
INVESTIGATION OF THE EFFECTIVENESS OF

A DISASTER ALERT SYSTEM

CHUA LI YING

BACHELOR OF MECHATRONICS ENGINEERING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

“I hereby declare that I have read through this report entitle “Investigation of the

Effectiveness of a Disaster Alert System” and found that it has comply the partial

fulfilment for awarding the degree of Bachelor of Mechatronics Engineering.

Signature :

Supervisor‟s Name : Professor Madya Dr. Ahmad Zaki Bin Shukor

Date : 6 June 2018

INVESTIGATION OF THE EFFECTIVENESS OF

A DISASTER ALERT SYSTEM

CHUA LI YING

A report submitted in partial fulfilment of the requirements for the degree of

Bachelor of Mechatronics Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017/2018

iii

I declare that this report entitle “Investigation of the Effectiveness of a Disaster Alert

System” is the result of my own research except as cited in the references. The report

has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

Signature :

Name : CHUA LI YING

Date : 6 June 2018

iv

To my beloved mother and father

v

ACKNOWLEDGEMENT

First and foremost, I wish to express my greatest appreciation and deepest

gratitude to my supervisor, Professor Madya Dr. Ahmad Zaki Bin Shukor for

constantly guiding and encouraging me throughout the entirety of this final year

project. Thanks a lot for giving me valuable advice and suggestion to bring this

report to its final form. Without his support and interest, this report would not have

been the same as presented here. I am very grateful to him for his patience and his

constructive comments that enriched this project.

Next, deepest sense of gratitude is given to the Director of Melaka

Meteorological Office, Mr. Nasrul Hakim Bin Hashim who willing to give

explanation on the disaster alert system in Malaysia. In particular, my sincere thanks

is also extends to all of my friends for their generous efforts and assistances provided

in enlightening me. Their views and tips are useful indeed. I would like to

acknowledge their comments and suggestions, which was crucial for the successful

completion of this project. Also, I would take this opportunity to express my

gratitude to my parent for their continuous shower of love, unceasing encouragement

and support throughout all these years.

Last but not least, I place on record, my sense of gratitude to one and all who,

directly or indirectly, have offered their helping hand during the entire period of final

year project.

vi

ABSTRACT

Earthquake is the most dreadful phenomenon among the 5 types of most

common natural disaster. The existing earthquake alert system is costly and there

may be faulty detections. Therefore, a low cost Internet of Thing (IoT) based real

time earthquake early alert system is proposed where the system could estimate the

earthquake epicenter and P-wave arrival time in an area around 25 kilometers apart

from 3 sensor nodes. A disaster messaging system is develop which aims to send

alert information and a site recorded video to Telegram channel for validation

purpose when one of the accelerometers in 3 sensor node detects acceleration

exceeds threshold value of 0.05 m/s2. The time for delivering the alert message with

photo and video attachment of the proposed system is calculated to check its

efficiency. The map which illustrate the estimated epicenter coordinate and estimated

P-wave arrival time using ThingSpeak MATLAB Visualization feature will then be

sent to the Telegram channel for better understanding purpose. 3 shaking tables will

be built to verify the proposed system through earthquake simulation at 6 different

preset epicenter locations at each sensor node. Through the experiments, the final

alert warning will be sent to Telegram channel within 68.1 seconds and earns an

average short period of 35 seconds respond time for immediate evacuation or other

purposes before P-wave hits the destination.

vii

ABSTRAK

Gempa bumi adalah fenomena paling dahsyat di antara 5 jenis bencana alam yang

paling biasa berlaku. Sistem amaran gempa bumi yang sedia ada adalah mahal dan

berkemungkinan memberi data yang salah. Oleh itu, satu sistem amaran awal gempa

bumi yang dibina dengan kos yang rendah dicadangkan di mana sistem tersebut

boleh meramalkan lokasi gempa bumi dan menganggarkan masa impak P-gelombang

di kawasan sekitar 25 kilometer jauh daripada 3 nod pengesan. Satu sistem

pemesejan bencana dibangunkan untuk menghantar maklumat amaran dan tapak

video yang dirakam ke Telegram untuk tujuan pengesahan apabila salah satu pecutan

dalam 3 nod sensor mengesan pecutan melebihi 0.05 m/s2. Masa untuk

menyampaikan mesej amaran dengan lampiran foto dan video dikira untuk

memeriksa kecekapan sistem yang dicadangkan. Peta yang menggambarkan lokasi

gempa bumi dan masa ketibaan P-gelombang menggunakan ThingSpeak MATLAB

Visualization akan dihantar ke Telegram untuk tujuan pemahaman yang lebih baik. 3

meja goncang akan dibina ke setiap nod pengesan untuk mengesahkan sistem yang

dicadangkan melalui simulasi gempa bumi di 6 lokasi yang berbeza. Melalui

eksperimen, amaran akhir akan dihantar ke Telegram dalam masa 68.1 saat dan

memperoleh tempoh masa pendek purata 35 saat untuk bertindak atau tujuan lain

sebelum gelombang P menemui destinasi.

viii

 TABLE OF CONTENTS

CHAPTER TITLE PAGE

 ACKNOWLEDGEMENT v

 ABSTRACT vi

 TABLE OF CONTENTS viii

 LIST OF TABLES xii

 LIST OF FIGURES xiv

 LIST OF ABBREVIATIONS xvi

 LIST OF APPENDICES xvii

 1 INTRODUCTION 1

1.1 Overview 1

1.2 Motivation 1

1.3 Problem Statement 4

1.4 Objective 5

1.5 Scope 5

1.6 Summary 6

 2 LITERATURE REVIEW 7

2.1 Overview 7

2.2 Definition of Disaster 7

2.3 Classification of Disaster 8

2.4 Natural Disaster 9

2.5 Earthquake 10

2.6 Disaster Management 15

ix

2.7 Earthquake Early Alert System 17

2.8 Conclusion 21

2.9 Summary 22

 3 METHODOLOGY 23

3.1 Overview 23

3.2 Gantt Chart and Milestone 23

3.3 Earthquake Early Alert System Design 24

3.3.1 Hardware Development 25

3.3.1.1 Raspberry Pi 26

3.3.1.2 Accelerometer 28

3.3.1.3 Raspberry Pi Camera Module 29

3.3.1.4 Shaking Table 30

3.3.2 Software Development 33

3.3.2.1 ThingSpeakTM 33

3.3.2.2 Telegram 34

3.3.3 System Architecture 35

3.3.3.1 Initial Setup 37

3.3.3.2 Phase 1 44

3.3.3.3 Phase 2 44

3.3.3.4 Phase 3 45

3.3.3.5 Phase 4 46

3.3.3.6 Phase 5 50

3.4 Experiment Setup 50

3.4.1 Objective 1 51

3.4.1.1 Experiment 1: Experimenting

Communication between

Raspberry Pi 51

3.4.1.2 Experiment 2: Shaking Table

Calibration 52

x

3.4.1.3 Experiment 3: Visualizing Predicted

Earthquake Map in ThingSpeak 52

3.4.2 Objective 2 53

3.4.2.1 Experiment 4: Measuring Time Taken

of Sending Message to Telegram 53

3.4.2.2 Experiment 5: Comparing Recorded

Video Format 55

3.4.2.3 Experiment 6: Sending Earthquake

Map to Telegram using ThingSpeak 56

3.4.3 Objective 3 56

3.4.3.1 Experiment 7: Testing System

Efficiency 56

3.5 Summary 57

 4 RESULT 58

4.1 Overview 58

4.2 Result of Experiment 1: Experimenting

Communication between Raspberry Pi 58

4.3 Result of Experiment 2: Shaking Table Calibration 61

4.4 Result of Experiment 3: Visualizing Predicted

Earthquake Map in ThingSpeak 63

4.5 Result of Experiment 4: Measuring Time Taken of

Sending Message to Telegram 67

4.6 Result of Experiment 5: Comparing Recorded Video

Format 69

4.7 Result of Experiment 6: Sending Earthquake Map to

Telegram using ThingSpeak 71

4.8 Result of Experiment 7: Testing System Efficiency 73

4.9 Cost Evaluation 75

4.10 Summary 75

xi

 5 CONCLUSION AND FUTURE WORK 77

5.1 Conclusion 77

5.2 Future Work 78

REFERENCES 79

APPENDICES 84

xii

LIST OF TABLES

TABLE TITLE PAGE

1.1 Total number of reported natural disaster and number

of deaths, by type of phenomenon occur worldwide

between years 2011 until 2015 2

2.1 Natural disaster sub-group definition 9

2.2 General classification of natural disaster 10

2.3 Richter scale with its corresponding acceleration 13

2.4 Comparison of early earthquake alert system from

previous studied journals or paper 18

3.1 Milestone for Final Year Project 1 23

3.2 Milestone for Final Year Project 2 24

3.3 Comparison between Raspberry Pi 2 Model B and

Raspberry Pi Zero W 27

3.4 Specification of ADXL355 29

3.5 List of parts of the designed shaking table 32

3.6 Epicenter distance to each sensor node and its coordinate 40

3.7 Shaking table setup 42

3.8 Sensor nodes time delay for each epicenter point 43

3.9 Generated map for each epicenter point 48

3.10 Result of Experiment 1 52

3.11 Acceleration data of Experiment 2 52

3.12 Result of Experiment 3 53

3.13 Comparison table for Experiment 4 53

xiii

3.14 Comparison table for Experiment 5 55

3.15 Comparison table for Experiment 6 56

3.16 Efficiency test 57

4.1 Result of Experiment 1 60

4.2 Calibration data for Sensor Node 1 61

4.3 Calibration data for Sensor Node 2 62

4.4 Calibration data for Sensor Node 3 62

4.5 Overall analysis on calibration data for each sensor node 63

4.6 Result for Range 2 with ranges from 1.370 to 1.626 m/s2 64

4.7 Result for Range 3 with ranges from 1.973 to 2.448 m/s2 64

4.8 Result for Range 1 with ranges from 0.800 to 1.230 m/s2 64

4.9 Duration between the estimated P-wave arrival time and

received time 67

4.10 Result of Experiment 4 68

4.11 Comparison table for Experiment 5 70

4.12 Comparison table for Experiment 6 72

4.13 Efficiency test 74

4.14 Cost per sensor node 75

xiv

LIST OF FIGURES

FIGURE TITLE PAGE

1.1 Earthquake disasters in Mexico 2

2.1 The relationship between disaster, vulnerability and

hazard 8

2.2 Occurrence of earthquake and Layers of earth 11

2.3 Propagation direction of body waves 12

2.4 Seismogram recordings of body waves in an earthquake 12

2.5 Triangulation method 14

2.6 Single method and Network method 14

2.7 The Disaster Management Cycle 16

3.1 System Setup of Earthquake Early Alert System. 24

3.2 Raspberry Pi Zero W 26

3.3 Accelerometer ADXL335 28

3.4 Raspberry Pi Camera Module Version 1.3 30

3.5 Shaking table design 30

3.6 Shaking table using drill as actuator 31

3.7 ThingSpeak applications 33

3.8 Overall chart of earthquake early alert system 35

3.9 Functionality of each phases of earthquake early alert

system 36

3.10 Flow chart of alert system and sensor node 36

3.11 Schematic diagram of sensor node 37

3.12 Triangulation method and Location of each sensor node 38

xv

3.13 Map showing the location of epicenters and sensor nodes 39

3.14 Changes of motor speed in time 41

3.15 P-wave and S-wave travel time curve 43

3.16 Details of the distance between point X and the epicenter 46

3.17 Flow chart of Experiment 4 54

4.1 Experiment Setup of Experiment 1 58

4.2 Distance between 2 Raspberry Pi 59

4.3 Plotted graph in ThingSpeak channel 59

4.4 Experiment setup of Experiment 2 61

4.5 Bar chart showing the overall result of Experiment 3 65

4.6 First, Second and Third trial 66

4.7 Timestamp sending and receiving message 68

4.8 Timestamp sending and receiving video 69

4.9 Footage processing time of 3 video formats 70

4.10 Timestamp referring to Telegram Web 72

4.11 Experiment Setup of Experiment 7 73

4.12 Alert messages in Telegram channel 74

xvi

LIST OF ABBREVIATIONS

ADC - Analog-to-Digital Converter

USB - Universal Serial Bus

CPU - Central Processing Unit

P-wave - Primary Wave

S-wave - Secondary Wave

GPIO - General Purpose Input/Output

SMS - Short Messaging Service

HDMI - High Definition Multimedia Interface

IoT - Internet of Things

IFRC - International Federation of Red Cross and Red Crescent

Societies

UNISDR - United Nations Office for Disaster Risk Reduction

EM-DAT - International Disaster Database

CRED - Centre for Research on the Epidemiology of Disasters

WSAN - Wireless Sensor and Actor Network

WSN - Wireless Sensor Network

CSI - Camera Serial Interface

LAN - Local Area Network

GSM - Global System for Mobile Communications

AVI - Audio Video Interleave Video

MP4 - MPEG-4 (Motion Picture Expert Group 4) Video

MKV - Matroska Video

GIF - Graphics Interchange Format

xvii

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A1 Gantt Chart for Final Year Project 1 84

 A2 Gantt Chart for Final Year Project 2 85

 B Shaking Table in Third Angle Orthographic Projection 86

 C1 Datasheet of Accelerometer ADXL 335 88

 C2 Datasheet of DC Motor M31E-1 Series 89

 D1 Experiment 1 (Experimenting Communication between

Raspberry Pi) 90

 D2 Experiment 2 (Shaking Table Calibration) 91

 D3 Experiment 3 (Visualizing Predicted Earthquake Map in

ThingSpeak) 92

 D4 Experiment 4 (Measuring Time Taken of Sending Message

to Telegram) 93

 D5 Experiment 5 (Comparing Recorded Video Format) 94

 D6 Experiment 6 (Sending Earthquake Map to Telegram

using ThingSpeak) 95

 D7 Experiment 7 (Testing System Efficiency) 96

 E Python Script for Measuring Offset Error 97

 F1 Python Script for Experimenting Communication between

Raspberry Pi 98

 F2 Python Script for Shaking Table Calibration 101

 F3 Python Script for Visualizing Predicted Earthquake Map

in ThingSpeak 103

 F4 Python Script for Measuring Time Taken of Sending

xviii

Message to Telegram 107

 F5 Python Script for Comparing Recorded Video Format 108

 F6 Python Script for Sending Earthquake Map to Telegram

using ThingSpeak 109

 F7 Python Script for Testing System Efficiency 111

 G1 ThingSpeak MATLAB Analysis code 115

 G2 ThingSpeak MATLAB Visualization code 118

1

CHAPTER 1

INTRODUCTION

1.1 Overview

There are five subtopics to be presented in this chapter, which includes

motivation, problem statement, objective and scope. Related statistical data will be

shown to support the motivation of this project. Besides, limitation on current

technology will also be discussed. Last but not least, the aim and research boundary

of the project will also be discussed in this chapter.

1.2 Motivation

A natural disaster is known to hit any part of the world without any prior

warning due to natural processes of the earth which includes cyclone, flood,

earthquake and other geological processes [1]. In recent years, countless people died,

injured or become homeless because of such disasters. Regardless of the cause of

incident, disaster causes destruction in terms of economic and human lives in the

history of mankind. Table 1.1 below shows the number of reported natural disaster

and number of deaths, by type of phenomenon occurs worldwide between years 2011

until 2015.

2

Table 1.1: Total number of reported natural disaster and number of deaths, by type of
phenomenon occur worldwide between years 2011 until 2015 [2].

 Floods Storms Earthquakes Droughts
Extreme

Temperatures

Number of

reported disaster
744 495 134 123 117

Number of

deaths
26,529 17,495 33,076 10,035 13,048

Based on Table 1.1 shown above, there are 5 types of most common disaster,

and earthquake results the highest total number of deaths although it was third

highest reported.

Every year, at the global level, there are about 2 earthquakes above or equal

to Richter scale of 7 and nearly 150 earthquakes of magnitude above Richter scale of

6 are reported occurred in inhabited regions, stated by the researchers at the Paris

Institute of Earth Physics (IPGP) [3].

Recently, a major earthquake with Richter scale of 7.1 struck southern

Mexico on 19 September 2017, 123km from Mexico City, in Puebla state which

killed at least 230 people as shown in the Figure 1.1 below.

Figure 1.1: Earthquake disasters in Mexico [4].

The earthquake took place on the 32nd anniversary of a devastating earthquake that

killed thousands in Mexico City in 1985, and came less than 2 weeks after another

Type
Criteria

3

massive earthquake with a Richter scale of 8.1 killed at least 96 people and left 2.5

million in the need of aid in the state of Oaxaca. According to the government, more

than 40 buildings in the country‟s capital, Mexico City near the quake‟s epicenter,

have completely collapsed, with thousands more left damaged and unstable [4].

In year 2016, earthquake has again reminded the global population its

existence by achieving top 2nd and 3rd rank on the 5 deadliest natural disasters

happened in 2016 at Ecuador and Italy. On April, a powerful earthquake with a

Richter scale of 7.8 hit the northwestern coast of Ecuador, South American nation,

leaving nearly 300 dead and thousands injured. After a few months, another powerful

earthquake disaster rattled central Italy on August. With a Richter scale of 6.2, more

than 200 people are killed and more than 1000 people have been displaced by the

quake [5].

In terms of seismic activity, Malaysia is classified as a country with low to

medium seismic activity level. However, the seismic risk, in terms of damage

potential should not be ignored since there have been numerous tremors on

Malaysian soil due to the earthquakes disaster happened in nearby country over the

past decade. Recently, an earthquake with a Richter scale of 6.4 hit southern Sumatra,

Indonesia on 13 August 2017 and causes tremors felt in parts of Johor, Melaka and

Singapore. Luckily, no injuries or deaths were reported [6]. In 5 June 2015, an

earthquake with a Richter scale of 6.0 strikes Ranau, Sabah. It is the strongest

earthquake ever recorded in Malaysia which kills 18 climbers due to the tremors felt

during their climbing on Mount Kinabalu [7].

In conclusion, an efficient disaster management system is needed; especially

on earthquake detection due to the harms it brings to the world. Occurrence of

earthquake in Malaysia is less than other countries. However, Malaysia should have

an up-to-date disaster management system to avoid earthquake such as the tragic

incident 2015 at Sabah.

4

1.3 Problem Statement

With the aids of available technologies and preparation, alert messages are

now able to be spread out when an earthquake is sensed nearby. The earthquake alert

system implemented in Japan can even inform the citizen the area that will be hit by

earthquake impact. However, due to its extremely high cost at around 1 billion

dollars for implementation of a dense network with 1000 seismographs throughout

the entire country to rapidly detect earthquakes, this system has not yet been

popularized to other country, especially Malaysia. Besides, Taiwan has developed an

earthquake early warning system which costs around 1.01 million dollars based on

Japan‟s system. Over 700 strong-quake and 100 real-time monitoring stations have

been set up nationwide. Thus, a low cost earthquake warning model with ability to

estimate earthquake epicenter and arrival time should be designed to meet the needs

of those countries which have low possibility of strong earthquake happening.

Next, validation is one of the main concerns of a disaster warning system.

High false alarm rate of the system is triggered by faulty detection that may occur as

a result of noise from accidents, lightning or device failure which in turns activates

false alert. This will not only undermine public confidence towards the impact alerts,

but also a waste of money due to unnecessary evacuation. One of the example is the

false alert happened in 5th January 2018 in Japan which causes panic to millions of

citizens and disrupted Tokyo‟s transport network. Therefore, an alert message should

be sent to local authorities with an attachment of media file like video as a proof of

an earthquake hit to avoid unnecessary wastes.

An effective disaster alert system depends on how quickly the situation is

notified to the right people. Even a few additional seconds of warning can make a

huge difference in saving hundreds or even thousands of human lives. The Japanese

system gives citizens an average of 30 to 50 seconds warning while the Taiwan

5

system allows at most a 10 seconds warning since the seismic activity take place

closer to the island. On the other hand, Malaysia earthquake alert system takes 8

minutes to deliver the alert due to the latency of receiving alert information from

neighboring countries. Thus, the efficiency of the system must be considered so that

people could take appropriate action and respond to that situation effectively.

In conclusion, this research will focus on developing a real time earthquake

monitoring and alert system by estimating the epicenter and time arrival of

earthquake with the aid of low cost Internet of Things (IoT) sensing model.

1.4 Objective

The objectives of this research are stated as below:

1. To design a disaster alert system that estimates the epicenter and arrival time of

earthquake by using accelerometer.

2. To develop a disaster messaging system for sending alert information and video

recorded on earthquake scene by using Pi camera module through smartphone‟s

application and web based network.

3. To calculate the efficiency for delivering the alert message with photo and video

attachment.

1.5 Scope

1. The system is specialized for earthquake detection by taking into account only

the P-waves.

2. The system sends warning message only when accelerometer reading exceeds

threshold value of 0.05 m/s2.

6

3. The project applicable for medium to high level of earthquake disaster at a range

of Richter scale between 5.3 to 7.0 magnitudes.

4. The system consists of 3 sensor nodes with each built from an accelerometer as

the sensor and a Raspberry Pi as the controller.

5. The distance between the sensor nodes is fixed to 5 kilometers apart each other.

6. The epicenter location is fixed to around 25 kilometers apart from 3 sensor

nodes in 6 different directions.

7. The duration between each simulated earthquake scenario is equal to or greater

than 15 seconds.

