish before making a fish robot. Based on the research made by Phi Luan Nguyen, Byung Ryong Lee [2], the fish robots have advantages of highly efficient swimming mechanisms, noiseless propulsion and less conspicuous wake. Kinematics analysis of fish models is used to solve the problem of mariculture for the development of underwater vehicles in biometric robot types (Young-sun Ryuh, Gi-Hun yang et al.,)[3]. Since fish robots are used in fields such as mariculture, sea exploration and many others, kinematics analysis are important tools in obtaining the dynamics of the fish robots.

Besides, kinematics analysis is important in predicting the fish robot movement. According to Huan Yin Zhou, Jinsheng Liu et al. [4], the motivation of exploring the fish robot is to provide a relevant and useful introduction to the existing literature on the subject for engineers, who involve in underwater vehicle design, control and biometric swimming robot. Back in the time, United States has supported the research of AUV for military and defence applications, coastal security and environmental monitoring system and scientific mission and deep ocean science field. In Japan, Urashima is a vehicle invented in Japan for exploration of ocean resource while in Korea, the KORDI was developed undersea vehicle for monitoring ocean resources purpose [5].

According to the researches made in fish robotics field, most of the robot or system have three or multiple DOF which increase the complexity of the models [6]. Basic kinematics analysis on two DOF or at least single DOF is important to obtain exact parameter of the fish robot. Thus, it is important to analyse the mechanism of fish movement and establish accurate kinematic models depending on the number of DOF of fish robot.



Figure 1: C-Shape fast Start fish [7]

Analysis of fish robot is important to implement a plan for fish robot movement. Fish robot movement can be analysed in terms of speed, bending angle, frequency and hydrodynamics. However, dynamics equation needs kinematics analysis to yield dynamics calculation. A movement of fishes for fast-start swimming studied by Paolo Domenici and Robert W Blake [8] can be a reference for the speed of fish's analysis. Refer to the paper by K.H Low [9], the carangiform fish studies also really popular among researchers. Next, Yu-Chiao Sua and Tzuyin Wu [7] stated that there are two type of movement considered in the fishes for fast start swimming movements; C-starts and S-start. Other than that, the type of movement of the fishes considered are anguilliform fish, carangiform fish and thunniform fish.



## **1.2 Problem Statement**

Kinematics can be defined as science in geometry and motion which describe pure geometrical description of motion in term of position, orientation and the velocities. The kinematics analysis of fish robot movement faced few problems.

### **1.2.1** Kinematics Analysis of Fish Robot

Kinematics analysis is the analysis of the motion of the robot without considering the outer force acting on the robot. In robotics theory, there are two types of kinematics analysis main problem; forward kinematics and inverse kinematics.

## **1.2.1.1 Forward Kinematics**

Based on the research made in the textbooks, the main issue on forward kinematics analysis is the position vector of the fish robot by referring to the base of the robot which is the head of fish robot. The issues are know the value of the joint's variables and the position of the fish robot's tail (that act similar like end effectors).

### **1.2.1.2 Inverse Kinematics**

The difficulty for the inverse kinematics is to know the position vector of the fish robot refer to the base in coordinate frame but the set of the joints variables to reach the specific point is unknown. For an example, the end tail of the fish location is already known, but the coordinate transformation of the fish tail is anonymous.

#### **1.2.2** Type of fish movements for fish robot

Fish robot design is based on the type of propulsion of real fish. The problem is to choose suitable type of movement to be applied in the construction. Swimming behaviour of the fish can be classified into different terms named; Median Caudal Fin (MCF) and Body Caudal Fin (BCF). The BCF is mostly used because this type of fish is easy to get and low cost compared to MCF. The BCF is divided into few types of movements such as oscillatory and undulatory (swimming forward type). Under the category of undulatory, there are term called carangiform, and anguilliform fish movements.

#### **1.2.2.1 Starting point movements**

Fish has different swimming behaviour are classified in the type of fish movements of fish robot. In marine studies, the start movement of the fishes also should be considered. The fishes has their own start point categories which are classified in two types; C-starts and S-Starts. The type of fishes form also should be considered when doing the analysis. Most of the fishes with carangiform movement has C-shaped start compared to S-shaped start. S-start usually for anguilliform movement, such as an eel.

### **1.3 Objective**

The objective of this project are stated as below:

- 1. To develop carangiform swimming behaviour fish robot of C-shape starting point by using CAD.
- 2. To analyse the fish robot movement based on the forward kinematics and inverse kinematics formula.
- 3. To compare the C-shape fish robot movement graphically.

## 1.4 Scope

The scopes of the proposed project are the outlines to achieve the target of the study.

- The project covers the topic of kinematics analysis of fish robot movement for 2 DOF movement to reduce the complexity of the calculation.
- 2. The kinematics analysis is carried out for ideal fish robot. The hydrodynamics equation is not considered.
- 3. The movement of fish robot is carangiform category includes the C-shape movement for the analysis.
- 4. The project is limited to graphic simulation only.

### **CHAPTER 2**

### LITERATURE REVIEW

## 2.1 Theoretical Review

### 2.1.1 The Anatomy of Fishes

A fish is a vertebrae that lives in the water weather in the sea or the freshwater (Hideaki Matsui, 2017) [10]. Fishes is a living organism that provides people as a food and contributes 2% approximately for income in Malaysia. When the underwater technology increase, the research about fishes is increases in order to imitate the system. Since fish is a unique creature created by God, the fishes can be classified into a few classes. The topics will be covered are the classification of the fishes in Malaysia. The structure of fishes can be seen in the Figure 2.1:



Figure 2.1: The anatomy of basic climbing perch species [10]

C Universiti Teknikal Malaysia Melaka

#### 2.1.1.1 Classification of fish

Basically, a few methodology was implemented to classify the fishes in Malaysia. A few researchers from University Malaysia Terengganu did a research about the fishes in Malaysia to classify its type. In a result, the classification of fish can be summarized in Figure 2.2:



Figure 2.2: The classification of fish (Nelson 2006) [10]

7