

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ANALYSIS SYSTEM FOR BADMINTON PLAYER RACQUET MOVEMENT

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Electronic Industry) with Honours.

by

SITI AISHAH BINTI MOHD RAMZAN B071510890 930429-06-5490

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Analysis System For Badminton Player Racquet Movement		
Sesi Pengajian: 2019		
Saya SITI AISHAH BINTI MOHD RAMZAN mengaku membenarkan Laporan PSM		
ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan		
syarat-syarat kegunaan seperti berikut:		
1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.		
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan		
untuk tujuan pengajian sahaja dengan izin penulis.		
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran		
antara institusi pengajian tinggi.		
4. **Sila tandakan (X)		
Mengandungi maklumat yang berdarjah keselamatan atau		
SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA		
RAHSIA RASMI 1972.		

	TERHAD*	Mengandungi maklu	mat TERHAD yang telah ditentukan o	leh	
		organisasi/badan di n	nana penyelidikan dijalankan.		
\square	TIDAK				
	TERHAD				
Yang	benar,		Disahkan oleh penyelia:		
			MUHAMMAD IZZAT ZAKWAN BIN	ſ	
SITI AISHAH BINTI MOHD RAMZAN		TI MOHD RAMZAN	MOHD ZABIDI		
Alamat Tetap:			Cop Rasmi Penyelia		
No.14, Lrg Chengal Lempong Baru 1,					
Tamai	n Balok Jaya 2	,			
26100	Kuantan, Pah	ang.			
Tarikh:			Tarikh:		

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled Analysis System For Badminton Player Racquet Movement is the results of my own research except as cited in references.

Signature:	
Author:	SITI AISHAH BINTI MOHD RAMZAN
Date:	

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Electronic Industry) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	MUHAMMAD IZZAT ZAKWAN BIN
	MOHD ZABIDI
Signature:	
Co-supervisor	TS. SHAHRIZAL BIN SAAT

ABSTRAK

Sistem Analisis Pergerakan Pemain Badminton ialah sistem yang mengumpul data setiap pergerakan raket badminton. Idea untuk mencipta sistem ini telah dicetuskan oleh Institut Sukan Negara Malaysia untuk membantu mereka menganalisis data pergerakan pemain badminton mereka. Projek ini diciptakan untuk menerangkan ciri-ciri setiap pergerakan raket badminton. Sistem ini boleh digunakan sebagai alat untuk membantu jurulatih pemain badminton untuk membuat analisa mengenai corak permainan yang selalu digunakan oleh pemain badminton. Projek ini diciptakan dengan menggunakan sensor IMU untuk menghasilkan data dari pergerakan raket dan Arduino MEGA digunakan sebagai pengawal. Perisian PLX DAQ telah digunakan sebagai alat untuk mendapatkan data dari sensor dan memasukkan data secara automatik ke *spreadsheet* Excel. Melalui sistem analisis ini, kita akan dapat melihat perbezaan diantara kelajuan dan arah bagi setiap corak pergerakan raket badminton.

ABSTRACT

Analysis System for Badminton Player Movement is a system that collects the data of every movement for the racquet badminton. The idea to create this system is from National Sports Institute of Malaysia to help them to analyze the data of their badminton player movement. This project was created to describe the character of each badminton racquet movement. It can be used as a tool to help badminton coach analyze the game pattern that usually used by their trainees. This project was created by using the IMU sensor to generate the data of the racquet movement and Arduino MEGA was used as a controller. PLX DAQ software was used as a tool to obtain data from the sensor and insert the data automatically into Excel spreadsheet. Through this analysis system, we can see the difference of speed and direction of the racquet badminton movement for each pattern.

DEDICATION

This report was dedicated to my beloved parents, Mr. Mohd Ramzan Bin Mat Yunan and Mrs. Wan Faizah Binti Wan Bakar for always supporting me during my study in UTeM. I am very grateful to my parents because they always give me advice and encouragement throughout the process of doing this project.

ACKNOWLEDGEMENTS

First of all, I am very thankful to my Supervisor, Sir Muhammad Izzat Zakwan Bin Mohd Zabidi for always helping me and give me ideas while doing this project. Also thank you very much to my Co-Supervisor @ Academic Advisor, Sir Shahrizal Bin Saat for always guiding me to complete this project. Thank you to my mentor, Esrine Esther Esar, for giving me cooperation and helped me a lot in completing this project. Also not forgotten to all my family members, my dearest friends and UTeM staffs for always helping and cheering me when needed.