8. The designed shaking table is capable to simulate 3 different ranges of

acceleration as shown in below. The ranges may change for each calibration due

to hardware inconsistent with the absence of noise filtration.

 a) 0.800 m/s2 to 1.231 m/s2 (5.3-5.8 Magnitudes)

 b) 1.370 m/s2 to 1.626 m/s2 (5.9-6.4 Magnitudes)

 c) 1.973 m/s2 to 2.448 m/s2 (6.5-7.0 Magnitudes)

9. The distance between the earthquake epicenter and the destination is equal to or

longer than 1700 km.

1.6 Summary

Overall, this chapter explains the importance of a disaster alert system

worldwide to reduce earthquake hazards. The aim of this project is to develop a

disaster alert system which could estimate the epicenter and arrival time of an

earthquake by using accelerometer sensor. This project also aims to develop a

disaster messaging system to send alert information with the attachment of a

recorded video on earthquake scene and a photo displaying the map with earthquake

information. Last but not least, to calculate the efficiency of this messaging system.

The next chapter will discuss and summarizes the findings on recent journal related

to this project.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter presents theoretical background which is related to this project,

including theories on disaster and earthquake. Many journals and conference papers

related to this research are studied and evaluated based on few specific criteria. Then,

the most suitable setup is chosen to be used in this project.

2.2 Definition of Disaster

The „disaster‟ word comes from Old Italian word disastro, from the Latin

prefix dis- and Latin astro which has the meaning of “star” during the late 16th

century. Disaster is defined as a sudden accident or a natural tragedy that causes

significant damage or loss of life in Oxford dictionary [8].

The International Federation of Red Cross and Red Crescent Societies (IFRC)

and United Nations Office for Disaster Risk Reduction (UNISDR) define “disaster”

as a sudden situation or event that overwhelms the functioning of a community or

society and causes serious losses that exceed the community‟s or society‟s ability to

get through using its own resources. According to the IFRC, disaster results from a

combination of hazards, vulnerability and inability to reduce the potential of negative

risk [9]. Thus, the relationship between hazard, vulnerability, and capacity is

8

expressed in mathematical terms as shown in Equation (2.1) below.
 V

 (2.1)

Equation (2.1) above describes disaster as an inverse relationship between natural

hazard plus social vulnerability and the responsive capacity of human organization.

The hazard expresses by the risk of a sudden or calamitous event due to natural or

environmental factor while vulnerability contributes from a social or human factor as

shown in Figure 2.1 below [10].

Figure 2.1: The relationship between disaster, vulnerability and hazard [10].

2.3 Classification of Disaster

The International Disaster Database (EM-DAT) of Centre for Research on the

Epidemiology of Disasters (CRED) classifies disaster into two generic categories:

natural disaster and technological disaster. The natural disaster is defined as naturally

occurring physical phenomena caused by rapid or slow onset events which can be

divided into 6 sub-groups: Biological, Geophysical, Meteorological, Hydrological,

Climatological and Extra‐Terrestrial. On the other hand, the technological disaster or

Disaster

Vulnerability

Underlying
Causes :

a) Age
b) Sex
c) Illness and
 Disabilities

Dynamic
Pressure :

a) Lack of
education
b) Environment
 Degradation
c) Population
 Expansion

Unsafe Condition :

a) Dangerous
 Building
b) Low Level of
 Income
c) Livelihood at
Risk

Hazard

Trigger Event :

a) Earthquake
b) War
c) Landslide

9

man-made disaster is event that is caused by humans and occurs near to human

settlements which can be divided into 3 sub-groups: Industrial accident, Transport

accident and Miscellaneous accident which in turn cover 15 disaster types [11].

2.4 Natural Disaster

Natural disaster can be divided into 6 groups as mentioned before. In year

2016, Munich Re‟s NatCatSERVICE has recorded 750 events as natural catastrophes

that happened globally. Among the 750 events, the hydrological events hit the peak

with 50% number of occurrence throughout the year of 2016. 33% of all events

recorded are meteorological events and 10% are climatological events. Finally, 7% of

the events are geophysical [12]. The Table 2.2 below shows the definition of each

type of event in natural disaster.

Table 2.1: Natural disaster sub-group definition [11].

Disaster Sub-group Definition

Geophysical

An event originating from the ground of earth. This term
can also be named as geological event.

Meteorological

An event caused by short-term and micro- to meso-scale
extreme weather or atmospheric conditions.

Hydrological

An event caused by occurrence, movement and distribution
of earth surface and subsurface of water.

Climatological

An event caused by long-term and meso- to macro-scale
extreme atmospheric conditions.

Biological

An event caused by the exposure of living organisms to
toxic substances or vector-borne diseases.

Extra-terrestrial

An event caused by strike of asteroids, meteoroids, and
comets on the earth and also the changes in interplanetary
conditions that effect the Earth‟s magnetosphere,
ionosphere, and thermosphere.

http://www.emdat.be/classification#Geophysical
http://www.emdat.be/classification#Meteorological
http://www.emdat.be/classification#Hydrological
http://www.emdat.be/classification#Climatological
http://www.emdat.be/classification#Biological
http://www.emdat.be/classification#Extraterrestrial

10

From Table 2.1 above, we can know that each sub-group of natural disaster

covers different disaster types which has been tabulated and shown in Table 2.2

below.

Table 2.2: General classification of natural disaster [11].
Disaster Category Disaster Sub-group Disaster Main Type

Natural

Geophysical

Earthquake
Mass Movement (dry)

Volcanic activity

Meteorological

Extreme Temperature
Fog

Storm

Hydrological

Flood
Landslide

Wave action

Climatological

Drought
Glacial Lake Outburst

Wildfire

Biological

Epidemic
Insect infestation
Animal Accident

Extra-terrestrial

Impact
Space weather

2.5 Earthquake

An earthquake is the result of sudden slippage between two blocks of the

earth. The surface of slippage is called the fault or fault plane. The location below the

earth‟s surface where the earthquake starts is called the hypocenter, and the location

directly above it on the surface of the earth is called the epicenter as shown in Figure

2.2 (a) below [13].

http://www.emdat.be/classification#Geophysical
http://www.emdat.be/classification#Meteorological
http://www.emdat.be/classification#Hydrological
http://www.emdat.be/classification#Climatological
http://www.emdat.be/classification#Biological
http://www.emdat.be/classification#Extraterrestrial

11

 (a) (b)

Figure 2.2: a) Occurrence of earthquake [13] b) Layers of earth [13].

The earth has 4 major layers which are inner core, outer core, mantle and

crust (lithosphere) as shown in Figure 2.2 (b) above. Lithosphere is the combination

of the crust and the top of the mantle. It is made up from many pieces like a puzzle

covering the surface of earth which are able to move around slowly and make

collision with others. These puzzle pieces are called tectonic plates and the edges of

plates are called plate boundaries which are made up of many faults. When the edges

of the faults unstick due to the force of the moving blocks finally overcome the

friction of the edges of the fault, the earthquake happens. All of the energy stored or a

huge amount of energies propagate outward from the fault (epicenter) in all

directions in the form of seismic waves. The seismic waves shake the earth as they

move through it, and when the waves reach the earth‟s surface, they shake the ground

and anything on it including houses and living organism on the land [13 - 17].

The seismic waves are categorized as body waves and surface waves. Body

waves consist of two main types which are Primary Wave (P-wave) and Secondary

Wave (S-wave) depending upon their physical properties. These two waves are

mainly used for detection of the earthquake and its magnitude for earthquake disaster

alert system. P waves are compressional or longitudinal wave which shakes the

ground in the direction of their propagation using compression-rarefaction and their

12

speed is the highest as compared to all other waves. On the other hand, S waves are

shear waves which shakes ground in the direction perpendicular to the propagation

direction of P waves with a speed approximately 1.7 times slower than P waves.

However, the magnitude of S waves is stronger than P waves. Next, Surface waves

are slower as compared to body waves but they bring the most intense shaking to the

earth. They can also be categorized as Love waves (side-to-side) and Rayleigh waves

(rolling) [14], [18 - 21]. The movements of body waves are shown in Figure 2.3

below.

Figure 2.3: Propagation direction of body waves [13].

Earthquakes are recorded by an instrument called seismographs and the

recorded graph is called seismogram. Scientists use the seismogram recordings made

to determine how large the earthquake was. The length of the wiggle depends on the

size of the fault, and the size of the wiggle depends on the amount of slip as shown in

Figure 2.4 below [13].

Figure 2.4: Seismogram recordings of body waves in an earthquake [19].

13

The most common measurement standard for an earthquake based on the

amount of released energy at its source is the Richter magnitude scale, developed in

1935 by Charles F. Richter of the California Institute of Technology. The Richter

magnitude of an earthquake is determined from the logarithm of the amplitude of

waves recorded by seismographs [13]. The Richter scale with its corresponding

acceleration is tabulated in Table 2.3 below.

Table 2.3: Richter scale with its corresponding acceleration [22].
Richter Scale Approximate Acceleration (cm/𝐬2

)

<3.5 1
3.5

2.5
4.2
4.5 10
4.8 25
5.4 50
6.0 150
6.5

250
6.9
7.3 500
8.1 780

>8.1 980

However, seismograph is able to determine how far the earthquake is, but not

knowing the direction of the earthquake and its exact location. Thus, a method called

triangulation is used to determine the exact point of the earthquake as shown in

Figure 2.5 below [13].

14

Figure 2.5: Triangulation method [13].

The name of triangulation is due to a triangle has three sides, and it takes

three seismographs or 3 sensors as stated in [23] to locate an earthquake where

the epicenter lies on the intersection between radius of each from that station to the

earthquake. The radius can be known by referring the body waves travel time curve

using the time difference between P-wave and S-wave [13], [18].

On the other hand, Japan‟s earthquake early warning system can even

estimate the hypocenter of an earthquake using both single station method and

network method as shown in Figure 2.6 below.

 (a) (b)

Figure 2.6: a) Single method [24] b) Network method [24].

i) Territory method ii) Not-yet-arrived method

iii) Grid search method

15

The single station method which can also be known as B-delta method is used to

know the estimate the epicenter location from 1 station by fitting Bt*exp(-At)

function to the log-transformed acceleration waveform envelope of the first two

seconds of P-wave. The network method can be divided into 3 methods which are

territory method, grid search method and not-yet-arrived method. The territory

method is used when there are 1 or 2 stations have detected arrival of P-wave. A

polygonal region is defined as a "territory" to each station surrounded by

perpendicular bisectors to the adjacent stations which aim to refine the epicenter

estimation. When there is 2 or more stations detected arrival of P-wave,

not-yet-arrived method is used by taking into account not only the P-wave arrival

times of these stations but also the fact that P-wave have not yet arrived at

surrounding stations in the network. This method is used to restrict the hypocenter

location to a hyperbolic curve. When the number of stations reaches 3 to 5, grid

search method is used to get the optimal grid which covers the P-wave arrival time

differences in the least square manner as the hypocenter [24 - 26].

2.6 Disaster Management

The International Federation of Red Cross and Red Crescent Societies (IFRC)

defines disaster management as the continuous and integrated process of organizing

and managing the resources and responsibilities for dealing with all humanitarian

aspects of emergencies, in particular preparedness, response and recovery in order to

reduce the impact of disasters [27]. There are 3 stages of activity within disaster

management which are known as Disaster Management Cycle. This cycle is then

divided into 6 phases: Prevention, Mitigation, Preparedness, Response, Recovery and

Reconstruction which is shown in Figure 2.6 below [28].

16

Figure 2.7: The Disaster Management Cycle [28].

The Figure 2.7 above has clearly shows that phases of Prevention, Mitigation

and Preparedness are considered as pre-disaster activities which focus on reducing

human death and property losses caused by a potential hazard. On the other hand, the

remaining phases of Response, Rehabilitation and Reconstruction are considered as

post-disaster activities with a purpose to achieve early recovery and rehabilitation of

affected victims and communities after the impact of disasters.

Phases of prevention and mitigation refer to the activities which are

undertaken to prevent or mitigate the effects of a disaster in short and long-term with

the use of hazard, vulnerability and risk assessments or structural and non-structural

measures. On the one hand, phase of preparedness can be divided into 2 parts which

are contingency planning and also warning and evacuation which are essential to

prevent or minimize the losses caused by a disaster. For example, the formulation of

emergency plans in case of disaster, development of indicators and early warning

systems, public awareness and education and the simulation exercise.

Besides, the phases of response refers to first stage response to any calamity

such as putting the contingency plan in action, search and rescue and also fulfilling

basic humanitarian needs of victims like shelter, food and clothes. The phase of

Disaster
Occurrence

Response

Rehabilitation

Reconstruction Prevention

Mitigation

Preparedness

Pre-Disaster

Risk

Reduction

Phase

Post-Disaster

Risk

Recovery

Phase

17

rehabilitation involves the restoration of basic social function in duration between

weeks to months to assist long-term recovery. Finally, reconstruction phase is a

long-term recovery activity which takes from months to year which attempts to

rebuild the buildings, infrastructure and lifeline facilities with higher capability to

reduce or resist the impact of disaster [28].

2.7 Earthquake Early Alert System

An earthquake early alert system is considered as one of the pre-disaster

management in preparedness section as mentioned before. Scientist believes that the

resulting deaths and injuries of an earthquake are rarely brought by the shaking of

ground but the event it triggers such as building collapse, fire and Tsunami [29].

Thus, the main purpose of this system is to provide sufficient time for citizens to

evacuate to safe zones or to protect their properties before an earthquake strikes.

Since this system detects P-waves of the earthquake to issue the alert, the difference

in speed of P-wave and S-wave gives rise to a time delay about 10 to 15 seconds

which in turns adding react time to the citizens [16]. In order to achieve this purpose,

a real time monitoring and alerting system is needed since the alert message need to

be distributed out within seconds to be of value. Thus, few research papers about the

design of real time earthquake early alert system are studied and compared based on

specific criteria as shown in Table 2.4 below.

Table 2.4: Comparison of early earthquake alert system from previous studied journals or paper.

 Towards Formalism of

Earthquake Detection and Disaster

Reduction using WSANs [23]

Disaster Alert System

(DISAST)

[22]

Earthquake Early Warning

System by IOT using Wireless

Sensor Networks [20]

Earthquake

Monitoring and

Warning System [16]

Seismic Early Warning Alert

System [21]

Hardware and/or

Software System

Hardware and software

using VDM-SL

Hardware and software

using Python

programming

Hardware and software using

C programming and

LABVIEW software

Hardware and software

using C programming

and LABVIEW software

Hardware and Software

Medium Used to

Communicate
Internet Internet SMS and Internet SMS and Internet SMS, Phone Call and Internet

Software or Device

Used for Alert

Social Networking Media and Radio

Broadcast

Smartphone

Application (Telegram)
Mobile Phone and Email Mobile Phone Mobile Phone and Email

Sensor Used

1) Animal Sensor (Attach to animal)

2) Water Pressure Sensor (Location

with constant water flow)

3) Radon Sensor (Rocks, soil and

underground water)

Accelerometer

(Soil and sand)

Accelerometer

(Surface of the soil)

1) Accelerometer

(Surface of the soil)

2) Piezoelectric Sensor

(Surface of the soil)

Magnetometer Sensor

(Underground)

Controller Used N/A Raspberry Pi Microcontroller Arduino N/A

Post or Pre

Disaster System
Pre Pre Pre and Post Pre and Post Pre

Prediction Method On-sight detection On-sight detection On-sight detection On-sight detection On-sight detection

Number of sensor node 24 1 1 2 1

CRITERIA

JOURNAL/IEEE

CONFERENCE

18

19

Based on the papers shown in Table 2.4 above, there are 2 types of disaster

systems which are pre and post-disaster system. Most of the systems are pre-disaster

system which functions to alert people before an earthquake strikes. However, [16]

and [20] systems shown in Table 2.4 consist of both pre and post-disaster system.

Both systems are also considered as a post disaster system since the systems provide

a database which stores the information regarding the disaster for future reference.

All of the papers shown in Table 2.4 involve hardware application which uses

data from sensors as the source of disaster information in order to establish real time

monitoring and alert system. [16], [20] and [22] use accelerometer to sense ground

acceleration. [21] uses magnetometer sensors to detect earthquake with

electromagnetic signal. Both accelerometer and magnetometer sensors used in [21]

and [22] are placed underground while [16] and [20] place the accelerometers above

the ground in order to detect the ground shaking caused by an earthquake. All of

these sensors detect only the P-wave in different axes to issue warning. Besides, [16]

uses piezoelectric sensor to trigger the activation of other components in the circuit

only when it senses the vibration of ground for the purpose of long lasting usage of

battery. [23] uses 3 different sensors which are animal sensor, water pressure sensor

and radon sensor to detect earthquake. Animal sensor is attached to the animal body

as mobile biological sensor to detect their body temperature with the aim of sensing

abnormal behavior. Water pressure sensor is used to detect variation in water flow.

Therefore, it is deployed on different locations where the ground water flow is

constant. The radon sensor is used to detect the emission of radon gas which is

produced due to the disturbance in water or soil or due to the breaking of rocks. It is

placed on rocks, soil and underground water.

Based on Table 2.4 above, [16], [20] and [22] have controller in their system

while [21] and [23] have not. The controllers used in the systems are Raspberry Pi,

microcontroller and Arduino board respectively to handle sensor data. Most of the

system uses different approach to program their system like LABVIEW and Python.

20

In terms of sensor nodes, [23] achieves the highest number of sensor nodes, which

are 24. This system uses wireless sensor and actor network (WSANs) for early

earthquake prediction. In this system, each subnet of the system is built up from

many sensor nodes, few actor nodes and a gateway node. The predicted earthquake

sensed from the sensor in sensor nodes will trigger the nearby actor node which in

turns triggers the gateway node. The gateway node will send the earthquake

information to the base station which has the function to send alert message. Besides,

[16] has 2 sensor nodes with the use of wireless sensor network (WSNs). In each

sensor node, there is a XBEE router, a piezoelectric sensor, an accelerometer and an

Arduino Uno board. When the piezoelectric sensor senses earthquake, the XBEE

router is triggered to send the sensor data to the XBEE coordinator which will push

the data to laptop through serial communication for further analysis. The rest of the

papers listed in Table 2.4 uses only 1 sensor node to establish simple earthquake

early alert system.

Lastly, an earthquake early alert system has different ways to alert people

when an earthquake strikes. Based on the research papers listed in Table 2.4 above,

one of the methods is sending alert SMS to mobile phone through GSM modem.

Another way to send alert message is through Internet in social networking media,

smartphone application and email as a feature in Internet of Things (IoT) device. The

radio broadcasting and recorded phone call are also one of the options among these

systems. The alert information includes the details of the epicenter, magnitude and

estimated S-wave arrival time.

21

2.8 Conclusion

Based on the comparison of early earthquake alert system from previous

studied papers listed in Table 2.4, each system has its own pros and cons. In this

section, the pros and cons of each system will be discussed in order to pick the

desired setup for this project.

Nowadays, wireless sensor network (WSNs) is a common technique to be

used to establish communication between sensor node and controller even the sensor

node is placed far away from the controller. However, extra components which are

router and coordinator are needed and the distance between these components is

limited. Therefore, the cost of the system will be increased and the coverage area of

the system is limited. The wireless sensor and actor network (WSANs) proposed in

one of the previous studied paper has similar function like WSNs but the complexity

of the system is much higher since it involves communication between multiple

types of nodes in an area. Thus, the system will be more expensive although the

coverage area is wider than WSNs. On the other hand, Internet of Things (IoT) has

become tremendously popular in designing a system due to its unlimited coverage

area and cost effective. Thus, this technique covers the cons of WSNs and WSANs as

long as Internet connection is available.

There are few types of sensors are used in available early earthquake alert

system based on the previous studied papers. Among these systems, accelerometer is

the most popular sensor to detect the presence of earthquake due to the ease of

detecting the ground acceleration in different axis which are x, y and z. The price of

an accelerometer is cheaper and its size is smaller. Furthermore, an accelerometer

can measure a large scale of magnitude. As for the magnetometer sensor, the sensor

is extremely sensitive as it is also able to capture other natural or man-made noise.

Thus, it is hard to find a suitable location to place the sensor and the system is less

22

efficient to recognize the earthquake pulse since it involves complicated signal

processing algorithm. Besides, the system with the combination of 3 sensors which

are animal sensor, water pressure sensor and radon sensor to detect an earthquake is

more costly and the detection method is more complicated as it involves participation

of living things.

There are 2 most common ways to alert people based on the previous studied

papers. One of the methods is sending SMS to mobile phone user through GSM

modem. Thus, all mobile phone users including non-smartphone and smartphone

users can receive the alert when an earthquake strikes. However, additional cost will

be charged for each SMS. Another method is use of Internet service to send alert

message through social networking media, smartphone application and email.

Therefore, this system is limited to smartphone user only in order to receive the alert

message at first hand without the aids of computer or laptop and the smartphone

must be able to connect to Internet. Radio broadcasting and phone call are the least

popular ways to alert people since both requires time to deliver the alert speech.

2.9 Summary

Overall, this chapter presents theoretical background related to this project

and also the pros and cons of the studied research paper. Next chapter will cover the

setup to be used in this project based on the studied papers and designed experiments

to achieve the objectives of the project.

23

CHAPTER 3

METHODOLOGY

3.1 Overview

In this chapter, methods to achieve the objectives of the project as stated in

Chapter 1 will be discussed and presented. Thus, this chapter can be divided into 3

main parts: hardware development, software development and experiment setup. The

detailed procedure and list of material and apparatus used for each conducted

experiment will be shown.

3.2 Gantt Chart and Milestone

The overall process of the entire project is listed in the Gantt chart as shown

in Appendix A1 and A2 for proper schedule purpose. Then, the milestone of each

section is listed down in Table 3.1 and Table 3.2 below.

Table 3.1: Milestone for Final Year Project 1.
No. Activity Date
1 Research Journal or Paper Review 3 November 2017
2 Selection of Hardware and Software 4 November 2017
3 Early Progress of Experiment 1 18 November 2017

4 Completion of Experiment 4 20 November 2017

5 Completion of Experiment 5 22 November 2017

6 FYP 1 Presentation 5 December 2017

7 Submission of FYP 1 Final Report 22 December 2017

24

Table 3.2: Milestone for Final Year Project 2.
No. Activity Date
1 Completion of Experiment 1 26 February 2018
2 Completion of Experiment 2 2 March 2018

3 Completion of Experiment 3 18 March 2018

4 Completion of Experiment 6 30 March 2018

5 Completion of Experiment 7 4 April 2018

6 Data Analysis and Discussion 12 April 2018

7 Report Writing 18 April 2018

8 Completion of Presentation Slide and Video 21 May 2018

9 FYP 2 Presentation 24 May 2018

10 Submission of FYP 2 Final Report 6 June 2018

3.3 Earthquake Early Alert System Design

The selection of hardware and software are done after comparing the pros and

cons of each system discussed in Literature Review chapter. The system setup of the

earthquake early alert system is shown in Figure 3.1 below.

Figure 3.1: System Setup of Earthquake Early Alert System.

Based on Figure 3.1 above, accelerometer is selected as the sensor in this project to

detect earthquake due to its low cost while being able to measure a large scale of

ground acceleration in 3 different axes. Raspberry Pi Camera Module has the

Accelerometer

Raspberry Pi
Camera Module

Raspberry Pi

Cloud Platform

Online Data
Visualization

Alert Platform

ThingSpeakTM

WiFi

25

function of recording video for validation. Raspberry Pi is chosen as the controller of

the system due to its ease of use to build an IoT model and cost effective.

ThingSpeakTM is chosen as the cloud platform for the existence of online MATLAB

analytical tool. Next, smartphone application Telegram is used as the alert platform

in this project since smartphone are widely used in the world nowadays and

Telegram is faster than other smartphone messenger [22].

3.3.1 Hardware Development

Based on previous study, [22] has stated that Raspberry Pi has a higher processor

capacity compared to Arduino Uno. Besides, Raspberry Pi is common in IOT model due

to its ease of use to connect the Internet without the needs of purchasing extra module.

Thus, Raspberry Pi is chosen as the controller of this project. Accelerometer is the most

popular sensor among the previous discussed earthquake early alert system due to its low

cost while able to measure a large scale of ground acceleration in 3 different axes. [22]

also mentioned that accelerometer provides a faster and better responds compared to

vibration sensor. Thus, accelerometer is chosen as the sensor to detect P-wave which is

1.7 times faster than S-wave in this project. Raspberry Pi Camera Module is chosen as

a tool to record video when earthquake happens due to its very low impact on the CPU

(Central Processing Unit) load of Raspberry Pi when recording video compare to

USB camera which results to shorter footage processing time.

26

3.3.1.1 Raspberry Pi

A Raspberry Pi is a credit card-sized and high performance computer first

developed by the Raspberry Pi Foundation in United Kingdom designed for

programming skills and hardware understanding improvement in education field. It

was then quickly adopted by makers and electronics hobbyists for projects that

require more than a basic microcontroller, like Arduino board due to its accessible

price and small size [30].

Recently, the Raspberry Pi Foundation has launched the Raspberry Pi Zero W,

an improved version of the original Raspberry Pi Zero that adds 2 key elements of IoT,

built-in Wi-Fi and Bluetooth provided by the same Cypress CYW43438 wireless chip

with Pi 3 Model B. The 40- pin unpopulated GPIO header is same with previous model.

The features of Raspberry Pi Zero W are shown in Figure 3.2 below [30].

Figure 3.2: Raspberry Pi Zero W [30].

27

Comparison between Raspberry Pi Zero W and Raspberry Pi 2 Model B as used

in [22] is shown in Table 3.3 below [31].

Table 3.3: Comparison between Raspberry Pi 2 Model B and Raspberry Pi Zero W.

Features Raspberry Pi 2 Model B Raspberry Pi Zero W

Central Processing

Unit (CPU)

900MHz quad-core ARM
Cortex-A7 CPU

1 GHz ARM11 CPU

Memory 1GB 512 MB

Storage MicroSD card slot MicroSD card slot

Connectivity

4 USB 2.0 ports, HDMI port,
Ethernet port and 3.5mm audio

jack

MicroUSB port,
mini-HDMI port, 802.11n

wireless LAN and
Bluetooth 4.0

Operating System Linux and Windows 10 IoT core Linux

Connectors
Camera interface (CSI), 40- pin

GPIO, SPI, I2C and JTAG

Camera interface (CSI),
unpopulated 40-pin GPIO,

SPI and I2C

Power Supply 5V 5V

Dimension 85 mm x 56 mm x 17 mm 65mm × 30mm × 5mm

Price RM364.53 RM42.40

From Table 3.3, Raspberry Pi 2 Model B has better hardware specification than

Raspberry Pi Zero W with higher processing capacity, larger memory and more

operating system choice. However, Raspberry Pi Zero W has smaller size, ultra- low

cost and has the most important feature, built in Wi-Fi and Bluetooth adapters. Thus,

Raspberry Pi Zero W is chosen as the controller of this project since it is an excellent

platform for IoT application.

28

3.3.1.2 Accelerometer

Accelerometer is a sensor used to measure the change in velocity, which can

also be known as acceleration of an object. The unit of measurement is meters per

second squared (m/s2) or in G-forces (g) which is equivalent to 9.8 m/s2 on Earth. It

is useful in sensing the vibrations or orientation of the system in one or multiple axes

depends on the sensor‟s structure [32].

Accelerometer ADXL335 from Analog Devices as shown in Figure 3.3 below

is chosen as the sensor of the project to measure the earthquake magnitude based on

the acceleration of the prototype model refers to [22].

Figure 3.3: Accelerometer ADXL335 [22].

The Accelerometer ADXL355 is a small and thin analog sensor which is able

to sense the vibration in 3 different axes, namely x, y and z. With its extremely low

noise and power consumption around 300 uA, it is able to measure acceleration in

full-scale range of ± 3 g [32]. The specification of the ADXL355 is listed in Table 3.4

below based on its datasheet.

29

Table 3.4: Specification of ADXL355 [32].

Parameter Value

Operating voltage 2.5 V – 6 V

Typical current 300 uA

Range ± 3 g

Sensitivity 0.33 V/g

Voltage at 0g of X-axis and Y-axis 1.65 V

Voltage at 0g of Z-axis 1.80 V

Reference voltage, Vref 3.3 V

To calculate the peak ground acceleration refer to the ADC value for different

earthquake magnitude Richter scale as stated in Table 2.3 above in chapter 2,

formula to be used are listed down below refer to [22]. Since P-wave propagates

parallel to the ground, the calculation of this project involves x-axis only by

assuming that the y-axis acceleration is same as x-axis.

The ground peak acceleration measured in m/s2,

 V

 (3.1)

where adc is the analog-to-digital converter (ADC) value

 Vref is the reference voltage (3.3 V)

 r is the range of 10-bit resolution analog-to-digital converter (1023)

V0g is the voltage at 0 g (1.65 V)

 S is the sensitivity of ADXL355 (0.33 V/g)

 g is the gravitational acceleration (9.81 m/s2) [22]

3.3.1.3 Raspberry Pi Camera Module

In this project, Raspberry Pi Camera Module Version 1.3 as shown in Figure

3.4 below is used to validate the earthquake hit by recording video at the site. The

30

camera attaches directly to the 15-pin MIPI Camera Serial Interface (CSI) of

Raspberry Pi by a 15 Pin Ribbon Cable. This CSI bus is directly connected to the

Raspberry Pi GPU (Graphics Processing Unit) which can process images without

ARM intervention. It can record video at maximum 30 frames per seconds for 1920 x

1080 quality video, 60 frames per seconds for 1280 x 720 quality video and 60 or 90

frames per seconds for 640 x 480 quality video using a 5 Megapixels OmniVision

OV5647 sensor [33].

Figure 3.4: Raspberry Pi Camera Module Version 1.3 [33].

3.3.1.4 Shaking Table

A unidirectional shaking table is designed to simulate the P-wave propagation

of an earthquake consistently as shown in Figure 3.5 below.

Figure 3.5: Shaking table design.

31

The design is inspired by [34] where the table is driven by a drill in a constant

acceleration as shown in Figure 3.6 below.

Figure 3.6: Shaking table using drill as actuator [34].

The movement of the table is fixed by wood blocks at 2 sides. Pipes are placed under

the table to reduce friction when it is driven by the drill. However, the drill is

expensive and this project requires total of 3 set of shaking tables for each station.

Therefore, a 6V DC motor is used as the actuator and the size of the table is highly

reduced to cut down the cost. All 3 tables are 3D printed using polylactic acid (PLA)

plastic as its material. The size of the table is 5.1cm x 12.4cm x 7.577cm and it can

be divided into 5 parts listed in Table 3.5 below. The detail measurement of each part

of the designed shaking table is shown in Appendix B.

32

Table 3.5: List of parts of the designed shaking table.

Part Quantity Function

i) Base

1

To provide space for the DC

motor and unidirectional

movement of the body.

ii) Body

1

To hold the accelerometer

sensor and drive by the DC

motor.

iii) Roller

1

To transform the rotational

movement of the DC motor

to linear movement.

iv) Link

1

v) Beam

2

To limit the movement of

the body and reduce the

friction between base and

body during shaking.

33

3.3.2 Software Development

The term “Internet of Things” (IoT) by Kevin Ashton in 1999 has been

popularized by MIT in business field for market analysis at MIT‟s Auto-ID center.

IoT is used to achieve “Machine to Machine” (M2M) interaction which makes

networked devices “smart” to exchange information and perform actions without

assistance of humans. It is predicted that there will be more than 50 billion devices

connected to IoT by 2020 [35].

3.3.2.1 ThingSpeak
TM

ThingSpeak™ is an open IoT analytics platform service that allows one to

collect and store sensor data in the cloud to develop IoT application. With the ability

to execute MATLAB, one of the application provided by ThingSpeakTM, one can

perform online analysis, visualization and react automatically upon live data streams

to achieve system standalone mode without the necessity of a computer as shown in

Figure 3.7 below [36], [37].

Figure 3.7: ThingSpeak applications [35].

ThingSpeakTM is the only open data platform specifically designed for the IoT

in the cloud. It has the possibility of creating public channels to present own IoT

application without the needs of setting up servers or developing web software.

Although it is simpler to be used as compared to other competitors like Carriots,

34

SmartObject, Skynet and Sensorthings, there is a limit for one update per channel

every fifteen seconds due to the excess bandwidth for a free account. However, the

data upload rate can be reduced to 1 second if purchased [35], [38]. Based on the

benefits mentioned above, ThingSpeakTM is chosen as the cloud service to build a

real time earthquake monitoring and alert system.

3.3.2.2 Telegram

Telegram is a cloud-based mobile and desktop messaging application which

enables user to access their messages from multiple devices. It supports all operating

system known today like Android, iOS, Windows, MacOS and even Linux. One of

the most important features of Telegram is enabling third-party developers to create

bots. Bot is a special account operated by software which does not require an

additional phone number for set up. It is considered as text-based service built for

specific purposes like remind user, integrate with other services or even pass

instruction to IoT platform [39]. Therefore, Telegram is chosen as the alert platform

to receive the alert information sent by the created bot from Raspberry Pi as done in

[22].

35

3.3.3 System Architecture

The overall chart of earthquake early alert system is shown in Figure 3.8

below.

Accelerometer Accelerometer Accelerometer

Raspberry Pi Raspberry Pi Raspberry Pi

Telegram

Raspberry Pi
Camera Module

Raspberry Pi
Camera Module

Raspberry Pi
Camera Module

Footage
Early Stage Alert Message

 - Earthquake magnitude
 - Impact timestamp

Online Data Analysis
through MATLAB

Data visualization
through graph

Online map mapping

Telegram

Final Stage Alert Message

 - Estimated epicenter location
 - Estimated impact time of P-wave
 - Estimated earthquake magnitude

ThingSpeak

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Figure 3.8: Overall chart of earthquake early alert system.

Based on Figure 3.8, earthquake early alert system can be divided into 5 phases.

Each phase has its own functionality which is explained in Figure 3.9 below. The

detailed process of the system is shown in a flow chart in Figure 3.10 below.

36

Figure 3.9: Functionality of each phases of earthquake early alert system.

No

Start

Measure
acceleration

End

Send alert message to
Telegram channel and start

record video

Time exceeds 5
seconds?

Stop record video

Upload video to
Telegram channel

Upload data to
ThingSpeak channel

Analyze and visualize
data using MATLAB

Acceleration inside
preset ranges?

Further analyze data
using MATLAB

Generate earthquake
information map using

MATLAB Mapping
Toolbox

Sensor
Node 1

Sensor
Node 2

Sensor
Node 3

Sensor Node

Acceleration
exceeds threshold

value?

Return

Send generated map to
Telegram channel

No

Yes Yes

No

Yes

Send “failed to analyze
data!” to Telegram

Reload Thingspeak
visualisation

application page

 (a) (b)

Figure 3.10: a) Flow chart of alert system b) Flow chart of sensor node.

Data
Collection

Early stage
alert and

data upload
Data

analysis
Map

mapping
Final
stage
alert

 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

37

Figure 3.10 (a) shows the entire flow of the earthquake alert system while

Figure 3.10 (b) shows the flow of each sensor node implemented in the system. All

the processes will be explained by phases in next section.

3.3.3.1 Initial Setup

This section involves the installation of the circuit for each sensor node and

its location before entering the phase explanation. The schematic diagram for each

sensor node is shown in Figure 3.11 below. The pin number for Pi Zero refers to the

Pi4J documentation.

Figure 3.11: Schematic diagram of sensor node.

Each sensor node will have components:

a) Raspberry Pi Zero W (Controller)

b) MCP 3008 (8-channel 10-bit analog to digital converter)

c) L298N (Motor driver)

d) ADXL 335 Accelerometer (Sensor)

e) M31E-1 (6V DC motor)

38

f) 9V Battery (Power supply for motor and motor driver)

g) 5V Power Supply (Power supply for Raspberry Pi Zero W)

h) Raspberry Pi Camera Module Version 1.3 (Video recorder)

For the 5V power supply as mentioned in (g), Raspberry Pi will be connected to a

DC power source converted from an AC power plug which in turns provides

electrical energy for the sensor and camera. Raspberry Pi Camera Module Version

1.3 will be installed only at the Sensor Node 2 due to the camera is used for

experimental purpose on video recording to validate the earthquake hit and save

project cost. Another 2 sensor nodes will only upload the saved video when the

accelerometer data exceeds threshold value.

All 3 sensor nodes will be arranged at a location referring the triangulation

method as mentioned in [18] to predict the epicenter of the earthquake as shown in

Figure 3.12 (a) below. Each sensor node is 5km apart from each other as shown in

Figure 3.12 (b) with the location coordinates in terms of latitude and longitude

marked beside each sensor node.

 (a) (b)

Figure 3.12: a) Triangulation method [18] b) Location of each sensor node.

Station 1 at (2.329661, 102.279777)

Station 2 at (2.284655, 102.280450)

Station 3 at (2.307752, 102.319032)

39

 A simple algorithm is used to calculate the theoretical acceleration using the

distance between the epicenter and sensor node and the earthquake magnitude. The

distance is the radius for each sensor node referring to the triangulation method as

mentioned in Chapter 2.

Using the Donovan (1973) ground motion model,

 (3.2)

where a is the ground peak acceleration in m/s2

 M is the earthquake magnitude

 D is the distance from the earthquake epicenter in km [40], [41]

By using Equation (3.2), it was found that the acceleration value at a distance of

25km away from the earthquake epicenter is the closest to the corresponding

acceleration of Richter magnitude scale in Table 2.3 above which the magnitude

ranges from 5.3 to 7.0 magnitudes. Using this distance, the earthquake epicenter is

preset to 6 different locations marked from alphabet A to F surrounding the stations

as shown in Figure 3.13 below which is plotted using MATLAB Mapping Toolbox.

The red dots are the epicenters while the plus symbols are the stations. The location

of the station is plotted using the coordinates in Figure 3.12 (b).

Figure 3.13: Map showing the location of epicenters and sensor nodes.

The distance between each epicenter point and the sensor nodes is found by

illustrating the coordinates of all 3 stations and measure the distance of around 25 km

A

B

C D

E

F

40

from each station in AutoCAD software. The geometrical coordinate of each

epicenter point is then found using MATLAB function scxsc. This function finds the

intersection geometrical coordinate between 2 circles drawn from either 2 stations

using the distance between epicenter point and the sensor nodes as shown in Table

3.6.

Table 3.6: Epicenter distance to each sensor node and its coordinate.

Epicenter
Distance to

station 1/km

Distance to

station 2/km

Distance to

station 3/km
Coordinate

A 25.00 29.44 29.44 2.522500 , 102.164000
B 25.12 25.12 29.33 2.303800,102.055200
C 29.44 25.00 29.44 2.088406, 102.170699
D 29.33 25.12 25.12 2.103400,102.415300
E 29.44 29.44 25.00 2.311100,102.544100
F 25.12 29.33 25.12 2.515000,102.409100

To simulate the theoretical acceleration found using the Equation (3.2), the

following formulas are used to transform the angular acceleration of DC motor to

linear acceleration through designed shaking table.

The angular velocity of the DC motor,

 (3.3)

where w is the angular velocity corresponding to motor‟s duty cycle in rad/s

 A is the no load speed of M31E-1 DC motor refer to its datasheet (3700 rpm)

 D is the duty cycle of the motor in percentage

The angular acceleration of DC motor,

 (3.4)

where is the angular acceleration of the motor in rad/s2

 is the change in angular velocity in rad/s

 is the change in time in s

41

Finally, the linear acceleration or tangential acceleration of the motor,

 (3.5)

where is the linear acceleration of the motor in m/s2

 r is the radius of the roller in Table 3.5 (0.01 m/s2) [42]

By using the Equations (3.3) to (3.5), the duty cycle required for the motor to

generate the theoretical acceleration is found. Since the motor is inconsistent due to

the absence of close-loop control system, the Richter scale of 5.3 to 7.0 magnitudes

are divided into 3 ranges, each range contains 6 steps of magnitude. The theoretical

acceleration refers to around the middle of each range. Assuming the P-wave is in

constant acceleration during its arrival to the sensor nodes, the speed of the shaking

table is running following the pattern of a sine waveform for 4 seconds to ensure

constant acceleration is produced for 3 seconds sensor data calculation as shown in

Figure 3.14 below.

Figure 3.14: Changes of motor speed in time.

A gain is multiplied with the actual sensor acceleration data to reduce the percentage

error of the data to within 10% as compared to the theoretical acceleration. This

method can improve the accuracy of the sensing platform to be more approach to real

situation.

Using the percent error formula,

 |

| (3.6)

where e is the percentage error (10%)

43

63

83

103

0 1 2 3 4D
u

ty
 c

y
cl

e,
%

Time,s

Duty Cycle Versus Time

42

 is the theoretical acceleration in m/s2

 is the desired acceleration in m/s2

Using Equation (3.6),

 (3.7)

To find the gain,

 (3.8)

where x is the gain

 is the actual acceleration from accelerometer in m/s2

By using the Equations (3.6) to (3.8), the process of shaking table calibration is

achieved through multiplication of gain with the sensor data. Table 3.7 below shows

the range of Richter magnitude scale with its corresponding theoretical acceleration,

desired acceleration and duty cycle of motor which calculated using the first second

of shaking table movement. The time step and duty cycle step are the step size per

increment of x and y-axis. Loop refers to the total loops required for the motor to

produce the sine waveform pattern shown in Figure 3.14 for each second.

Table 3.7: Shaking table setup.

Richter

magnitude

scale

Theoretical

acceleration,

m/s2

Desired

acceleration, m/s2

Change in

angular

velocity,

m/s

Change

in time, t

Duty

cycle

range,

%

Duty

cycle

step

Time

step,

s

Loop

5.3-5.8 0.930 1.023(+) or 0.837(-) 93.0 1 35-59 3 0.125 8

5.9-6.4 1.356 1.492(+) or 1.220(-) 135.6 1 35-70 7 0.200 5

6.5-7.0 2.015 2.217(+) or 1.814(-) 201.5 1 43-95 13 0.25 4

All the data shown in Table 3.7 refers to the positive increment in Figure 3.14 and

vice versa to the negative increment in duty cycle step. The negative sign given by

the deceleration during negative increment is removed. Only the magnitude of the

sensor data is considered.

43

To simulate the propagation of P-wave from an epicenter point to the sensor

nodes using shaking tables, a time delay is essential since all 3 sensor nodes located

at different coordinate during the earthquake simulation. Thus, P-wave travel time

curve is used to know the theoretical arrival time of P-wave based on the distance of

the sensor node from the epicenter as shown in Figure 3.15 below [43].

Figure 3.15: P-wave and S-wave travel time curve [43].

Using the MATLAB Curve Fitting Toolbox, the polynomial equation of P-wave

travel time curve is obtained as shown below.

 y = 0.0002x5 - 0.0042x4 + 0.0425x3 - 0.2817x2 + 2.4332x + 0.0174 (3.9)

where y is the travel time of P-wave in minutes

 x is the distance from the epicenter in x103 km

Using the Equation (3.9), the time delay to simulate all the 6 epicenter location is

calculated as shown in Table 3.8 below and is rounded off to 1 decimal place.