TABLE OF CONTENTS

		PAGE
TAB	BLE OF CONTENTS	X
LIST	Γ OF TABLES	xiii
LIST	Γ OF FIGURES	xiv
LIST	Γ OF GRAPHS	xiii
LIST	LIST OF APPENDICES	
LIST	Γ OF SYMBOLS	xixx
LIST	Γ OF ABBREVIATIONS	XX
CHA	APTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Statement of the Purpose	2
1.3	Problem Statement	2
1.3	Objectives	3
1.3	Scopes of The Project	3
CHA	APTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2 2	Stroke Pattern for Racquet Badminton	5

2.3	Movement Pattern for Badminton Player	7
2.4	Speed of Badminton Player	9
2.5	Motion Analysis from Images or Visual	9
2.6	Aarduino MEGA	11
2.7	IMU Sensor (MPU6050)	12
СНА	PTER 3 METHODOLOGY	13
3.1	Introduction	13
3.2	Project Development	13
3.3	Project Block Diagram	17
3.4	Project Flow Chart	17
3.5	Project Prototype	18
3.6	Project Costing	20
СНА	PTER 4 RESULT AND DISCUSSION	21
4.1	Data Analysis for Badminton Stroke Pattern	21
	4.1.1 Serve Pattern	22
	4.1.2 Smash Pattern	25
	4.1.3 Drop Pattern	29
	4.1.4 Block Pattern	32
	4.1.5 Around The Head Pattern	36

	4.1.6	Back Hand Pattern	39
	4.1.7	Fore Hand Pattern	43
	4.1.8	Netting Pattern	46
4.2	Averaş	ge Data Value	49
4.3	Compa	arison Between Pattern	50
СНАР	PTER 5	CONCLUSION	51
5.1	Conclu	usion	51
5.2	Limita	tion	51
5.3	Recommendation		52
REFE	RENC	ES	53
A PPF	NDIX		56

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.6:	Estimated Cost of project	20
Table 4.1.1:	Six Reading Values for Serve Pattern	22
Table 4.1.2:	Six Reading Values for Smash Pattern	25
Table 4.1.3:	Six Reading Values for Drop Pattern	29
Table 4.1.4:	Six Reading Values for Block Pattern	320
Table 4.1.5:	Six Reading Values for Around the Head (ATH) Pattern	36
Table 4.1.6:	Six Reading Values for Back Hand Pattern	39
Table 4.1.7:	Six Reading Values for Fore Hand Pattern	43
Table 4.1.8:	Six Reading Values for Netting Pattern	46
Table 4.2:	Average Data Value for All Patterns	49

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.2.1:	The illustration for five types of stroke and it's direction	6
Figure 2.2.2:	The illustration of the sequence of forehand overhead	7
Figure 2.3.1:	The illustration for 3-step movement	8
Figure 2.3.2:	The illustration for 2-step movement	8
Figure 2.5:	The example of motion analysis of racquet grip during smash	10
Figure 2.6:	Arduino MEGA microcontroller board	11
Figure 2.7:	MPU 6050 Pin out	12
Figure 3.2.1:	FYP 1 flow chart	14
Figure 3.2.2:	FYP 2 flow chart	15
Figure 3.2.3:	FYP 1 Gant chart	16
Figure 3.2.4:	FYP 2 Gant chart	16
Figure 3.3:	Project Block Diagram	17
Figure 3.4:	Project Flow Chart	18
Figure 3.5.1:	Basic Idea for Project Prototype	19
Figure 3.5.2:	Racquet with IMU sensor	19
Figure 3.5.3:	The Direction of Axes on The Racquet	20

Figure 4.1.1:	Animation for Serve Pattern	25
Figure 4.1.2:	Animation for Smash Pattern	28
Figure 4.1.3:	Animation for Drop Pattern	32
Figure 4.1.4:	Animation for Block Pattern	35
Figure 4.1.5:	Animation for Around the Head Pattern	39
Figure 4.1.6:	Animation for Backhand Pattern	42
Figure 4.1.7:	Animation for Forehand Pattern	45
Figure 4.1.8:	Animation for Netting Pattern	48

LIST OF GRAPHS

GRAPH	TITLE	PAGE
Graph 4.1.1.1:	Full Graph Analysis for Serve Patten	23
Graph 4.1.1.2:	Direction & Angular Motion Graph Analysis for Serve Pattern	n 24
Graph 4.1.1.3:	Acceleration Graph Analysis for Serve Pattern	24
Graph 4.1.2.1:	Full Graph Analysis for Smash Patten	27
Graph 4.1.2.2:	Direction & Angular Motion Graph Analysis for Smash Patter	rn 27
Graph 4.1.2.3:	Acceleration Graph Analysis for Smash Pattern	28
Graph 4.1.3.1:	Full Graph Analysis for Drop Patten	30
Graph 4.1.3.2:	Direction & Angular Motion Graph Analysis for Drop Pattern	31
Graph 4.1.3.3:	Acceleration Graph Analysis for Drop Pattern	31
Graph 4.1.4.1:	Full Graph Analysis for Block Patten	34
Graph 4.1.4.2:	Direction & Angular Motion Graph Analysis for Block Pattern	n 34
Graph 4.1.4.3:	Acceleration Graph Analysis for Block Pattern	35
Graph 4.1.5.1:	Full Graph Analysis for ATH Patten	37
Graph 4.1.5.2:	Direction & Angular Motion Graph Analysis for ATH Pattern	38
Graph 4.1.5.3:	Acceleration Graph Analysis for ATH Pattern	38
Graph 4.1.6.1:	Full Graph Analysis for Back Hand Patten	40