Table 3.8: Sensor nodes time delay for each epicenter point.

Epicenter Station 1 Station 2 Station 3

A 0 0.6 0.6
B 0 0 0.6
C 0.6 0 0.6
D 0.6 0 0
E 0.6 0.6 0
F 0 0.6 0

44

3.3.3.2 Phase 1

The accelerometer acts as the sensor to measure ground peak acceleration every 0.1

seconds and send the measured data back to Raspberry Pi. For this project, a python

script is running continuously in all the Raspberry Pi to receive command from a

Telegram private channel, named info@pi using a Telegram bot. This channel is built

to ease the communication between all the Raspberry Pi. Once the bot received the

desired message, all 3 shaking tables will run which in turns trigger the

accelerometer to measure the ground peak acceleration. Thus, a total of 4 telegram

bots are needed for different Raspberry Pi where 3 bots is used to send message and

video while the last one is to collect data sent by other bots since the bot cannot

detect message send by itself. The last bot is used by Sensor Node 1 as it is

responsible to upload the collected data to ThingSpeak channel in Phase 2. Thus, 2

bots are being used by Sensor Node 1 where 1 is used to detect message sent to the

Telegram channel while another bot is used for sending message and video. The

threshold value of acceleration to trigger the alert message is preset to a value larger

than 1 cm/s2 corresponding to earthquake shaking with Richter scale exceeding 3.0

magnitude which will be felt by many people. However, due to the absence of noise

filter for the sensor, the threshold value is preset to 0.05 m/s2. When the acceleration

exceeds the preset threshold value, the system enters Phase 2.

3.3.3.3 Phase 2

First, 3 processes are undergone at the same time. Pi camera will be triggered

to record a 5 seconds site video and an alert message containing the earthquake

magnitude and earthquake impact timestamp will be sent to Telegram private channel

named Test@pi. This channel is built to inform the authorities regarding the

earthquake hit. The timestamp will also be sent to info@pi when the sensor data

45

exceed the preset threshold value. At the same time, sensor will collect 100 times

data within 3 seconds and the average value is multiplied with the preset gain before

sending to info@pi. The 3 seconds duration is used to measure the P-wave

acceleration as refers to [44] and [45] which stated that the initial several seconds of

P-wave data can predict the earthquake size and magnitude. The recorded video is

uploaded to Test@pi directly after 5 seconds recording time. When Sensor Node 1

finished collecting timestamps and average sensor data from all 3 Raspberry Pi, the

information will be uploaded to ThingSpeak channel for data visualization and

analysis. Since Node 1 timestamp delay due to the processing speed of its class 4

Micro SD card, the timestamp is minus by 1 second to increase the chance of

successfully analyze the epicenter point. The average acceleration of each sensor

node is directly plotted on the channel for visualization purpose which in turns

enabling online monitoring feature. Sensor Node 1 will send “Warning cancel” as an

assumption of faulty detection once one of the sensor nodes is not triggered and

causes the system to reset back to Phase 1. When the data is successfully uploaded to

ThingSpeak channel, the React app of ThingSpeak will call the MATLAB Analysis

program saved in ThingSpeak and causing the system to enter Phase 3.

3.3.3.4 Phase 3

MATLAB analytical tool is used in this phase to compare the sensor data

from each node with the preset acceleration ranges and the timestamps with the

preset time refer to Table 3.8. If one of the data or timestamp falls outside the ranges,

ThingSpeak will send “failed to analyze data!” to info@pi and causes the system to

reset back to Phase 1. When all 3 sensor data fall within the same range, earthquake

magnitude can be determined. Then, the timestamp regarding to the arrival time of

P-wave to the sensor nodes are analyzed to estimate the earthquake epicenter

location and the earliest P-wave arrival time refer to Table 3.8. Once the MATLAB

Analysis program has finished analyzing the data, the estimated earthquake

46

magnitude, estimated epicenter location and the earliest P-wave arrival time will be

written to another ThingSpeak channel for map mapping purpose. Then, a “reload”

message is sent to info@pi and the system enters Phase 4.

3.3.3.5 Phase 4

A MATLAB Visualization program is created to generate the earthquake

information map showing the estimated earthquake location, P-wave arrival time to

point X and the estimated earthquake magnitude. To do this, a MathWorks account

with the license of using MATLAB Mapping Toolbox is required to log in to

ThingSpeak. This toolbox is essential for processing geometrical coordinate data and

generating world map. When the “reload” message is received by Telegram bot of

Sensor Node 3, the MATLAB Visualization program page will be reloaded to run the

program since ThingSpeak has not yet implement auto update on MATLAB

Visualization application. The sensor data and the estimated magnitude is read from

ThingSpeak channel to estimate the epicenter location refer to the triangulation

method. Using the Equation (3.2), the circle radius in kilometer can be found. Due to

the inconsistent problem of both the sensor and shaking table, the epicenter of the

earthquake is expanded to cover the preset acceleration ranges for each set of

magnitude ranges. The median of each acceleration range is the diameter of the

epicenter circle with its coordinate as the center point. As for the P-wave arrival time

to a destination point, point X with geographical coordinate (10.0156,115.8368) is

used which is 1700 km far from epicenter point E. To estimate the shortest time for

the arrival of P-wave to the point X, the following algorithm is used.

Figure 3.16: Details of the distance between point X and the epicenter.

E r S X

Td
d Ds

d
Dx
d Dr

d

47

where E is the epicenter coordinate

 r is the epicenter radius coordinate

 S is the sensor node coordinate

 X is the point X coordinate

 Dr is the radius of epicenter in km

 Ds is the distance between epicenter and sensor node in km

 Dx is the difference between Td and Ds in km

 Td is the distance between point X and the epicenter in km

The estimated epicenter coordinate and the sensor node with the earliest timestamp

of the arrival of P-wave are used. Using the Equation (3.9), the P-wave travel time in

Dr and Dx distances are calculated.

 (3.10)

where t is the estimated P-wave arrival time to point X in s

 is the earliest timestamp of the arrival of P-wave to the sensor node

 is the P-wave travel time using Dx distance in s

 is the P-wave travel time using Dr distance in s

Table 3.9 below shows the generated map for each epicenter point. When the map is

successfully plotted, a message “done” is sent to info@pi and triggers the system to

move forward to last phase.

48

Table 3.9: Generated map for each epicenter point.

Epicenter Earthquake Information Map

A

B

C

49

Epicenter Earthquake Information Map

D

E

F

50

3.3.3.6 Phase 5

The last stage of the system involves sending the generated map to Telegram

channel Test@pi. When the Sensor Node 3 received message “done”, it will

download the generated map photo and upload it to Test@pi of telegram channel as

final alert message. The alert information includes estimated earthquake epicenter,

estimated impact time of P-wave to point X and the estimated earthquake magnitude.

3.4 Experiment Setup

A series of experiments to be conducted in this project are listed in this

section according to the objectives to be achieved. A detailed explanation on each

experiment is presented by listing out the materials and apparatus, hardware setup

and the procedure which will be shown in Appendix D. Besides, short explanation

about the experiment in terms of flow chart and expected outcome will also be

discussed in this section.

There is rarely perfect flat surface on the ground layer of earth, thus the very

small acceleration contributed by the slightly inclined accelerometer placed above

the ground can be reduced by carrying out the calibration for every changed position.

Simple calibration method called no-turn or single-point calibration will be used in

the experiment to reduce the error of accelerometer using the Equation (3.11) shown

below.

 OUT OFF G n × A T (3.11)

where AOUT is the output acceleration in g

 AOFF is the offset error in g

 Gain is the gain of accelerometer
 AACT is the real acceleration acting on the accelerometer in g

51

The output acceleration, AOUT is the measured acceleration when the sensor is placed

on a flat ground surface while the gain is set to an ideal value of 1 [46]. Since the

acceleration is calculated by using the ADC value, thus the Equation (3.11) is

changed from acceleration value to ADC value to simplify the calculation. The offset

error, AOFF is obtained by running a calibration test as shown in Appendix E. Since

0g is equal to 511.5 ADC value using the Equation (3.1), the AACTUAL is set to 511.5

to minus by the measured ADC value, AOUT for 10 times repeat measurement. The

offset errors of X-direction then can be obtained by averaging the difference. Then,

the offset error could be inserted to the Equation (3.12) below to get the actual

acceleration reading.

 CA T COUT COFF (3.12)

where ADCOUT is the output ADC value

 ADCOFF is the offset error
 ADCACT is the real ADC value sensed by the accelerometer

3.4.1 Objective 1

The first objective of the project is to design a disaster alert system that

estimates the earthquake epicenter and arrival time of earthquake by using

accelerometer.

3.4.1.1 Experiment 1: Experimenting Communication between Raspberry Pi

This experiment aims to check whether 2 Raspberry Pi can communicate to

each other with a distance of exceeding 5km apart from each other. The

communication is to be established with the success of receiving command from

Telegram channel which run the shaking table and lastly uploads the sensor data to

ThingSpeak channel. The result is tabulated to Table 3.10.

52

Table 3.10: Result of Experiment 1.

Test
Acceleration / ms

-2
 Timestamp Remark

Node 2 Node 3 Node 2 Node 3 Success Fail Reason

3.4.1.2 Experiment 2: Shaking Table Calibration

This experiment aims to compare the experimental acceleration measured

from accelerometer with the theoretical actuator acceleration in order to find its

corresponding gain using Equation (3.8). 3 different ranges of motor speed are to be

found refer to Table 3.7 in order to simulate different earthquake scenarios in the 3

ranges of earthquake magnitudes where Range 1 is 5.3 to 5.8 magnitude, Range 2 is

5.9 to 6.4 magnitude and Range 3 is 6.5 to 7.0 magnitude . Then, the largest

difference between the minimum and maximum of the acceleration values from each

acceleration ranges of all 3 shaking tables will be taken to calculate the estimated

epicenter radius. The sensor data will be tabulated in Table 3.11 below.

Table 3.11: Acceleration data of Experiment 2.
Range 1 2 3

Duty Cycle (%) 35-59 35-70 43-95

Test a1 / ms
-2

 Gain a2 / ms
-2

 Gain a3 / ms
-2

 Gain

3.4.1.3 Experiment 3: Visualizing Predicted Earthquake Map in ThingSpeak

This experiment aims to check the reliability of designed earthquake early

alert system with simulation of different earthquake scenarios using shaking table.

Since there are 3 sensor nodes, thus total of 8 different earthquake scenarios can be

simulated. However, the system is capable to sense earthquake hit only if the distance

between the epicenter and the sensor nodes is around 25km. Thus, there are total of 6

53

different earthquake scenarios to be simulated. The generated earthquake map based

on the analyzed sensor data from each sensor node will be evaluated and result will

be tabulated in Table 3.12.

Table 3.12: Result of Experiment 3.
Test

Acceleration / ms
-2

 Timestamp Evaluation

Node

1

Node

2

Node

3

Node

1

Node

2

Node

3
Success Fail Reason

3.4.2 Objective 2

The next objective of the project is to develop a disaster messaging system for

sending alert information and video recorded on earthquake scene by using Pi

camera module through smartphone‟s application and web based network. There will

be 3 experiments conducted to achieve this objective.

3.4.2.1 Experiment 4: Measuring Time Taken of Sending Message to Telegram

For this experiment, a Python script of sending earthquake information to

Telegram using Telegram Bot is designed. Time required for the Telegram private

channel to receive the message will be measured by comparing the timestamp of

sending and receiving message recorded in Table 3.13.

Table 3.13: Comparison table for Experiment 4.
Test

Timestamp before

sending message

Timestamp after

receiving message
Time difference / s

54

The flow of this experiment is shown in Figure 3.17 below. The entire

experiment is repeated for 10 times.

Start

End

Send “/hello” command
to Telegram Bot 1

Command received
by Telegram Bot 1?

Raspberry Pi print out
current timestamp.

No

Yes

Message received
by private channel?

Telegram Bot sends “ Node 1
detected earthquake:

 3.7 magnitude.” to private channel

Raspberry Pi prints out
current timestamp.

No

Yes

Figure 3.17: Flow chart of Experiment 4.
2 Telegram Bots will be created to send message and detect message sent since

Telegram Bot is not able to read message sent itself. A Telegram private channel will

be created and both Telegram Bots will be added as the administrators of the group.

When the command “/hello” is received by Bot 1, the timestamp of sending message

to the private channel by Telegram Bot 1 is printed out on a terminal just before

55

sending the alert message. When the message has been successfully delivered to the

private channel, another Bot named Bot 2 is triggered to print out the delivered

message and time the private channel received the message.

3.4.2.2 Experiment 5: Comparing Recorded Video Format

This experiment is conducted to find the video format that can be uploaded to

Telegram channel in the shortest time. Thus, a few popular video formats are tested

which includes Motion Picture Expert Group 4 (.mp4), Matroska (.mkv) and Audio

Video Interleave (.avi). The flow of the experiment is similar to flow chart shown in

Figure 3.17 above. The Telegram Bot 2 detects the video caption sent into the

Telegram channel instead of detecting sent message like Experiment 3. All the videos

will be set to the same duration of 5 seconds captured using the Pi camera module.

All the video recorded with condition of 320x240 quality to reduce the size of the

video for shorter upload time. Since different format of video may have different

video processing time, thus the timestamp before capturing the video and the

timestamp after the Telegram channel received the video will be compared to

measure the time difference as recorded in Table 3.14 below. B is timestamp before

record video, R is timestamp after receiving video in Telegram while D is the time

difference between these 2 timestamp for each type of videos.

Table 3.14: Comparison table for Experiment 5.
Test

MP4 MKV AVI

B R D / s B R D / s B R D / s

56

3.4.2.3 Experiment 6: Sending Earthquake Map to Telegram using ThingSpeak

To send the generated map to Telegram channel, the MATLAB Visualization

program needs to be reloaded and the map is uploaded to Telegram using Telegram

bot. Thus, this experiment aims to measure the time required for the Telegram private

channel to receive the map after the reload command is received by Raspberry Pi.

Using the acceleration data and timestamp from Experiment 3, the experiment is

repeated for 10 times. The duration will be measured by comparing the timestamp of

sending the reload command and receiving the map recorded in Table 3.15. S is

timestamp after sending the reload command while R is timestamp receiving the map

in Telegram channel. D is the time difference between S and R in seconds.

Table 3.15: Comparison table for Experiment 6.
Test

Generated Earthquake Information Map

S R D / s

3.4.3 Objective 3

The third objective of the project is to calculate the efficiency for delivering

the alert message with video and photo attachment.

3.4.3.1 Experiment 7: Testing System Efficiency

The earthquake early alert system is tested to calculate its efficiency based on

the time required of receiving final alert message in Telegram channel when a

simulated earthquake scenario happens. 3 timestamp to be recorded in this

57

experiment are: earliest time when a sensor data exceed the preset ADC threshold

value (Timestamp 1), earliest time after Telegram channel received the early stage

alert message (Timestamp 2), and also time for final alert message (Timestamp 3).

Using the acceleration data and timestamp from Experiment 3, the experiment is

repeated for 10 times and data will be recorded in Table 3.16 below. The time

difference between 3 timestamps will be calculated where D1 is the time difference

between timestamp 1 and 2, D2 is the time difference between timestamp 2 and 3 and

finally D3 is the time difference between timestamp 1 and 3.

Table 3.16: Efficiency test.
Test

Timestamp

1

Timestamp

2

Timestamp

3
D1 / s D2 / s D3 / s

3.5 Summary

Overall, this chapter provides a detailed plan to ensure the entire project could

be completed on time and the objectives of the project could be achieved. Most of

the measurement involved in the experiments is repeated 10 times to verify the

accuracy of the measurement since average of 10 sets of data has 80.5% more

accuracy than a single trial [47]. A set of data is considered reliable if its deviation is

small. The next chapter presents the results of the designed experiments and its

corresponding data analysis.

58

CHAPTER 4

RESULT

4.1 Overview

All the results obtained from the conducted experiments listed in chapter 3

are recorded in either table or graph form for better understanding towards the

parameters being measured from each experiment. All the timestamps collected

through the experiments are to be obtained from programming codes or Telegram to

avoid measurement errors.

4.2 Result of Experiment 1: Experimenting Communication between

Raspberry Pi

The experiment setup of Experiment 1 is shown in Figure 4.1 below where 2

Raspberry Pi are placed in different locations.

Figure 4.1: Experiment Setup of Experiment 1.

59

The locations of 2 Raspberry Pi is shown in Figure 4.2 below with coordinates of

(2.245114, 102.279568) for Sensor Node 2 and (2.314750, 102.320278) for Sensor

Node 3. 2 Raspberry Pi is 8.97 kilometers apart from each other. The Python script of

this experiment is shown in Appendix F1.

Figure 4.2: Distance between 2 Raspberry Pi.

The sensor data and the corresponding timestamp sent to Telegram from 2 Raspberry

Pi are tabulated in Table 4.1 as refer to Table 3.10 in Chapter 3. The data is then

compared with the plotted graph in ThingSpeak channel as shown in Figure 4.3

below. The first trial data mark has been left-shifted due to the incoming of new data.

Figure 4.3: Plotted graph in ThingSpeak channel.

60

Table 4.1: Result of Experiment 1.

Test

Acceleration /

ms
-2

Timestamp

Remark

Node 2 Node 3 Node 2 Node 3 Diff/s Success Fail Reason

1 26.591 28.631 13:40:17 13:40:16 1 / -
2 22.515 28.039 13:40:49 13:40:48 1 / -

3 20.050 28.244 13:41:09 13:41:08 1 / -

4 20.117 28.589 13:41:53 13:41:51 2 / -

5 18.342 27.034 13:46:26 13:46:25 1 / -

6 16.669 27.672 13:48:29 13:49:05 36 / -

7 18.879 27.435 13:51:33 13:51:32 1 / -

8 17.459 26.240 13:52:35 13:52:34 1 / -

9 16.331 27.016 13:53:15 13:53:16 1 / -

10 15.579 26.226 13:53:59 13:53:58 1 / -

Refer to Table 4.1, 2 Raspberry Pi are able to run the shaking table based on the

command sent to Telegram channel mostly within 1 seconds delay even though they

are connected to different Wifi and located in different location. The data is able to

be collected by Sensor Node 2 and uploaded to ThingSpeak channel in each trial.

However, the time delays will increases as shown by the 6th trial when the Internet

speed is slow. The acceleration data shown in Table 4.1 has not yet being multiplied

with gain.

Besides, the timestamp tabulated in the table above refers to the timestamp on

the Telegram Web when the data has been successfully sent to the Telegram channel.

It delays about 2 minutes as compared to timestamp in ThingSpeak as shown in

Figure 4.3 since Telegram follows the time of the laptop which open the Telegram

Web while ThingSpeak follows global time. Since this experiment has proven that all

3 Raspberry Pi can communicate to each other with very small delay provided the

Wifi speed is fast and consistent, hence the distance between all 3 Raspberry Pi can

be simulated by manually inserting the coordinates of all 3 Raspberry Pi with

distance of 5 kilometers apart into the coding. All the Raspberry Pi can be placed

side by side and connect to different Wifi. This step is to ease the experiment setup

and troubleshooting process.

61

4.3 Result of Experiment 2: Shaking Table Calibration

The experiment setup of Experiment 2 is shown in Figure 4.4 below where

using all 3 Raspberry Pi and its shaking table. Clay is used on the front and end side

of the shaking tables to fix their position during earthquake shaking simulation.

Figure 4.4: Experiment setup of Experiment 2.

All 3 Raspberry Pi will run at the same time when they are triggered by the

command sent to Telegram channel. The acceleration data from each station

measured by the accelerometer will be sent to Telegram channel for easier tabulation.

Each Raspberry Pi has its own acceleration and its corresponding gain to be tabulated

in table below which is built referring Table 3.11.

Table 4.2: Calibration data for Sensor Node 1.
Range 1 2 3

Duty Cycle (%) 35-59 35-70 43-95

Test a1 / ms-2 Gain a2 / ms-2 Gain a3 / ms-2 Gain

1 15.641 0.065405 16.234 0.091906 15.921 0.139250

2 12.709 0.080494 17.817 0.083740 18.491 0.119896

3 14.644 0.069858 15.966 0.093449 15.031 0.147495

4 17.786 0.057517 17.859 0.083543 18.325 0.120982

5 12.113 0.084455 15.533 0.096054 16.877 0.131362

6 18.285 0.055947 15.258 0.097785 14.905 0.148742

7 16.852 0.060705 18.111 0.082381 17.924 0.123689

8 18.649 0.054855 15.963 0.093466 18.094 0.122527

9 15.159 0.067485 16.236 0.091895 15.755 0.140717

10 16.147 0.063355 17.829 0.083684 17.177 0.129068

 Average 0.066 Average 0.090 Average 0.132

62

Table 4.3: Calibration data for Sensor Node 2.
Range 1 2 3

Duty Cycle (%) 35-59 35-70 43-95

Test a1 / ms-2 Gain a2 / ms-2 Gain a3 / ms-2 Gain

1 19.172 0.053359 20.303 0.073487 19.268 0.115061

2 21.220 0.048209 20.205 0.073843 19.584 0.113205

3 20.473 0.049968 20.626 0.072336 20.610 0.107569

4 20.136 0.050805 19.104 0.078099 21.204 0.104556

5 20.809 0.049161 20.069 0.074344 19.852 0.111676

6 19.894 0.051423 19.746 0.075560 19.124 0.115928

7 21.014 0.048682 19.71 0.075698 20.381 0.108778

8 20.217 0.050601 19.668 0.075859 19.530 0.113518

9 20.303 0.050387 19.639 0.075971 20.447 0.108427

10 19.780 0.051719 19.443 0.076737 18.988 0.116758

 Average 0.050 Average 0.075 Average 0.112

Table 4.4: Calibration data for Sensor Node 3.
Range 1 2 3

Duty Cycle (%) 35-59 35-70 43-95

Test a1 / ms-2 Gain a2 / ms-2 Gain a3 / ms-2 Gain

1 26.904 0.047502 26.480 0.056344 26.023 0.085194

2 26.339 0.038840 26.162 0.057029 26.261 0.084422

3 27.163 0.037662 25.853 0.057711 25.412 0.087242

4 25.886 0.039519 26.142 0.057073 26.215 0.084570

5 26.401 0.038749 26.219 0.056905 26.465 0.083771

6 26.916 0.038007 26.044 0.057288 25.523 0.086863

7 26.534 0.038554 25.507 0.058494 25.877 0.085675

8 25.528 0.040074 26.241 0.056858 26.100 0.084943

9 26.202 0.039043 25.807 0.057814 26.306 0.084277

10 25.796 0.039657 26.374 0.056571 25.135 0.088204

 Average 0.040 Average 0.057 Average 0.086

Refer to above tables, the acceleration data are similar for each magnitude

range although the speed of motor is different. This may due to the limitation where

the sensor can only detect limited speed of shaking. Besides, since the motor rotates

very fast for each magnitude range, the motor might achieve its own highest rotation

speed for all 3 magnitude ranges. Thus, this causes motor to generate similar

acceleration although the preset duty cycle is different for each magnitude range. The

minimum and maximum ranges for Range 1 to Range 3 and its corresponding gains

63

are found and tabulated to Table 4.5 below. The above gains are found using

Equation (3.8) with the desired acceleration referring Table 3.7 for each magnitude

range.

Table 4.5: Overall analysis on calibration data for each sensor node.

Range

Gain Final acceleration

range (min, max),

m/s2

Median,

m/s2

Epicenter

diameter/km
Sensor

Node 1

Sensor

Node 2

Sensor

Node 3

1 0.066 0.050 0.040 (0.800, 1.230) 1.015 30.83

2 0.090 0.075 0.057 (1.370, 1.626) 1.498 31.29

3 0.132 0.112 0.086 (1.973, 2.448) 2.211 31.75

From Table 4.5, the gain for each range of magnitude is found by averaging the gain

of Table 4.2 to Table 4.4 for 10 trials. The gains will be used to calibrate the sensor

data so that it lies within percentage error of 10% as refer to the theoretical

acceleration. The minimum and maximum of the acceleration data from each range

in Table 4.2 to Table 4.4 are multiplied with its corresponding average gain. Then,

the final acceleration range is found by comparing all the minimum and maximum

values from each sensor node. The median of the final acceleration range is found to

calculate the epicenter diameter for each magnitude range by using Equation (3.2).

However, due to the absence of filter for the sensor and closed-loop control system

for the motor, the data shown in Table 4.5 will change for each calibration.

4.4 Result of Experiment 3: Visualizing Predicted Earthquake Map in

ThingSpeak

The experiment setup of Experiment 3 is same as Experiment 2 as shown in

Figure 4.4. Epicenter point A is chosen for the earthquake simulation throughout this

entire experiment for all 3 magnitude ranges by assuming the result tabulated in

Table 4.6 to Table 4.8 is same and applicable to other epicenter locations. The

timestamp includes the milliseconds since the time delay for Station 2 and 3 is 0.6

seconds refer to the Table 3.8.

64

Table 4.6: Result for Range 2 with ranges from 1.370 to 1.626 m/s2.

Test

Acceleration / ms-2 Timestamp Evaluation

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 Success Fail Reason

1 1.530 1.399 1.375 17:25:01.581 17:25:01.583 17:25:01.180 / T

2 1.520 1.371 1.348 17:27:54.718 17:27:54.534 17:27:54.322 / R,T

3 1.306 1.310 1.314 17:30:01.267 17:30:00.630 17:30:00.375 / R,T

4 1.489 1.415 1.504 17:42:44.329 17:42:35.350 17:42:36.383 / T

5 1.349 1.293 1.197 17:44:18.443 17:44:18.122 17:44:18.098 / R,T

6 1.489 1.382 1.569 17:48:23.430 17:48:23.341 17:48:23.224 / T

7 1.453 1.356 1.189 17:49:31.538 17:49:30.345 17:49:30.120 / R,T

8 1.392 1.409 1.099 17:50:13.547 17:50:14.324 17:50:14.375 / R

9 1.404 1.553 1.320 17:50:57.085 17:50:57.128 17:50:57.697 / R,T

10 1.459 1.298 1.457 17:51:41.025 17:51:40.753 17:51:40.629 / R,T

Table 4.7: Result for Range 3 with ranges from 1.973 to 2.448 m/s2.

Test

Acceleration / ms-2 Timestamp Evaluation

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 Success Fail Reason

1 2.118 2.027 2.335 17:52:48.350 17:52:48.087 17:52:47.971 / T

2 2.337 1.971 2.561 17:53:49.232 17:53:49.200 17:53:49.148 / R,T

3 2.046 1.826 2.677 17:55:30.896 17:55:30.799 17:55:30.743 / R,T

4 2.053 1.981 1.701 18:05:03.974 18:05:01.879 18:05:01.912 / R,T

5 2.139 2.023 2.007 18:08:07.081 18:08:07.057 18:08:10.147 / T

6 2.257 2.108 1.643 18:09:06.451 18:09:06.334 18:09:06.258 / R,T

7 2.179 2.047 1.941 18:10:00.768 18:10:02.906 18:10:03.158 / R

8 2.178 1.935 1.712 18:14:07.042 18:14:05.266 18:14:05.113 / R,T

9 2.145 2.043 1.686 18:16:54.991 18:16:55.210 18:16:54.773 / R,T

10 2.095 2.604 1.713 18:20:33.634 18:20:31.233 18:20:31.111 / R,T

Table 4.8: Result for Range 1 with ranges from 0.800 to 1.230 m/s2.

Test

Acceleration / ms-2 Timestamp Evaluation

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 Success Fail Reason

1 1.055 1.141 0.923 18:22:59.521 18:23:00.371 18:23:00.358 / -

2 1.130 1.115 0.900 18:32:02.245 18:32:03.357 18:32:03.314 / -

3 1.054 1.161 0.879 18:34:48.480 18:34:49.706 18:34:49.316 / -

4 1.075 1.080 0.614 18:37:39.066 18:38:06.671 18:37:40.634 / R,T

5 1.034 1.073 1.227 18:39:27.905 18:39:26.745 18:39:26.537 / T

6 0.967 1.074 0.826 18:41:06.231 18:41:05.030 18:41:04.828 / T

7 1.025 1.099 0.480 18:42:10.217 18:42:09.306 18:42:09.453 / R,T

8 1.067 1.075 1.116 18:43:26.330 18:43:26.275 18:43:26.062 / T

9 1.138 1.082 0.620 18:46:08.928 18:46:11.770 18:46:07.424 / R,T

10 0.996 0.994 1.069 18:52:07.834 18:52:08.886 18:52:07.567 / T

65

Using the success and failure rates from above tables, a bar chart is plotted to

illustrate the data clearly.

Figure 4.5: Bar chart showing the overall result of Experiment 3.

Refer to Figure 4.5, the success rate for the system to detect correctly the epicenter

location A is very low around 10% for a total of 30 trials in 3 magnitude ranges. Only

magnitude range 1 with acceleration ranges from 0.800 to 1.230 m/s2 successfully

trigger the system to send the final alert message.

The failure is divided into 2 categories where “R” relates to the failure of

hardware. “T” relates to the inconsistent of Wifi connection speed and Raspberry Pi

processing speed with the highest number of occurrence in all 3 magnitude ranges.

Hardware failure happens when shaking table fails to simulate the expected

acceleration or the noise existence in sensor data. For this earthquake scenario,

Station 1 is expected to be the first station to receive the P-wave hit. However, due to

the connection speeds of all 3 Raspberry Pi are different where Station 1 is connected

to home Wifi with speed of 10 Megabit per seconds and the rest are connected to

different smartphone hotspot with 3G Digi and 4G Digi Wifi speed respectively, the

3

0 0

3

7

8

7

9 9

0
1
2
3
4
5
6
7
8
9

10

1 2 3

N
u

m
b

er
 o

f
O

cc
u

re
n

ce

Magnitude Range

Result of Experiment 3

Success

Failure (Range)

Failure (Time Delay)

66

time of receiving the command to trigger the shaking table is delayed and thus giving

the wrong timestamp. Besides, all 3 Raspberry Pi processing speed are different.

Thus, time to run the scripts is delayed and hence giving the wrong timestamp

especially in Sensor Node 1 since it uses class 4 Micro SD card with 8 GB storage

which has slower processing speed and lower available storage compared to class 10

Micro SD card with 16 GB storage for another 2 sensor nodes. Mostly, the

inconsistent Wifi speed causes the system to wrongly estimate the epicenter point.

Only a few times that the system is unable to analyze the data as the duration of

timestamps between the sensor nodes are out of range as refer to Table 3.8 caused by

inconsistent Wifi speed.

The maps that are successfully sent into the Telegram channel are shown in

Figure 4.6 below.

 (a) (b) (c)

Figure 4.6: a) First trial b) Second trial c) Third trial.

The estimated P-wave arrival time shown in Figure 4.6 above is compared with the

Telegram timestamp where the map is uploaded successfully to Telegram channel to

know the duration for evacuation which the system is capable to do so. The data is

tabulated into Table 4.9.

67

Table 4.9: Duration between the estimated P-wave arrival time and received time.

Trial of data set P-wave arrival time Telegram Timestamp Duration/s

1 18:26:51 18:25:50 61
2 18:35:54 18:35:26 28
3 18:38:40 18:38:24 16

Average 35

Based on Table 4.9, this system is capable to earn an average duration of 35 seconds

for evacuation purpose before P-wave arrives Point X. However, this duration is

obtained with the requirement of a minimum distance of 1700 km between

destination Point X and epicenter point E. This may due to the processing time

required for the system is too long since the process involves communication of data

through Telegram and Chromium browser page reload in Sensor Node 3 for data

update on ThingSpeak MATLAB Visualization program. Besides, estimation on the

P-wave arrival time involves very simple calculation which might affect the accuracy

of the calculated arrival time. Lastly, this issue may cause by the limitation on the

hardware specification of Raspberry Pi Zero W which has slower performance speed

and lower memory for running multiple scripts at the same time. The duration shown

in Table 4.9 may be lengthened if the Internet connection is stronger and more stable.

4.5 Result of Experiment 4: Measuring Time Taken of Sending Message to

Telegram

The timestamp of sending message and receiving message are printed out in 2

different terminals executed in Raspberry Pi Zero W for 10 times experiments as

shown in Figure 4.7 (a) and Figure 4.7 (b).

68

(a) (b)

Figure 4.7: a) Timestamp sending message b) Timestamp receiving message.

Both timestamps shown in the terminals are then tabulated in Table 4.10 as refer to

Table 3.13 in Chapter 3. The time difference between 2 timestamps is calculated and

is recorded in the same table.

Table 4.10: Result of Experiment 4.
Test

Timestamp before

sending message

Timestamp after

receiving message
Time difference / s

1 17:28:05 17:28:06 1
2 17:28:10 17:28:11 1
3 17:28:15 17:28:16 1
4 17:28:22 17:28:23 1
5 17:28:27 17:28:28 1
6 17:28:31 17:28:31 0
7 17:28:34 17:28:35 1
8 17:28:36 17:28:37 1
9 17:28:43 17:28:44 1
10 17:28:46 17:28:46 0

Average 0.8

The Python scripts for both sending and detecting message are shown in

Appendix F4. The entire process of each trial will only be repeated when a message

“Done!” is shown on the terminal to indicate both timestamp have been collected.

This experiment is carried out by assuming the Wi-Fi speed connected by Raspberry

69

Pi Zero W is in good condition throughout every trial. From the calculated average

value shown in Table 4.10, an alert message can be delivered to Telegram private

channel within 0.8 seconds using Raspberry Pi connected to a 10 Megabit per

seconds Wi-Fi. The time needed for sending message to Telegram may reduce from

seconds to milliseconds if the Internet connection is strong. This is proven by the

zero time difference obtained in test 6 and test 10 shown in Table 4.10.

4.6 Result of Experiment 5: Comparing Recorded Video Format

The timestamp of sending video and receiving video are printed out in 2

different terminals executed in Raspberry Pi Zero W for 10 times experiments as

shown in Figure 4.8 (a) and Figure 4.8 (b).

 (a) (b)

Figure 4.8: a) Timestamp sending video b) Timestamp receiving video.

Both timestamps shown in the terminals are then tabulated in Table 4.11 as

refer to Table 3.14 in Chapter 3. The time difference between 2 timestamps is

calculated and is recorded in the same table according to the tested video format. As

mentioned before, B is timestamp before record video, R is timestamp after receiving

video in Telegram while D is the time difference between these 2 timestamp for each

type of videos.

70

Table 4.11: Comparison table for Experiment 5.
Test

MP4 MKV AVI

B R D / s B R D / s B R D / s

1 07:06:12 07:06:24 12 06:57:17 06:57:29 12 06:45:17 06:45:27 10
2 07:06:27 07:06:39 12 06:57:36 06:57:48 12 06:45:31 06:45:39 8
3 07:06:42 07:06:56 14 06:57:51 06:58:04 13 06:45:47 06:45:55 8
4 07:07:01 07:07:13 12 06:58:07 06:58:19 12 06:46:03 06:46:11 8
5 07:07:18 07:07:30 12 06:58:20 06:58:32 12 06:46:15 06:46:24 9
6 07:09:03 07:09:16 13 07:00:42 07:00:54 12 06:46:29 06:46:36 7
7 07:09:18 07:09:30 12 07:00:57 07:01:09 12 06:46:41 06:46:49 8
8 07:09:34 07:09:46 12 07:01:15 07:01:28 13 06:46:57 06:47:06 9
9 07:10:05 07:10:17 12 07:01:31 07:01:43 12 06:47:10 06:47:19 9
10 07:10:21 07:10:33 12 07:01:47 07:01:58 11 06:47:24 06:47:33 9

Average 12.3 Average 12.1 Average 8.5

A line graph illustrating the footage processing time, which covers the recording time

until the receiving time by Telegram of all 3 video formats calculated in Table 4.11 is

shown in Figure 4.9 below.

Figure 4.9: Footage processing time of 3 video formats.

Similar to Experiment 4, the Python scripts for both sending and detecting

video are shown in Appendix F5. The entire process of each trial will only be

repeated when a message “Done!” is shown on the terminal to indicate both

timestamp have been collected. This experiment is carried out by assuming the Wi-Fi

speed connected by Raspberry Pi Zero W is in good condition throughout every trial.

In this experiment, the Raspberry Pi is connected to a 10 Megabit per seconds Wi-Fi.

71

The Figure 4.9 shows that Audio Video Interleave (.avi) takes less time for

video processing in 10 time trials. Thus, the online source which mentioned Audio

Video Interleave (.avi) has no encode and decode processes like Matroska (.mkv) and

Motion Picture Expert Group 4 (.mp4) video files is verified through the data

obtained in Table 4.11 [48]. Time required to record and deliver footage to Telegram

private channel can be varies from an average of 8.5 seconds to 12.3 seconds with

different video formats as shown in Table 4.11. Besides, only Matroska (.mkv) and

Audio Video Interleave (.avi) remain as video files when they are sent to Telegram

channel. The Motion Picture Expert Group 4 (.mp4) video is played in the form

of Graphics Interchange Format (GIF). This has verified the online source that

mentioned the conversion caused by size of Motion Picture Expert Group 4 (.mp4)

video less than 10 Megabytes, without audio track and use of h.264 video codec [49].

Therefore, Audio Video Interleave (.avi) is suitable to be used in the project for

validation purpose since it consumes the least time and achieves the smoothest video

among 3 video formats.

4.7 Result of Experiment 6: Sending Earthquake Map to Telegram using

ThingSpeak

 Similar to Experiment 4 and 5, Raspberry Pi reloads the ThingSpeak

Visualization program page opened using Chromium browser when it receives

command of “reload” from Telegram channel. As mentioned before, S is timestamp

after sending the reload command while R is timestamp receiving the map in

Telegram channel. D is the time difference between S and R in seconds. S and R are

obtained through Telegram Web since it can show the seconds unit of the timestamp

as shown in Figure 4.10 below.

72

Figure 4.10: Timestamp referring to Telegram Web.

Table 4.12: Comparison table for Experiment 6.
Test

Generated Earthquake Information Map

S R D / s

1 08:38:22 08:38:57 35
2 08:40:12 08:40:49 37
3 08:42:17 08:42:51 34
4 08:50:32 08:51:05 33
5 08:52:37 08:53:08 31
6 08:54:20 08:54:51 31
7 08:56:14 08:56:47 33
8 08:58:15 08:58:45 30
9 08:59:37 09:00:11 34
10 09:02:00 09:02:31 31

Average 32.9

Due to the failure rate of the system is too high, the acceleration data and its

corresponding timestamps for the P-wave arrival time of each sensor node are

referred to the first trial success cases in Experiment 3 of Table 4.8. Based on the

result shown in Table 4.12, the average of process time required for the Raspberry Pi

to send the earthquake information map to Telegram channel as final alert message is

32.9 seconds with the assumption that the 10 Megabit per seconds Wi-Fi speed

connected by Raspberry Pi Zero W is in good condition throughout every trial.

73

4.8 Result of Experiment 7: Testing System Efficiency

Similar to the previous experiment, the acceleration data and its

corresponding timestamps for the P-wave arrival time of each sensor node are

referred to the first trial success cases in Experiment 3 of Table 4.8. However, all the

system phases mentioned in Chapter 3 will be run through to calculate system

efficiency based on the time required of receiving final alert message in Telegram

channel when a simulated earthquake scenario happens. The experiment setup is

shown in Figure 4.11 below.

Figure 4.11: Experiment Setup of Experiment 7.

As mentioned before, 3 timestamp to be recorded in Table 4.13 are: earliest

time when a sensor data exceed the preset ADC threshold value (Timestamp 1),

earliest time after Telegram channel received the early stage alert message

(Timestamp 2), and also time for final alert message (Timestamp 3). The time

difference between 3 timestamps will be calculated where D1 is the time difference

between timestamp 1 and 2, D2 is the time difference between timestamp 2 and 3 and

finally D3 is the time difference between timestamp 1 and 3. The messages sent to

Telegram channel for alert purpose are shown in Figure 4.12 below.

74

Figure 4.12: Alert messages in Telegram channel.

Table 4.13: Efficiency test.
Test Timestamp 1 Timestamp 2 Timestamp 3 D1 / s D2 / s D3 / s

1 01:50:00 01:50:00 01:51:12 0 72 72

2 01:58:47 01:58:47 01:59:41 0 54 54

3 02:01:27 02:01:27 02:02:27 0 60 60

4 02:03:13 02:03:13 02:04:20 0 67 67

5 02:05:34 02:05:34 02:06:58 0 84 84

6 02:08:11 02:08:11 02:09:20 0 69 69

7 02:09:50 02:09:50 02:11:04 0 74 74

8 02:11:35 02:11:35 02:12:56 0 81 81

9 02:14:18 02:14:18 02:15:12 0 54 54

10 02:15:44 02:15:44 02:16:50 0 66 66

Average 0 68.1 68.1

75

Based on Table 4.13 above, an average of 68.1 seconds processing time are

required for the system to deliver the final alert message into the Telegram channel

once one of the sensor node detected arrival of P-wave referring the value D3. This

processing time can be reduced if the connected Wifi speed for each Raspberry Pi is

very fast. Next, the average processing time is same as D2 average value due to the

time for the early alert message to deliver into the Telegram channel after the sensor

data exceeds preset threshold value is very short within one second as proven by

Experiment 4.

4.9 Cost Evaluation

The components installed in each sensor node are listed in Table 4.14 below

with its corresponding cost.

Table 4.14: Cost per sensor node.

No. Component Quantity Cost / RM

1 Raspberry Pi Zero W 1 42.40
2 5V Micro USB Power Adapter 1 39.29
3 MCP 3008 ADC Converter 1 9.92
4 Raspberry Pi Camera Module Version 1.3 1 79.74
5 ADXL 335 Accelerometer 1 39.22
6 Micro SD card 1 33.03

Total 243.60

Refer to Table 4.14, the cost for each sensor node is RM 243.60. Thus total of RM

730.8 are needed to build 3 sensor nodes for triangulation method.

4.10 Summary

Analysis and discussion on the outputs obtained from total of 6 conducted

experiments are done with proper explanation on presented tables or figures.

76

Throughout the experiments, few issues which can affect the system performance

and effectiveness are concluded with its corresponding solution. Firstly, the system is

able to send the final alert message before the arrival of P-wave to the destination

only when the distance between the earthquake epicenter coordinate and the

destination equal or longer than 1700 km. This issue might be solved by further

simplified the data analysis procedure and fasten the data delivery speed by using

higher speed of Wifi. Next, the sensor data is highly inconsistent as proven in

Experiment 3. This issue might solve by adding a filter circuit to the system and

undergoing full calibration on the accelerometer. Lastly, the system is the very first

prototype to establish a standalone IoT based earthquake early alert system without

the aids of any personal computer. The algorithms used to predict the epicenter and

P-wave travel time is not applicable to real situation due to the ignorance on the

geographical characteristic of the earth. The next chapter concludes the project

findings and further improvement suggestion.