Graph 4.1.6.2:	Direction & Angular Motion Graph Analysis for Back Hand Pattern	41
Graph 4.1.6.3:	Acceleration Graph Analysis for Back Hand Pattern	41
Graph 4.1.7.1:	Full Graph Analysis for Fore Hand Patten	44
Graph 4.1.7.2:	Direction & Angular Motion Graph Analysis for Fore Hand Pattern	44
Graph 4.1.7.3:	Acceleration Graph Analysis for Fore Hand Pattern	45
Graph 4.1.8.1:	Full Graph Analysis for Netting Patten	47
Graph 4.1.8.2:	Direction & Angular Motion Graph Analysis for Netting Pattern	47
Graph 4.1.8.3:	Acceleration Graph Analysis for Netting Pattern	48
Graph 4.3.1.1:	Acceleration Analysis Graph for Pattern Comparison	50
Graph 4.3.1.2:	Gyroscope Analysis Graph for Pattern Comparison	50

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Arduino MEGA Data Sheet	56
Appendix 2	MPU-6050 Data Sheet	57
Appendix 3	MPU-6050 Data Sheet (Gyroscope & Accelerometer)	58
Appendix 4	Gyroscope Specification	59
Appendix 5	Accelerometer Specification	60

LIST OF SYMBOLS

• - D

g Gravity = 9.81 m/s

I Moment of inertia

s Second

m Mass

N Rotational velocity

P Pressure

Q Volumetric flow-rate

r Radius

T Torque

Re Reynold number

V - Velocity

w - Angular velocity

x Displacement

z - Height

q - Angle

LIST OF ABBREVIATIONS

IMU Inertial Measurement Unit

PLX DAQ Parallax Data Acquisition

DOF Degree of Freedom

OTH Over The Head

FYP Final Year Project

CHAPTER 1

INTRODUCTION

1.1 Background

The idea to create Analysis System for Badminton Player Movement is from the National Sports Institute of Malaysia. Badminton is a popular sports game which played using the racquet to hit a shuttlecock across the net. Badminton was developed in British India and Badminton actually known as a game called battledore and shuttlecock in Greece and Egypt and it was played by two players at a time which will be played by hitting the shuttlecock back and forth using tiny racquet. Nowadays, Badminton is one of the most popular racquet sports in Malaysia.

There are two types of common forms of the game. The first one is called "singles" which have been played by a single player per side and the second one is called "doubles" which have two players per side. Another type of form that also played by two players is called "mixed doubles" which is played by two different genders for each side. Badminton often played in a yard or on a beach as an outdoor activity while for a formal game is often played on a rectangular indoor court.

For a professional level of badminton player, they mostly required a coach that can well be versed in the game. Basically, becoming a coach can be very challenging as any other sport. To become successful badminton coach, they have to know the basics and they have to fulfill the requirement to become the coach such as having the skills and certifications, team building, can practicing proper strength and conditioning.

1.2 Statement of the Purpose

The purpose of the research is to analyze the movement of a racquet for badminton player such as serve pattern, drop pattern, smash pattern, blocking pattern and other.

1.3 Problem Statement

Nowadays, Badminton is one of the popular sports game in Malaysia and many players have a dream to become a professional badminton player. To achieve the dream, the requirement for a professional coach is also very demanding among the players. It will be difficult for a coach to train many candidates under them if there are no tools that can help them to improve the skills for the player. To improve the skills, they need a data analysis of each player so that they can manage to train all the players.

Most badminton player usually knows their own pattern of movement while playing the badminton. But the problem is how can they prove what kind of pattern they comfortable with and what kind of pattern they rarely used. Different kind of pattern actually can help badminton players to improve their variation used for the pattern so that they will know what kind of pattern they can use while facing their opponent. The characteristic of the badminton movement pattern is very useful to train a badminton player but the pattern usually can only know by the coach through observation or watching the video of players practice or watching them play on a training session.

Based on the problem statements, this project is created to help badminton coach and badminton players itself to monitor the characteristic of player movement so that it can be useful to be used while training.

1.4 Objectives

The objectives of this research are:

- To describe the characteristic of badminton player movement.
 This analysis can describe what kind of pattern or stroked used by monitoring the graph that display on the screen.
- ii. To design a system that can assist badminton coach analyze game pattern of their trainees.

This analysis system can help badminton coach to study the pattern of badminton player not only by observing the player but they can also save the data analysis about the player movement so that it can be used as a reference for other player.

iii. To build a system that help badminton player know their own strength while playing the game.

This analysis system can help player know what pattern they usually used while there are playing. They can know what is the different of their own pattern when they played with different opponent.

1.5 Scopes of The Project

Scope of the project is the criteria that needs to be achieved and the work must be done to deliver the project. In other words, a list of specific project goals, features, and function need to be determined before starting a project.

The scope of this project is to design analysis system for badminton player movement using Arduino MEGA as a controller. This system is used for one badminton player only. This analysis system is suitable to be use at badminton court area.

This project focus on the pattern of badminton player movement and use as analysis system. Arduino MEGA is use as a controller because it is one of the microcontroller based embedded system that can perform task such as reading data from IMU sensor which is used as the main component on this project.