77

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

All the objectives are achieved where a low cost disaster alert system that

estimates the earthquake epicenter and arrival time of P-wave of incoming strong

earthquake towards the destination has been successfully developed. All 3 sensor

nodes are able to communicate to each other through Telegram mostly within 1

seconds delay per message. Besides, each sensor node can be remotely accessed as

long as Internet connection is available. Overall, the system has 10% success rate to

estimate earthquake epicenter and its shortest arrival time to a destination correctly

using simple algorithms provided that the epicenter falls within the preset 6

directions in a distance of around 25 kilometers away from the sensor nodes and

Internet connection is always available for all sensor nodes. The cost per sensor

nodes is RM 243.60. Next, this system is verified by using simulated earthquake

scenario through 3D printed shaking table connected to each sensor node. The

disaster messaging system is able to send alert information and video recorded on

earthquake scene to the authorities through Telegram private channel when P-wave

of the earthquake hits the sensor nodes. The sensor data can be monitored and stored

online for future reference through ThingSpeak channel. Lastly, the proposed system

is capable to deliver final alert message in the forms of map using online ThingSpeak

MATLAB Visualization application for better understanding on the information

within 68.1 seconds and earns an average period of 35 seconds respond time for

immediate evacuation or other purposes before P-wave hits the destination.

78

5.2 Future Work

For further improvement, a closed-loop control system for the shaking table is

recommended so that the generated acceleration can achieve the theoretical value

without the needs of multiplying the sensor data with gain. Besides, a filter circuit

should be added into the system to remove noise from the sensor data which in turns

increase the data set accuracy. Next, all sensor nodes should use the same model of

hardware including its Micro SD card to solve the difference in processing speed on

the Python scripts. The way to handle the sensor data for alert purpose is

recommended to be simplified to further enhance the processing time for final stage

alert message delivery which in turns increase the respond time for the citizen to

prepare for the earthquake impact. Last but not least, more sophisticated algorithm

which involves the depth beneath the earth‟s surface and the geographical

characteristic for accurate estimation of earthquake hypocenter and P-wave arrival

time for alert purpose.

79

REFERENCES

[1] S. A. Chowdhury et al., “Depiction of an Interactive Prevarication System
during Exigency Situation,” in 2016 3rd International Conference on Electrical
Engineering and Information Communication Technology (ICEEICT), 2016,
978-1-5090-2906-8. Doi: 10.1109/CEEICT.2016.7873140

[2] “World Disasters Report 2016 | IFRC campaigns.” [Online]. Available:
http://www.ifrc.org/Global/Documents/Secretariat/201610/WDR%202016-FIN
AL_web.pdf. [Accessed: 15-Sep-2017].

[3] “Natural disasters in the world between 2001-2016: breakdown of risks per
region.” [Online]. Available: http://www.atlas-mag.net/en/article/natural-catastr
ophes-2001-2016-breakdown-of-risks-per-region. [Accessed: 19-Sep-2017].

[4] N. Chavez et al., “Central Mexico earthquake kills more than 200, topples
buildings,” CNN, 20-Sep-2017. [Online]. Available: http://edition.cnn.com/201
7/09/19/americas/mexico-earthquake/index.html. [Accessed: 22-Sep-2017].

[5] R. Sanchez et al., “At least 247 killed in earthquake in central Italy,” CNN,
25-Aug-2016. [Online]. Available: http://edition.cnn.com/2016/08/23/europe/it
aly-earthquake/index.html. [Accessed: 24-Sep-2017].

[6] K. A. Kili, “JB shaken by Indonesia earthquake,” THE Star ONLINE,
13-Aug-2017. [Online]. Available: https://www.thestar.com.my/news/nation/20
17/08/13/jb-shaken-by-indonesia-earthquake/. [Accessed: 25-Sep-2017].

[7] “Sabah earthquake a 2015 shock for the nation.” [Online]. Available:
http://www.themalaymailonline.com/malaysia/article/sabah-earthquake-a-2015
-shock-for-the-nation#JUIyD4zUa5F7ytXH.97. [Accessed: 25-Sep-2017].

[8] “Disaster.” [Online]. Available: https://en.oxforddictionaries.com/definition/dis
aster. [Accessed: 26-Sep-2017].

[9] T. Songer, “Epidemiology of Disasters,” University of Pittsburgh,
23-April-1999. [Online]. Available: http://www.pitt.edu/~epi2170/lecture15/ind
ex.htm. [Accessed: 28-Sep-2017].

80

[10] J. Chen, “Modern Disaster Theory: Evaluating Disaster Law as a Portfolio of
Legal Rules,” Emory University School of Law. [Online]. Available:
http://law.emory.edu/eilr/content/volume-25/issue-3/symposium/modern-disast
er-theory-evaluating-law-rules.html. [Accessed: 28-Sep-2017].

[11] “EM-DAT Disaster Classification.” [Online]. Available: http://www.emdat.be/c
lassification. [Accessed: 28-Sep-2017].

[12] C. Bach et al., “Topics Geo,” Münchener Rückversicherungs-Gesellschaft
Koniginstrasse 107, 80802 München, Germany. 302-09006, 2017

[13] L. Wald, “The Science of Earthquakes,” USGS. [Online]. Available:
https://earthquake.usgs.gov/learn/kids/eqscience.php.[Accessed: 29-Sep-2017].

[14] M. S. Liew et al., “Ground Motion Prediction Equations for Malaysia due to
Subduction Zone Earthquakes in Sumatran Region,” 2017. Doi:
10.1109/ACCESS.2017.2748360

[15] M. R. Chowdhury et al., “Response in the field intensity of Sferics at 40 kHz
signal propagation caused by massive earthquake tremors in Kolkata,” in 2016
International Conference on Computer, Electrical & Communication
Engineering (ICCECE), 2016, 978-1-5090-4432-0. Doi: 10.1109/ICCECE.20
16.8009571

[16] R. Hoque et al., “Earthquake Monitoring and Warning System,” in 2015 3rd
International Conference on Advances in Electrical Engineering, 2015, pp.
109–112.

[17] A. N. Manafizad et al., “Estimation of Peak Ground Acceleration (PGA) for
Peninsular Malaysia using geospatial approach,” in 8th IGRSM International
Conference and Exhibition on Remote Sensing & GIS (IGRSM 2016), 2016.
Doi: 10.1088/1755-1315/37/1/012069

[18] Y. Sherki et al., “Design of Real Time Sensor System for Detection and
Processing of Seismic Waves for Earthquake Early Warning System,” in 2015
International Conference on Power and Advanced Control Engineering
(ICPACE), 2015, pp. 285–289.

[19] M. Oguz et al., “Earthquake Preparedness Strategies for Telecom Backbone
with Integration of Early Warning Systems and Optical WDM Networks,” in
2016 8th International Workshop on Resilient Networks Design and Modeling
(RNDM), 2016, pp. 181–188.

81

[20] Alphonsa A. and Ravi G., “Earthquake Early Warning System by IOT using
Wireless Sensor Networks,” in 2016 International Conference on Wireless
Communications, Signal Processing and Networking (WiSPNET), 2016, pp.
1201–1205.

[21] R. D. Singh et al., “Seismic Early Warning Alert System,” in 2014
International Conference on Signal Processing and Integrated Networks
(SPIN), 2014, pp. 601–605.

[22] A. Z. Shukor et al., “Investigation on A New Earthquake and Flood Alert
System,” in International Symposium on Research in Innovation and
Sustainability 2017 (ISoRIS ’17)), July 2017.

[23] H. Afzaal. and N. A. Zafar, “Towards Formalism of Earthquake Detection and
Disaster Reduction using WSANs,” in 2016 International Conference on
Frontiers of Information Technology, 2016, pp. 147–152.

[24] Osamu Kamigaichi, “JMA Earthquake Early Warning,” Journal of Japan
Association for Earthquake Engineering, Vol.4, No.3 (Special Issue), pp.
134-137, 2004.

[25] Horiuchi et al., “An Automatic Processing System for Broadcasting Earthquake
Alarms,” Bulletin of the Seismological Society of America, Vol. 95, No. 2, pp.
708–718, April 2005. Doi: 10.1785/0120030133

[26] J. Li et al., “Comparison of Two Earthquake Early Warning Location Methods,”
Earthquake Science, Vol.26, Issue 1, pp. 15-22, February 2013. Doi:
10.1007/s11589-013-0002-7

[27] “About disaster management.” [Online]. Available: http://www.ifrc.org/en/what
-we-do/disaster-management/about-disaster-management/. [Accessed: 10-Oct-
2017].

[28] National Institute of Disaster Management, “Understanding Disaster,” nidm
[Online]. Available: http://nidm.gov.in/PDF/Disaster_about.pdf [Accessed:
10-Oct-2017].

[29] M. R .M. Aldecimo and M. M. D. Leon, “Development of an OpenStreetMap
Based Safe Zone Routing System for West Valley Fault Earthquake Disaster in
the Makati Central Business District, Philippines,” in 2016 3rd International
Conference on Information and Communication Technologies for Disaster
Management (ICT-DM), 2016. Doi: 10.1109/ICT-DM.2016.7857219

82

[30] Matt, “Introducing Raspberry Pi Zero W,” Raspberry Pi Spy [Online].
Available: https://www.raspberrypi-spy.co.uk/2017/02/introducing-the-raspberr
y-pi-zero-w/. [Accessed: 14-Nov-2017].

[31] “Raspberry Pi Zero W Specification.” [Online]. Available: https://www.sparkfu
n.com/products/14277. [Accessed: 16-Nov-2017].

[32] “Accelerometer ADXL335 Datasheet.” [Online]. Available: https://drive.googl
e.com/file/d/0BzFWfMiqqjyqVFRHTEJKQXotVXM/view. [Accessed: 18-No
v-2017].

[33] “Raspberry Pi Camera Board Version 1.3.” [Online]. Available: https://uk.pi-su
pply.com/products/raspberry-pi-camera-board-v1-3-5mp-1080p. [Accessed: 8-
Apr -2018].

[34] F. A. Vieira, “VIII EBEC Porto - Team Design”, 22 October 2012. [Online].
Available: https://www.youtube.com/watch?v=wJJn_hwjhVM. [Accessed: 13-
Mar-2018].

[35] M. A. G. Maureira et al., “ThingSpeak – an API and Web Service for the
Internet of Things.”

[36] G. Jadhav et al., “Environment Monitoring System using Raspberry-Pi,”
International Research Journal of Engineering and Technology (IRJET), vol. 3,
issue. 4, pp. 1168–1172, Apr. 2016.

[37] R. Chandana et al., “Smart Surveillance System using Thing Speak and
Raspberry Pi,” International Journal of Advanced Research in Computer and
Communication Engineering, vol. 4, issue. 7, pp. 214–218, July. 2015.

[38] S. Gangopadhyay and M. K. Mondal, “A Wireless Framework for
Environmental Monitoring and Instant Response Alert,” in 2016 International
Conference on Microelectronics, Computing and Communications (MicroCom),
2016, 978-1-4673-6621-2. Doi: 10.1109/MicroCom.2016.752253516.8009571

[39] “Telegram.” [Online]. Available: https://telegram.org/. [Accessed: 18-Nov-
2017].

[40] Nowroozi A.A and Ahmadi G., “Analysis of Earthquake Risk in Iran Based on
Seismotectonic Provinces,” Tectonophysics, 122, pp. 89–114, 1986.

http://ieeexplore.ieee.org.libproxy.utem.edu.my/xpl/mostRecentIssue.jsp?punumber=7505241
http://ieeexplore.ieee.org.libproxy.utem.edu.my/xpl/mostRecentIssue.jsp?punumber=7505241

83

[41] E. M. D. Baer, “Shaking Ground – Linking Earthquake Magnitude and
Intensity,” National Science Foundation [Online]. Available: https://serc.carleto
n.edu/introgeo/ssac/examples/eqshake.html. [Accessed: 21-Mar-2018].

[42] “Angular Acceleration.” [Online]. Available: https://courses.lumenlearning.co
m/physics/chapter/10-1-angular-acceleration/. [Accessed: 23-Mar-2018].

[43] “Earthquake and Seismic Education.” [Online]. Available: http://earthalabama.
com/education.html. [Accessed: 23-Mar-2018].

[44] P. Rydelek and K. H. Kim, “A Study on Feasibility of Earthquake Early
Warning in Korea: Determination of Locations and Magnitudes of Events,”
Geosciences Journal, Vol. 14, No. 1, pp. 41-47, March 2010. Doi:
10.1007/s12303-010-0005-5

[45] Y. M. Wu and H. Kanamori, “Development of an Earthquake Early Warning
System Using Real-Time Strong Motion Signals,” Sensors (Basel), Vol. 8, No.
1, pp. 1-9, January 2008. Doi: 10.3390/s8010001

[46] C. J. Fisher, “Using An Accelerometer for Inclination Sensing,” Digi-Key
 [Online].Available: https://www.digikey.ca/en/articles/techzone/2011/may/usin
 g-an-accelerometer-for-inclination-sensing. [Accessed: 27-Nov-2017].

[47] S. Slutz and K. L. Hess, “Increasing the Ability of an Experiment to Measure
an Effect,” Science Buddies [Online]. Available: https://www.sciencebuddies.o
rg/science-fair-projects/competitions/experimental-design-increasing-signal-to-
noise. [Accessed: 20-Nov-2017].

[48] “Why is converting WMV to MP4 so slow?.” [Online]. Available: https://super
user.com/questions/459896/why-is-converting-wmv-to-mp4-so-slow.
[Accessed: 29-Nov-2017].

[49] “Sent MP4 files treated as GIF's.” [Online]. Available: https://github.com/tel
egramdesktop/tdesktop/issues/2053. [Accessed: 29-Nov-2017].

https://superuser.com/questions/459896/why-is-converting-wmv-to-mp4-so-slow

84

APPENDIX A1: Gantt Chart for Final Year Project 1

Project Activities of

Final Year Project 1

Week

September October November December

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Research Journal or
Paper Review

Selection of Hardware
and Software

Experiment Testing

1. Experiment 1

2. Experiment 4

3. Experiment 5

FYP 1 Presentation

Submission of FYP 1
Final Report

85

APPENDIX A2: Gantt Chart for Final Year Project 2

Project Activities

of Final Year

Project 2

Week

February March April May June

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Experiment Testing

1. Experiment 1

2. Experiment 2

3. Experiment 3

4. Experiment 6

5. Experiment 7

Data Analysis and
Discussion

Report Writing

Preparation Slide
and Video

FYP 2 Presentation

Submission of FYP
2 Final Report

86

APPENDIX B: Shaking Table in Third Angle Orthographic Projection

i) Base

ii) Body

iii) Roller

87

iv) Link

v) Beam

88

APPENDIX C1: Datasheet of Accelerometer ADXL 335

89

APPENDIX C2: Datasheet of DC Motor M31E-1 Series

90

APPENDIX D1: Experiment 1 (Experimenting Communication between

Raspberry Pi)

Material and Apparatus

1) 2 sensor nodes

2) Laptop

3) Clay

Procedure

1) 2 sensor nodes are placed on 2 different locations and the shaking tables are
fixed using clay.

2) The power supplies on both sensor nodes are turned on.
3) The accelerometers of both sensor nodes are calibrated.

4) Python script of detecting Telegram message is executed in terminal of both

sensor nodes.

5) Message “A1” is sent to Telegram channel.

6) The acceleration measured by both accelerometers and its corresponding

timestamp are recorded in Table 3.10.

7) A remark on the result is done based on the plotted graph on ThingSpeak

channel.

8) Steps 5 to 7 are repeated 9 times.

9) The recorded data in Table 3.10 is analyzed.

91

APPENDIX D2: Experiment 2 (Shaking Table Calibration)

Material and Apparatus

1) 3 sensor nodes

2) Laptop

3) Clay

Procedure

1) 3 sensor nodes are placed near to each other and the shaking tables are
fixed using clay.

2) The power supplies on 3 sensor nodes are turned on.
3) The accelerometers of 3 sensor nodes are calibrated.

4) Python script of detecting Telegram message is executed in terminal of 3 sensor

nodes.

5) Message “A1” which represent Range 1 is sent to Telegram channel.

6) The sensor data for each sensor node are recorded in Table 3.11.

7) The gain is calculated using Equation (3.8).

8) Steps 5 to 7 are repeated 9 times.

9) Steps 5 to 8 are repeated by changing the message to “A2” and “A3” which

represent Range 2 and Range 3 respectively.

10) The recorded data in Table 3.11 is analyzed.

92

APPENDIX D3: Experiment 3 (Visualizing Predicted Earthquake Map in

ThingSpeak)

Material and Apparatus

1) 3 sensor nodes

2) Laptop

3) Clay

Procedure

1) 3 sensor nodes are placed near to each other and the shaking tables are
fixed using clay.

2) The power supplies on 3 sensor nodes are turned on.
3) The accelerometers of 3 sensor nodes are calibrated.

4) Python script of detecting Telegram message is executed in terminal of 3 sensor

nodes.

5) Message “A2” which represent Range 2 is sent to Telegram channel.

6) The sensor data for each sensor node are recorded in Table 3.12.

7) The timestamp for the sensor data to exceed the preset threshold value for each

sensor node are recorded in Table 3.12.

8) The result is evaluated based on the message or map completed by ThingSpeak

to Telegram channel.

9) Steps 5 to 8 are repeated 9 times.

10) Steps 5 to 9 are repeated by changing the message to “A3” and “A1” which

represent Range 3 and Range 1 respectively.

11) The recorded data in Table 3.12 is analyzed.

93

APPENDIX D4: Experiment 4 (Measuring Time Taken of Sending Message to

Telegram)

Material and Apparatus

1) Raspberry Pi Zero W 1

2) Laptop

Procedure

1) Python scripts of sending and detecting message by 2 Telegram Bots are

executed in 2 terminals of Raspberry Pi 1.

2) A message “/hello” is sent to Telegram Bot 1 through Telegram chat box.

3) The timestamps for both sending message and receiving message actions are

recorded in Table 3.13.

4) Time difference between 2 timestamps are calculated and recorded in Table

3.13.

5) Steps 2 to 4 are repeated 9 times.

6) The recorded data in Table 3.13 is analyzed.

94

APPENDIX D5: Experiment 5 (Comparing Recorded Video Format)

Material and Apparatus

1) Raspberry Pi Zero W 1

2) Laptop

3) Raspberry Pi Camera Module

Procedure

1) Raspberry Pi Camera Module is connected to Raspberry Pi 1.

2) Python scripts of recording and uploading video and also detecting video by 2

Telegram Bots are executed in 2 terminals of Raspberry Pi 1.

3) A message “/avi” is sent to Telegram Bot 1 through Telegram chat box.

4) The timestamps for both recording video and receiving video by Telegram

channel are recorded in Table 3.14.

5) Time difference between 2 timestamps are calculated and recorded in Table

3.14.

6) Steps 3 to 5 are repeated 9 times.

7) Steps 3 to 6 are repeated by using messages “/mkv” and “/mp4”.

8) The recorded data in Table 3.14 is analyzed.

95

APPENDIX D6: Experiment 6 (Sending Earthquake Map to Telegram using

ThingSpeak)

Material and Apparatus

1) Raspberry Pi Zero W 3

2) Laptop

Procedure

1) The preset sensor data and its corresponding timestamps for each sensor node

refer to success case in Experiment 3 are uploaded to ThingSpeak channel.

2) ThingSpeak Visualization program page is opened using Chromium browser.

3) Python script of detecting message by Telegram Bot 3 is executed in terminal of

Raspberry Pi 3.

4) A message “reload” is sent to Telegram Bot 3 through Telegram chat box.

5) The timestamps for both sending message and receiving map actions are

recorded in Table 3.15.

6) Time difference between 2 timestamps are calculated and recorded in Table

3.15.

7) Steps 3 to 5 are repeated 9 times.

8) The recorded data in Table 3.15 is analyzed.

96

APPENDIX D7: Experiment 7 (Testing System Efficiency)

Material and Apparatus

1) 3 sensor nodes 3) Raspberry Pi Camera Module

2) Laptop 4) Clay

Procedure

1) 3 sensor nodes are placed near to each other and the shaking tables are
fixed using clay.

2) The power supplies on 3 sensor nodes are turned on.
3) The accelerometers of 3 sensor nodes are calibrated.

4) Raspberry Pi Camera Module is connected to Sensor Node 2.

5) The sensor data for each sensor node is fixed to same value within Range 1

obtained through Experiment 2.

6) Python script of detecting Telegram message is executed in terminal of 3 sensor

nodes.

7) A message of “A1” is sent to Telegram channel which represent earthquake

epicenter point A.

8) The acceleration value of each sensor node is recorded in Table 3.16.

9) 3 timestamps are recorded in Table 3.16 including:

a) Earliest timestamp when acceleration values of either one or more than one

sensor nodes exceed the preset threshold value.

b) Earliest timestamp when Telegram channel receive early stage alert message.

c) Timestamp when Telegram channel finished receive final stage alert

message.

10) Time difference between 3 timestamps are calculated and recorded in Table

3.16.

11) Steps 7 to 10 are repeated 9 times.

12) The recorded data in Table 3.16 are analyzed.

97

APPENDIX E: Python Script for Measuring Offset Error

import spidev
import time

Open SPI bus
spi = spidev.SpiDev()
spi.open(0,0)

offsetx = 0
averageX = 0

#Function to read SPI data from MCP3008 chip
def ReadChannelX(channel):
 adc = spi.xfer2([1,(8+channel)<<4,0])
 data = ((adc[1]&3) << 8) + adc[2] - offsetx
 return data

#Function to calculate acceleration
def ConvertAcc(data, places):
 Acc = (data*3.3/float(1023)-1.65)/0.33*9.81
 Acc = round(Acc,places)
 return Acc

#Define sensor channels
X_channel=0

while True:
 print "Start calibration!"
 time.sleep(1)
 for i in range(1,11):
 #Read the X sensor data
 X1_level = ReadChannelX(X_channel)
 offsetx = X1_level - 511.5
 averageX = offsetx + averageX
 offsetx=0
 time.sleep(0.5)
 offsetx = averageX/10
 X2_level = ReadChannelX(X_channel)
 Acc = ConvertAcc(X2_level,2)

#Print out results
 print("----------Calibration Result----------")
 print("X-direction:{}({}m/s2)").format(X2_level, Acc)
 print("Offset X:{}").format(offsetx)
 time.sleep(0.1)

break

98

APPENDIX F1: Python Script for Experimenting Communication between

Raspberry Pi

Sensor Node 2 and Sensor Node 3

a) Shaking table script

import RPi.GPIO as GPIO

from time import sleep

import telepot

import subprocess

import os

import sys

bot = telepot.Bot('BOT TOKEN')

GPIO.setmode(GPIO.BOARD)

Motor1A = 35

Motor1B = 37

Motor1E = 33

GPIO.setup(Motor1A,GPIO.OUT)

GPIO.setup(Motor1B,GPIO.OUT)

GPIO.setup(Motor1E,GPIO.OUT)

pwm=GPIO.PWM(33,100)

def handle(msg):

 chat_id = msg['chat']['id']

 command = msg['text']

 if command[0] in ('A','B','C','D','E','F'):

 subprocess.Popen(["python","exp1.py"])

 # Only for Sensor Node 2

 elif command[0] in ('1','2','3','X'):

 f=open('thingspeak.txt','a')

 f.write(command)

 f.write("\n")

 f.close()

 #Refer to Table 3.8

if command[0] in ('A','B','C'):

 t1=0.6

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

elif command[0] in ('D','E','F'):

 t1=0

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

b) Sensor data calculation script

import spidev

from time import sleep

import math

import sys

import telepot

Open SPI bus

spi = spidev.SpiDev()

spi.open(0,0)

#Refer to sensor calibration result

offsetx = -10

averageX = 0

bot = telepot.Bot('BOT TOKEN')

#Function to read SPI data from MCP3008 chip

#Channel must be an integer 0-7

def ReadChannelX(channel):

 adc = spi.xfer2([1,(8+channel)<<4,0])

 data = ((adc[1]&3) << 8) + adc[2] - offsetx

 return data

#Function to calculate acceleration

def ConvertAcc(data, places):

 Acc = (data*3.3/float(1023)-1.65)/0.33*9.81

 Acc = round(Acc,places)

 return Acc

#Define sensor channels

X_channel=0

try:

 while True:

 for i in range(1,10):

 X_level = ReadChannelX(X_channel)

 Acc = ConvertAcc(X_level,2)

 Acc = abs(Acc)

 if (Acc >= 0.05):

99

def definespeed(command):

 if '1' in command:

 return (35,59,3,0.125)

 elif '2' in command:

 return (35,70,7,0.2)

 elif '3' in command:

 return (43,95,13,0.25)

def motor(s,e,r,t1,t2):

 sleep(t1)

 GPIO.output(Motor1A,GPIO.HIGH)

 GPIO.output(Motor1B,GPIO.LOW)

 GPIO.output(Motor1E,GPIO.HIGH)

 for i in range(s,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(s+r,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 GPIO.output(Motor1E,GPIO.LOW)

 pwm.stop()

bot.message_loop(handle)

try:

 while True:

 sleep(0.1)

except KeyboardInterrupt:

 pwm.stop()

GPIO.cleanup()

sys.exit()

 for i in range(1,101):

 X_level = ReadChannelX(X_channel)

 Acc = ConvertAcc(X_level,2)

 Acc = abs(Acc)

 averageX = Acc + averageX

 sleep(0.03)

 averageX = averageX/100

 #Refer to sensor node number

 bot.sendMessage(-1001190132929,

"2A#{}".format(averageX))

Only for Sensor Node 2

sleep(4)

 subprocess.Popen(["python","sendthingspeak.py"

])

 break

 sleep(0.01)

 if (Acc < 0.05):

 # Only for Sensor Node 2

sleep(3)

 subprocess.Popen(["python","sendthingspeak.py"])

 #Refer to sensor node number

 bot.sendMessage(-1001190132929, "XXX2")

 break

except KeyboardInterrupt:

sys.exit()

100

Sensor Node 2

a) Data upload to ThingSpeak script

import httplib, urllib break

import sys except KeyboardInterrupt:

from time import sleep sys.exit()

import telepot

n=0

def upload(a2,a3,t):

 params = urllib.urlencode({'field5':a2,'field6':a3,'field7':t, 'key':'2OOORA6XXVHPV93R'})

 headers = {"Content-typZZe": "application/x-www-form-urlencoded","Accept": "text/plain"}

 conn = httplib.HTTPConnection("api.thingspeak.com:80")

 try:

 conn.request("POST", "/update", params, headers)

 response = conn.getresponse()

 print (response.status, response.reason)

 data = response.read()

 conn.close()

 except:

 print ("connection failed")

f = open('thingspeak.txt','r')

try:

 while True:

 command = f.readline()

 if command[0] in ('2','3'):

 if 'A' in command:

 if '2' in command[0]:

 a2=command[3:]

 n=n+1

 elif '3' in command[0]:

 a3=command[3:]

 n=n+1

 elif command[0] in 'X':

 sleep(15)

 bot = telepot.Bot('393328733:AAGbqKbVfYYcW4kOhRiUgFxsWKulH_EkEfY')

 bot.sendMessage(-1001135228608, "Warning cancel.")

 f = open('thingspeak.txt','w')

 f.write('')

 f.close()

 break

 if (n == 2):

 t=1

 upload(a2,a3,t)

 f = open('thingspeak.txt','w')

 f.write('')

 f.close()

101

APPENDIX F2: Python Script for Shaking Table Calibration

All Sensor Nodes

a) Shaking table script

import RPi.GPIO as GPIO

from time import sleep

import telepot

import subprocess

import os

import sys

bot = telepot.Bot('BOT TOKEN')

GPIO.setmode(GPIO.BOARD)

Motor1A = 35

Motor1B = 37

Motor1E = 33

GPIO.setup(Motor1A,GPIO.OUT)

GPIO.setup(Motor1B,GPIO.OUT)

GPIO.setup(Motor1E,GPIO.OUT)

pwm=GPIO.PWM(33,100)

def handle(msg):

 chat_id = msg['chat']['id']

 command = msg['text']

 if command[0] in ('A','B','C','D','E','F'):

 subprocess.Popen(["python","exp1.py"])

 #Refer to Table 3.8

if command[0] in ('A','B','C'):

 t1=0.6

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

elif command[0] in ('D','E','F'):

 t1=0

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

def definespeed(command):

 if '1' in command:

 return (35,59,3,0.125)

 elif '2' in command:

 return (35,70,7,0.2)

 elif '3' in command:

 return (43,95,13,0.25)

b) Sensor data calculation script

import spidev

from time import sleep

import math

import sys

import telepot

Open SPI bus

spi = spidev.SpiDev()

spi.open(0,0)

#Refer to sensor calibration result

offsetx = -10

averageX = 0

bot = telepot.Bot('BOT TOKEN')

#Function to read SPI data from MCP3008 chip

#Channel must be an integer 0-7

def ReadChannelX(channel):

 adc = spi.xfer2([1,(8+channel)<<4,0])

 data = ((adc[1]&3) << 8) + adc[2] - offsetx

 return data

#Function to calculate acceleration

def ConvertAcc(data, places):

 Acc = (data*3.3/float(1023)-1.65)/0.33*9.81

 Acc = round(Acc,places)

 return Acc

#Define sensor channels

X_channel=0

try:

 while True:

 for i in range(1,10):

 X_level = ReadChannelX(X_channel)

 Acc = ConvertAcc(X_level,2)

 Acc = abs(Acc)

 if (Acc >= 0.05):

 for i in range(1,101):

 X_level = ReadChannelX(X_channel)

102

def motor(s,e,r,t1,t2):

 sleep(t1)

 GPIO.output(Motor1A,GPIO.HIGH)

 GPIO.output(Motor1B,GPIO.LOW)

 GPIO.output(Motor1E,GPIO.HIGH)

 for i in range(s,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(s+r,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 GPIO.output(Motor1E,GPIO.LOW)

 pwm.stop()

bot.message_loop(handle)

try:

 while True:

 sleep(0.1)

except KeyboardInterrupt:

 pwm.stop()

GPIO.cleanup()

sys.exit()

 Acc = ConvertAcc(X_level,2)

 Acc = abs(Acc)

 averageX = Acc + averageX

 sleep(0.03)

 averageX = averageX/100

 #Refer to sensor node number

 bot.sendMessage(-1001190132929,

 "1A#{}".format(averageX))

 break

 sleep(0.01)

 if (Acc < 0.05):

 #Refer to sensor node number

 bot.sendMessage(-1001190132929, "XXX1")

 break

except KeyboardInterrupt:

sys.exit()

103

APPENDIX F3: Python Script for Visualizing Predicted Earthquake Map in

ThingSpeak

All Sensor Nodes

a) Shaking table script

import RPi.GPIO as GPIO

from time import sleep

import telepot

import subprocess

import os

import sys

Only for Sensor Node 3

import urllib

bot = telepot.Bot('BOT TOKEN')

GPIO.setmode(GPIO.BOARD)

Motor1A = 35

Motor1B = 37

Motor1E = 33

GPIO.setup(Motor1A,GPIO.OUT)

GPIO.setup(Motor1B,GPIO.OUT)

GPIO.setup(Motor1E,GPIO.OUT)

pwm=GPIO.PWM(33,100)

def handle(msg):

 chat_id = msg['chat']['id']

 command = msg['text']

 if command[0] in ('A','B','C','D','E','F'):

 f=open('command.txt','w')

 f.write(command)

 f.close()

 subprocess.Popen(["python","exp1.py"])

 # Only for Sensor Node 1

 elif command[0] in ('1','2','3','X'):

 f=open('thingspeak.txt','a')

 f.write(command)

 f.write("\n")

 f.close()

 # Only for Sensor Node 3

elif command =='done':

 sleep(3)

b) Sensor data calculation script

import spidev

from time import sleep

import math

import sys

import telepot

Open SPI bus

spi = spidev.SpiDev()

spi.open(0,0)

#Refer to sensor calibration result

offsetx = -10

averageX = 0

bot = telepot.Bot('BOT TOKEN')

#Function to read SPI data from MCP3008 chip

#Channel must be an integer 0-7

def ReadChannelX(channel):

 adc = spi.xfer2([1,(8+channel)<<4,0])

 data = ((adc[1]&3) << 8) + adc[2] - offsetx

return data

#Function to calculate acceleration

def ConvertAcc(data, places):

 Acc = (data*3.3/float(1023)-1.65)/0.33*9.81

 Acc = round(Acc,places)

return Acc

#Define sensor channels

X_channel=0

try:

 while True:

 for i in range(1,10):

 X_level = ReadChannelX(X_channel)

 Acc = ConvertAcc(X_level,2)

 Acc = abs(Acc)

 if (Acc >= 0.05):

subprocess.Popen(["python","sendmsg.py"])

104

urllib.urlretrieve("https://s3.amazonaws.com/images.thi

ngspeak.com/plugins/224752/x577c3FtngVdv87dFkgJ

hg.png", "1.png")

bot.sendPhoto(chat_id=-1001135228608,photo=open('/

home/pi/1.png'))

elif command=='reload':

os.system('/home/pi/refresh.sh')

 #Refer to Table 3.8

if command[0] in ('A','B','C'):

 t1=0.6

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

elif command[0] in ('D','E','F'):

 t1=0

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

def definespeed(command):

 if '1' in command:

 return (35,59,3,0.125)

 elif '2' in command:

 return (35,70,7,0.2)

elif '3' in command:

 return (43,95,13,0.25)

def motor(s,e,r,t1,t2):

 sleep(t1)

 GPIO.output(Motor1A,GPIO.HIGH)

 GPIO.output(Motor1B,GPIO.LOW)

 GPIO.output(Motor1E,GPIO.HIGH)

 for i in range(s,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(s+r,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 GPIO.output(Motor1E,GPIO.LOW)

for i in range(1,101):

Acc = ConvertAcc(X_level,2)

 Acc = abs(Acc)

 averageX = Acc + averageX

 sleep(0.03)

averageX = averageX/100

 subprocess.Popen(["python","sub.py",

str(averageX)])

Only for Sensor Node 1

sleep(4)

subprocess.Popen(["python","sendthingspeak.py"])

break

 sleep(0.01)

 if (Acc < 0.05):

 # Only for Sensor Node 1

sleep(3)

 subprocess.Popen(["python","sendthingspeak.py"])

 #Refer to sensor node number

 bot.sendMessage(-1001190132929, "XXX1")

 break

except KeyboardInterrupt:

sys.exit()

c) Gain multiplication on sensor data script

from time import sleep

import sys

import ast

import telepot

bot = telepot.Bot('BOT TOKEN')

while True:

 f = open('command.txt','r')

 command = f.read()

 f.close()

sleep(0.1)

#Refer to Table 4.5 for each sensor node

 if '1' in command:

 g=0.092

 elif '2' in command:

 g=0.121

 elif '3' in command:

 g=0.164

 Acc = sys.argv[1]

 Acc = ast.literal_eval(str(Acc))

 Acc = g * Acc

 Acc = round(Acc,3)

#Refer to sensor node

number

bot.sendMessage(-10011

90132929,

"1A#{}".format(Acc))

sleep(0.1)
 break

105

 GPIO.output(Motor1E,GPIO.LOW)

 pwm.stop()

bot.message_loop(handle)

try:

 while True:

 sleep(0.1)

except KeyboardInterrupt:

 pwm.stop()

GPIO.cleanup()

sys.exit()

d) Sensor exceeds preset threshold value

timestamp script

from time import sleep

import datetime

import telepot

while True:

 bot = telepot.Bot('BOT TOKEN')

 t=datetime.datetime.now().strftime("%H:%M:%S.%f")[:-3]

 #Refer to sensor node number

 bot.sendMessage(-1001190132929, "1T#{}".format(t))

 sleep(0.1)

 break

Sensor Node 3

a) ThingSpeak Visualization program

page refresh shell script

export DISPLAY=:0

XAUTHORITY=/home/pi/.Xauthority

xdotool search --onlyvisible --class chromium windowactivate

xdotool key "ctrl+R"

Sensor Node 1

a) Data upload to ThingSpeak script

import httplib, urllib

import sys

from time import sleep

import telepot

n=0

def upload(t1,t2,t3,a1,a2,a3,t):

params = urllib.urlencode({'field1':t1,

'field2':t2,'field3':t3,'field4':a1,'field5':a2,'field6':a3,

'field7':t, 'key':'2OOORA6XXVHPV93R'})

headers = {"Content-typZZe":

"application/x-www-form-urlencoded","Accept": "text/plain"}

 conn = httplib.HTTPConnection("api.thingspeak.com:80")

 try:

 conn.request("POST", "/update", params, headers)

 response = conn.getresponse()

 print (response.status, response.reason)

 data = response.read()

 conn.close()

 except:

 print ("connection failed")

f = open('thingspeak.txt','r')

try:

 while True:

 command = f.readline()

 if command[0] in ('1','2','3'):

if 'T' in command:

 if '1' in command[0]:

 t1=command[3:]

 n=n+1

 elif '2' in command[0]:

 t2=command[3:]

 n=n+1

 elif '3' in command[0]:

 t3=command[3:]

 n=n+1

 if 'A' in command:

 if '1' in command[0]:

 a1=command[3:]

106

 n=n+1

 elif '2' in command[0]:

 a2=command[3:]

 n=n+1

 elif '3' in command[0]:

 a3=command[3:]

 n=n+1

 elif command[0] in 'X':

 sleep(15)

bot =

telepot.Bot('393328733:AAGbqKbVfYYcW4kOhRiUg

FxsWKulH_EkEfY')

 bot.sendMessage(-1001135228608, "Warning cancel.")

 f = open('thingspeak.txt','w')

 f.write('')

 f.close()

 break

 if (n == 6):

 t=1

 upload(t1,t2,t3,a1,a2,a3,t)

 f = open('thingspeak.txt','w')

 f.write('')

 f.close()

 break

 sleep(0.1)

except KeyboardInterrupt:

sys.exit()

107

APPENDIX F4: Python Script for Measuring Time Taken of Sending Message

to Telegram

a) Python script for Telegram Bot 1

import time

import datetime

import telepot

def handle(msg):

 chat_id = msg['chat']['id']

 command = msg['text']

 print 'Got command: %s' % command

 if command == '/hello':

 # Print timestamp before sending alert message

 print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

 bot.sendMessage(-1001135228608, "Node 1 detected earthquake: 3.7 magnitude.")

 else:

 bot.sendMessage(chat_id, "Invalid command.")

Telegram Bot 1 token

bot = telepot.Bot('393328733:AAGbqKbVfYYcW4kOhRiUgFxsWKulH_EkEfY')

bot.message_loop(handle)

bot.sendMessage(470295792, "Pls enter command!")

print 'TimeS is listening ...'

while True:

time.sleep(0.1)

b) Python script for Telegram Bot 2

import time

import datetime

import telepot

def handle(msg):

 chat_id = msg['chat']['id']

 command = msg['text']

 print 'Got command: %s' % command

if command == 'Node 1 detected earthquake: 3.7 magnitude.':

 # Print timestamp when alert message is detected by Telegram Bot 2

 print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

 print('Done!')

Telegram Bot 2 token

bot = telepot.Bot('444050918:AAGEWUJxy_0deByevQ4t-46UxkFBJ-6f0Ys')

bot.message_loop(handle)

print 'TimeR is listening ...'

while True:

time.sleep(0.1)

108

APPENDIX F5: Python Script for Comparing Recorded Video Format

a) Python script for Telegram Bot 1

import time

import datetime

import telepot

import os

def handle(msg):

 chat_id = msg['chat']['id']

command = msg['text']

 print 'Got command: %s' % command

if command == '/avi':

print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

os.system('raspivid -o video0.avi -t 5000 -w 320 -h 240 -vf')

 bot.sendDocument(-1001135228608, document =

open('/home/pi/video0.avi'), caption = 'AVI')

 elif command == '/mkv':

print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

os.system('raspivid -o video0.h264 -t 5000 -w 320 -h 240 -vf')

 os.system('ffmpeg -i video0.h264 -vcodec copy video0.mkv')

bot.sendDocument(-1001135228608, document =

open('/home/pi/video0.mkv'), caption = 'MKV')

 elif command == '/mp4':

print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

os.system('raspivid -o video0.h264 -t 5000 -w 320 -h 240 -vf')

os.system('ffmpeg -i video0.h264 -vcodec copy video0.mp4')

 bot.sendDocument(-1001135228608, document =

open('/home/pi/video0.mp4'), caption = 'MP4')

 else:

 bot.sendMessage(chat_id, "Invalid command.")

Telegram Bot 1 token

bot =

telepot.Bot('393328733:AAGbqKbVfYYcW4kOhRiUgFxsWKulH_EkEfY')

bot.message_loop(handle)

bot.sendMessage(470295792, "Pls enter command!")

print 'TimeS is listening ...'

while True:

time.sleep(0.1)

b) Python script for Telegram

Bot 2

import time

import datetime

import telepot

def handle(msg):

 chat_id = msg['chat']['id']

 command = msg['caption']

 print 'Got command: %s' % command

if command == 'AVI':

print(datetime.datetime.now().strftime("

%Y-%m-%d %H:%M:%S"))

 print('AVI Done!')

 elif command == 'MKV':

print(datetime.datetime.now().strftime("

%Y-%m-%d %H:%M:%S"))

 print('MKV Done!')

 elif command == 'MP4':

print(datetime.datetime.now().strftime("

%Y-%m-%d %H:%M:%S"))

 print('MP4 Done!')

Telegram Bot 2 token

bot =

telepot.Bot('444050918:AAGEWUJxy_0deByevQ

4t-46UxkFBJ-6f0Ys')

bot.message_loop(handle)

print 'TimeR is listening ...'

while True:

 time.sleep(0.1)

109

APPENDIX F6: Python Script for Sending Earthquake Map to Telegram using

ThingSpeak

Sensor Node 3

a) Shaking table script

import RPi.GPIO as GPIO

from time import sleep

import telepot

import subprocess

import os

import sys

import urllib

bot =

telepot.Bot('574331181:AAHcOPPzSKzo2L1mqciKt2Mi5_Kk

qDIW4Wg')

GPIO.setmode(GPIO.BOARD)

Motor1A = 35

Motor1B = 37

Motor1E = 33

GPIO.setup(Motor1A,GPIO.OUT)

GPIO.setup(Motor1B,GPIO.OUT)

GPIO.setup(Motor1E,GPIO.OUT)

pwm=GPIO.PWM(33,100)

def handle(msg):

 chat_id = msg['chat']['id']

 command = msg['text']

 if command[0] in ('A','B','C','D','E','F'):

 f=open('command.txt','w')

 f.write(command)

 f.close()

 subprocess.Popen(["python","exp1.py"])

 elif command =='done':

sleep(3)

urllib.urlretrieve("https://s3.amazonaws.com/imag

es.thingspeak.com/plugins/224752/x577c3FtngVd

v87dFkgJhg.png", "1.png")

bot.sendPhoto(chat_id=-1001135228608,photo=op

en('/home/pi/1.png'))

os.remove("/home/pi/1.png")

 elif command=='reload':

 os.system('/home/pi/refresh.sh')

b) ThingSpeak Visualization program page

refresh shell script

export DISPLAY=:0

XAUTHORITY=/home/pi/.Xauthority

xdotool search --onlyvisible --class chromium windowactivate

xdotool key "ctrl+R"

110

if command[0] in ('A','B','C'):

 t1=0.6

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

 elif command[0] in ('D','E','F'):

 t1=0

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

def definespeed(command):

 if '1' in command:

 return (35,59,3,0.125)

 elif '2' in command:

 return (35,70,7,0.2)

 elif '3' in command:

 return (43,95,13,0.25)

def motor(s,e,r,t1,t2):

 sleep(t1)

 GPIO.output(Motor1A,GPIO.HIGH)

 GPIO.output(Motor1B,GPIO.LOW)

 GPIO.output(Motor1E,GPIO.HIGH)

 for i in range(s,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(s+r,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 GPIO.output(Motor1E,GPIO.LOW)

 pwm.stop()

bot.message_loop(handle)

try:

 while True:

 sleep(0.1)

except KeyboardInterrupt:

 pwm.stop()

 GPIO.cleanup()

 sys.exit()

111

APPENDIX F7: Python Script for Testing System Efficiency

All Sensor Nodes

a) Shaking table script

import RPi.GPIO as GPIO

from time import sleep

import telepot

import subprocess

import os

import sys

Only for Sensor Node 3

import urllib

bot = telepot.Bot('BOT TOKEN')

GPIO.setmode(GPIO.BOARD)

Motor1A = 35

Motor1B = 37

Motor1E = 33

GPIO.setup(Motor1A,GPIO.OUT)

GPIO.setup(Motor1B,GPIO.OUT)

GPIO.setup(Motor1E,GPIO.OUT)

pwm=GPIO.PWM(33,100)

def handle(msg):

 chat_id = msg['chat']['id']

 command = msg['text']

 if command[0] in ('A','B','C','D','E','F'):

 f=open('command.txt','w')

 f.write(command)

 f.close()

 subprocess.Popen(["python","exp1.py"])

 # Only for Sensor Node 1

 elif command[0] in ('1','2','3','X'):

 f=open('thingspeak.txt','a')

 f.write(command)

 f.write("\n")

 f.close()

 # Only for Sensor Node 3

elif command =='done':

 sleep(3)

b) Sensor data calculation script

import spidev

from time import sleep

import math

import sys

import telepot

Open SPI bus

spi = spidev.SpiDev()

spi.open(0,0)

#Refer to sensor calibration result

offsetx = -10

averageX = 0

bot = telepot.Bot('BOT TOKEN')

#Function to read SPI data from MCP3008 chip

#Channel must be an integer 0-7

def ReadChannelX(channel):

 adc = spi.xfer2([1,(8+channel)<<4,0])

 data = ((adc[1]&3) << 8) + adc[2] - offsetx

return data

#Function to calculate acceleration

def ConvertAcc(data, places):

 Acc = (data*3.3/float(1023)-1.65)/0.33*9.81

 Acc = round(Acc,places)

return Acc

#Define sensor channels

X_channel=0

try:

 while True:

 for i in range(1,10):

 X_level = ReadChannelX(X_channel)

 Acc = ConvertAcc(X_level,2)

 Acc = abs(Acc)

 if (Acc >= 0.05):

subprocess.Popen(["python","sendmsg.py"])

subprocess.Popen(["python","sendvideo.py"])

112

urllib.urlretrieve("https://s3.amazonaws.com/images.thi

ngspeak.com/plugins/224752/x577c3FtngVdv87dFkgJ

hg.png", "1.png")

bot.sendPhoto(chat_id=-1001135228608,photo=open('/

home/pi/1.png'))

elif command=='reload':

os.system('/home/pi/refresh.sh')

 #Refer to Table 3.8

if command[0] in ('A','B','C'):

 t1=0.6

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

elif command[0] in ('D','E','F'):

 t1=0

 s,e,r,t2 = definespeed(command)

 motor(s,e,r,t1,t2)

def definespeed(command):

 if '1' in command:

 return (35,59,3,0.125)

 elif '2' in command:

 return (35,70,7,0.2)

elif '3' in command:

 return (43,95,13,0.25)

def motor(s,e,r,t1,t2):

 sleep(t1)

 GPIO.output(Motor1A,GPIO.HIGH)

 GPIO.output(Motor1B,GPIO.LOW)

 GPIO.output(Motor1E,GPIO.HIGH)

 for i in range(s,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(s+r,e+1,r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 for i in range(e-r,s-1,-r):

 pwm.ChangeDutyCycle(i)

 sleep(t2)

 GPIO.output(Motor1E,GPIO.LOW)

for i in range(1,101):

Acc = ConvertAcc(X_level,2)

 Acc = abs(Acc)

 averageX = Acc + averageX

 sleep(0.03)

averageX = averageX/100

 subprocess.Popen(["python","sub.py",

str(averageX)])

Only for Sensor Node 1

sleep(4)

subprocess.Popen(["python","sendthingspeak.py"])

break

 sleep(0.01)

 if (Acc < 0.05):

 # Only for Sensor Node 1

sleep(3)

 subprocess.Popen(["python","sendthingspeak.py"])

 #Refer to sensor node number

 bot.sendMessage(-1001190132929, "XXX1")

 break

except KeyboardInterrupt:

sys.exit()

c) Gain multiplication on sensor data script

from time import sleep

import sys

import ast

import telepot

bot = telepot.Bot('BOT TOKEN')

while True:

 f = open('command.txt','r')

 command = f.read()

 f.close()

sleep(0.1)

#Refer to Table 4.5 for each sensor node

 if '1' in command:

 g=0.092

 elif '2' in command:

 g=0.121

 elif '3' in command:

 g=0.164

 Acc = sys.argv[1]

 Acc = ast.literal_eval(str(Acc))

 Acc = g * Acc

Acc = round(Acc,3)

#Refer to first trial acceleration

data for each sensor node on

Table 4.8

Acc = 1.055

#Refer to sensor node number

bot.sendMessage(-10011901329

29, "1A#{}".format(Acc))

sleep(0.1)
break

113

 GPIO.output(Motor1E,GPIO.LOW)

 pwm.stop()

bot.message_loop(handle)

try:

 while True:

 sleep(0.1)

except KeyboardInterrupt:

 pwm.stop()

GPIO.cleanup()

sys.exit()

d) Sensor exceeds preset threshold value

timestamp script

from time import sleep

import datetime

import telepot

while True:

 bot = telepot.Bot('BOT TOKEN')

t=datetime.datetime.now().strftime("%H:%M:%S.%f")[:-3]

#Refer to first trial timstamp for each sensor node on Table

4.8

t=‟ 18:22:59.521‟

 #Refer to sensor node number

 bot.sendMessage(-1001190132929, "1T#{}".format(t))

 sleep(0.1)

 break

Sensor Node 1

a) Data upload to ThingSpeak script

import httplib, urllib

import sys

from time import sleep

import telepot

n=0

def upload(t1,t2,t3,a1,a2,a3,t):

params = urllib.urlencode({'field1':t1,

'field2':t2,'field3':t3,'field4':a1,'field5':a2,'field6':a3,

'field7':t, 'key':'2OOORA6XXVHPV93R'})

headers = {"Content-typZZe":

"application/x-www-form-urlencoded","Accept": "text/plain"}

 conn = httplib.HTTPConnection("api.thingspeak.com:80")

 try:

 conn.request("POST", "/update", params, headers)

 response = conn.getresponse()

 print (response.status, response.reason)

 data = response.read()

 conn.close()

 except:

 print ("connection failed")

f = open('thingspeak.txt','r')

try:

 while True:

 command = f.readline()

 if command[0] in ('1','2','3'):

if 'T' in command:

 if '1' in command[0]:

 t1=command[3:]

 n=n+1

 elif '2' in command[0]:

 t2=command[3:]

 n=n+1

 elif '3' in command[0]:

 t3=command[3:]

 n=n+1

if 'A' in command:

 if '1' in command[0]:

 a1=command[3:]

114

e) Footage record script

from time import sleep

import telepot

import os

import datetime

while True:

 bot = telepot.Bot('BOT TOKEN')

 # Only for Sensor Node 2

os.system('raspivid -o video0.avi -t 5000 -w 320 -h 240 -vf')

 # Only for Sensor Node 1 and 3

 sleep(8.5)

 #Refer to sensor node number

bot.sendDocument(-1001135228608, document =

open('/home/pi/video0.avi'), caption = 'Video Node 1')

 # Only for Sensor Node 2

 os.remove("/home/pi/video0.avi")

 sleep(0.1)

 break

Sensor Node 3

a) ThingSpeak Visualization program

page refresh shell script

export DISPLAY=:0

XAUTHORITY=/home/pi/.Xauthority

xdotool search --onlyvisible --class chromium windowactivate

xdotool key "ctrl+R"

 n=n+1

 elif '2' in command[0]:

 a2=command[3:]

 n=n+1

 elif '3' in command[0]:

 a3=command[3:]

 n=n+1

 elif command[0] in 'X':

 sleep(15)

bot =

telepot.Bot('393328733:AAGbqKbVfYYcW4kOhRiUg

FxsWKulH_EkEfY')

 bot.sendMessage(-1001135228608, "Warning cancel.")

 f = open('thingspeak.txt','w')

 f.write('')

 f.close()

 break

 if (n == 6):

 t=1

 upload(t1,t2,t3,a1,a2,a3,t)

 f = open('thingspeak.txt','w')

 f.write('')

 f.close()

break

 sleep(0.1)

except KeyboardInterrupt:

sys.exit()

115

APPENDIX G1: ThingSpeak MATLAB Analysis code

% Channel ID to read from

readChannelID = 480136;

% Channel Read API Key

readAPIKey = 'CMZPDLSUOP26GBQL';

% Channel ID to write

writeChannelID = 480139;

% Write API Key

writeAPIKey = 'EE0Z5DXZRXMU5OJ2';

a1 = thingSpeakRead(readChannelID,'ReadKey',readAPIKey,'Fields',4)

a2 = thingSpeakRead(readChannelID,'ReadKey',readAPIKey,'Fields',5)

a3 = thingSpeakRead(readChannelID,'ReadKey',readAPIKey,'Fields',6)

q=0;

n=0;

m=0;

l=0;

if (a1 >= 0.8 && a1 <= 1.231)

 n=1

elseif (a1 >= 1.37 && a1 <= 1.626)

 n=3

elseif (a1 >= 1.973 && a1 <= 2.448)

 n=6

else

 n=20

end

if (a2 >= 0.8 && a2 <= 1.231)

 m=1

elseif (a2 >= 1.37 && a2 <= 1.626)

 m=3

elseif (a2 >= 1.973 && a2 <= 2.448)

 m=6

else

 m=20

end

if (a3 >= 0.8 && a3 <= 1.231)

 l=1

elseif (a3 >= 1.37 && a3 <= 1.626)

 l=3

elseif (a3 >= 1.973 && a3 <= 2.448)

116

 l=6

else

 l=20

end

t=n+m+l

if (t==3)

 Magnitude=5.8

 q=1;

elseif (t==9)

 Magnitude=6.4

 q=1;

elseif (t==18)

 Magnitude=7

 q=1;

else

 q=0;

end

if (q==1)

 t1 = thingSpeakRead(readChannelID,'ReadKey',readAPIKey,'Fields',1,'OutputFormat','timetable')

 t2 = thingSpeakRead(readChannelID,'ReadKey',readAPIKey,'Fields',2,'OutputFormat','timetable')

 t3 = thingSpeakRead(readChannelID,'ReadKey',readAPIKey,'Fields',3,'OutputFormat','timetable')

 t1 = t1.TimestampStation1{1}

 t4=datestr(addtodate(datenum(t1,'HH:MM:SS.FFF'),-1,'second'),'HH:MM:SS.FFF')

 t5 = t2.TimestampStation2{1}

 t6 = t3.TimestampStation3{1}

 d1= etime(datevec(t4),datevec(t5))

 d2= etime(datevec(t5),datevec(t6))

 d3= etime(datevec(t4),datevec(t6))

 if (d1 < -0.6) && ((-0.6 < d2 && d2 <= 0) || (d2 >= 0 && d2 < 0.6))

 epicenter = 1

 T1=1

 elseif ((-0.6 < d1 && d1 <= 0) || (d1 >= 0 && d1 < 0.6)) && (d2 < -0.6)

 epicenter = 2

 if (d1 >= 0)

 T1=2

 elseif (d1 < 0)

 T1=1

 end

 elseif (d1 > 0.6) && (d2 < -0.6)

 epicenter = 3

 T1=2

 elseif (d1 > 0.6) && ((-0.6 < d2 && d2 <= 0) || (d2 >= 0 && d2 < 0.6))

117

 epicenter = 4

 if (d2 >= 0)

 T1=3

 elseif (d2 < 0)

 T1=2

 end

 elseif ((-0.6 < d1 && d1 <= 0) || (d1 >= 0 && d1 < 0.6)) && (d2 > 0.6)

 epicenter = 5

 T1=3

 elseif (d1 < -0.6) && (d2 > 0.6)

 epicenter = 6

 if (d3 >= 0)

 T1=3

 elseif (d3 < 0)

 T1=1

 end

 else

 epicenter=0;

 end

else

 epicenter=0;

end

if (q~=0 && epicenter~=0)

thingSpeakWrite(writeChannelID,[epicenter,T1,Magnitude],'WriteKey',writeAPIKey);

telURL='https://api.telegram.org/bot393328733:AAGbqKbVfYYcW4kOhRiUgFxsWKulH_EkEfY/sendmes

sage?chat_id=-1001190132929&text=reload';

 webwrite(telURL,20)

else

telURL='https://api.telegram.org/bot393328733:AAGbqKbVfYYcW4kOhRiUgFxsWKulH_EkEfY/sendme

ssage?chat_id=-1001190132929&text=failed to analyze data!';

 webwrite(telURL,20)

end

118

APPENDIX G2: ThingSpeak MATLAB Visualization code

a1 = thingSpeakRead(480136,'ReadKey','CMZPDLSUOP26GBQL','Fields',4)

a2 = thingSpeakRead(480136,'ReadKey','CMZPDLSUOP26GBQL','Fields',5)

a3 = thingSpeakRead(480136,'ReadKey','CMZPDLSUOP26GBQL','Fields',6)

epicenter = thingSpeakRead(480139,'ReadKey','PAMXKKQA6I5MRKAK','Fields',1)

T1 = thingSpeakRead(480139,'ReadKey','PAMXKKQA6I5MRKAK','Fields',2)

Magnitude = thingSpeakRead(480139,'ReadKey','PAMXKKQA6I5MRKAK','Fields',3)

d1= 10^(-0.625*log10(a1/(13*exp(0.67*Magnitude))))-25;

d1 = round(d1,2)

d2= 10^(-0.625*log10(a2/(13*exp(0.67*Magnitude))))-25;

d2 = round(d2,2);

d3= 10^(-0.625*log10(a3/(13*exp(0.67*Magnitude))))-25;

d3 = round(d3,2);

r1=km2deg(d1);

r2=km2deg(d2);

r3=km2deg(d3);

s1=[2.329661, 102.279777];

s2=[2.284655, 102.280450];

s3=[2.307752, 102.319032];

ptX=[10.0156,115.8368];

if (epicenter==1)

 epi=[2.5225,102.1640]

 latepi=[2.1, 2.52, 2.72, 1.88];

 lonepi=[102, 102.5,101.88,102.72];

elseif (epicenter==2)

 epi=[2.3038,102.0552]

 latepi=[2.1, 2.52, 2.72, 1.89];

 lonepi=[102, 102.5,101.89,102.71];

elseif (epicenter==3)

 epi=[2.088406, 102.170699]

 latepi=[2.1, 2.52, 2.72, 1.89];

 lonepi=[102, 102.5,101.88,102.71];

elseif (epicenter==4)

 epi=[2.1034,102.4153]

 latepi=[2.1, 2.52, 2.71, 1.89];

 lonepi=[102, 102.5,101.89,102.71];

elseif (epicenter==5)

 epi=[2.3111,102.5441]

 latepi=[2.1, 2.52, 2.72, 1.89];

 lonepi=[102, 102.5,101.89,102.71];

elseif (epicenter==6)

 epi=[2.5150,102.4091]

119

 latepi=[2.1, 2.52, 2.72, 1.89];

 lonepi=[102, 102.5,101.89,102.71];

end

if (Magnitude==5.8)

 epir=30.83/2

 epird=km2deg(epir);

 M='5.3-5.8'

elseif (Magnitude==6.4)

 epir=31.29/2

 epird=km2deg(epir);

 M='5.9-6.4'

elseif (Magnitude==7)

 epir=31.75/2

 epird=km2deg(epir);

 M='6.5-7.0'

end

if (T1==1)

 t1 = thingSpeakRead(480136,'ReadKey','CMZPDLSUOP26GBQL','Fields',1,'OutputFormat','timetable');

 t1 = t1.TimestampStation1{1}

 D = distance(epi,s1);

elseif (T1==2)

 t1 = thingSpeakRead(480136,'ReadKey','CMZPDLSUOP26GBQL','Fields',2,'OutputFormat','timetable');

 t1 = t1.TimestampStation2{1}

 D = distance(epi,s2);

elseif (T1==3)

 t1 = thingSpeakRead(480136,'ReadKey','CMZPDLSUOP26GBQL','Fields',3,'OutputFormat','timetable');

 t1 = t1.TimestampStation3{1}

 D = distance(epi,s3);

end

D = deg2km(D);

td = distance(epi,ptX);

td = deg2km(td);

d = (td-D)/1000;

epir = epir/1000;

t3 = ((0.0002*d)^5 - (0.0042*d)^4 + (0.0425*d)^3 - (0.2817*d)^2 + (2.4332*d) + 0.0174)*60;

t2 = ((0.0002*epir)^5 - (0.0042*epir)^4 + (0.0425*epir)^3 - (0.2817*epir)^2 + (2.4332*epir) + 0.0174)*60;

t3 = round(t3,0);

t2 = round(t2,0);

t=datestr(addtodate(datenum(t1,'HH:MM:SS'),t3,'second'),'HH:MM:SS')

t=datestr(addtodate(datenum(t,'HH:MM:SS'),-t2,'second'),'HH:MM:SS')

figure

120

subplot(2,1,1)

lat = [10.4, 4.589377, 1.7, 2.5];

lon = [116.2, 102, 101.6, 107.4];

[latlim,lonlim] = geoquadline(lat,lon);

buf = 0.01;

ax = worldmap(latlim,lonlim);

[latlim,lonlim] = bufgeoquad(latlim,lonlim,buf,buf);

oceanColor = [.5 .7 .9];

setm(ax, 'FFaceColor',oceanColor);

load coastlines;

hold on;

geoshow(coastlat,coastlon,'FaceColor','white','DisplayType','polygon');

[gclat,gclong] = track2('gc',epi(1),epi(2),ptX(1),ptX(2));

i3=plotm(gclat,gclong,'b--');

sca = scircle1(epi(1), epi(2), epird);

i1=patchm(sca(:,1), sca(:,2),'r');

plotm(sca(:,1), sca(:,2),'r');

i2=plotm(ptX ,'k*','MarkerFaceColor','k');

title('Overall Map');

legend([i1 i2 i3],{'Epicenter Point' 'Point X' 'Earthquake Path'},'Location','northeastoutside')

annotation('textbox', [0.62, 0.78, 0, 0], 'string', 'Information:');

annotation('textbox', [0.62, 0.67, 0.21, 0.07], 'edgecolor', 'w','string', ['Est. Time: ' t,' Est. Magnitude: ' M,'

Latitude: ' num2str(epi(1)),' Longitude: ' num2str(epi(2))]);

subplot(2,1,2)

[latlim,lonlim] = geoquadline(latepi,lonepi);

buf = 0.01;

ax = worldmap(latlim,lonlim);

[latlim,lonlim] = bufgeoquad(latlim,lonlim,buf,buf);

oceanColor = [.5 .7 .9];

setm(ax, 'FFaceColor',oceanColor);

load coastlines;

hold on;

geoshow(coastlat,coastlon,'FaceColor','white','DisplayType','polygon');

sce = scircle1(epi(1), epi(2), epird);

i7=patchm(sce(:,1), sce(:,2),'r');

plotm(sce(:,1), sce(:,2),'r');

sc1 = scircle1(s1(1), s1(2), r1);

i8=plotm(sc1(:,1), sc1(:,2),'k','LineWidth', 1);

i4=plotm(s1,'k+','MarkerFaceColor','k');

sc2 = scircle1(s2(1), s2(2), r2);

i9=plotm(sc2(:,1), sc2(:,2),'m','LineWidth', 1);

i5=plotm(s2,'m+','MarkerFaceColor','m');

sc3 = scircle1(s3(1), s3(2), r3);

i10=plotm(sc3(:,1), sc3(:,2),'b','LineWidth', 1);

121

i6=plotm(s3,'b+','MarkerFaceColor','b');

title('Earthquake at Stations');

legend([i4 i5 i6 i7 i8 i9 i10],{'Station 1 Point' 'Station 2 Point' 'Station 3 Point' 'Epicenter Point' 'Est.L Station 1'

'Est.L Station 2' 'Est.L Station 3'},'Location','northeastoutside')

set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0.04, 0.5, 0.5]);

telURL='https://api.telegram.org/bot393328733:AAGbqKbVfYYcW4kOhRiUgFxsWKulH_EkEfY/sendmessage

?chat_id=-1001190132929&text=done';

webwrite(telURL,20)

