

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT AND EXPERIMENTAL STUDY OF SMART DIAL GAUGE TO PERFORM DATA LOGGING AND ANALYSIS FOR SURFACE ROUGHNESS CHECK

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours.

by

KIRAN KUMAR A/L MUNIANDY B071511058 941111085989

FACULTY OF ELECTRICAL AND ELECTRONICS ENGINEERING TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT AND EXPERIMENTAL STUDY OF SMART DIAL GAUGE TO PERFORM DATA LOGGING AND ANALYSIS FOR SURFACE ROUGHNESS CHECK

Sesi Pengajian: 2019

Saya **KIRAN KUMAR A/L MUNIANDY** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

_		Mengandungi	makluma	t yang	berd	arjah	keselamata	n atau
	SULIT*	kepentingan	Malaysia	sebagain	nana	yang	termaktub	dalam
		AKTA RAHS	IA RASMI	1972.				
\mathbf{X}		Mengandungi	maklumat	TERHA	AD ya	ng tel	ah ditentuka	an oleh
	IEKHAD*	organisasi/bad	an di mana	penyelic	dikan o	dijalan	ıkan.	
	TIDAK							
	TERHAD							
Yang benar,		Di	Disahkan oleh penyelia:					
KIRA	N KUMAR A/	L MUNIANDY	W	AN NOF	RHISY	YAM E	BIN RASHI	D
Alamat Tetap:			Co	Cop Rasmi Penyelia				
NO, 49 JALAN 8,								
TAMAN DESA JAYA 2,								
34600 KAMUNTING, PERAK.								

Tarikh:

Tarikh:

DECLARATION

I hereby, declared this report entitled DEVELOPMENT AND EXPERIMENTAL STUDY OF SMART DIAL GAUGE TO PERFORM DATA LOGGING AND ANALYSIS FOR SURFACE ROUGHNESS CHECK is the results of my own research except as cited in references.

> Signature: Author : KIRAN KUMAR A/L MUNIANDY Date:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronics Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	WAN NORHISYAM BIN RASHID

Signature:

Co-supervisor: MAZRAN BIN AHMAD

V

ABSTRACT

Dial Gauge is a measuring instrument which will be used widely in industry to measure the small distances between two surfaces or small amount of component travel. This device is widely used in manufacturing industry at present. Currently, in most industry the measuring and recoding process using the dial gauge is done manually. Observing and recording is the manual method used. When the method introduced from this project is used, the time taken for the measuring and recoding process can be reduced. Semi-automatic reading recording is required to shorten the time taken and improve the productivity of the measurement. This project will make the reading and recording process using the dial gauge easier. It presents a simple wireless design of dial gauge that can transfer the reading that had been measured wirelessly through Bluetooth to be recorded in Microsoft Excel Software using data logging principle. The analysis graph also can be made using the recorded reading in the Microsoft Excel Software. Electronic dial gauge is used in this project for easier data detection. Finally, this developed measuring device can record the data in much lower time. It is also having a good application prospect, especially for industrial environment which require shorter time and lower cost.

ABSTRAK

Dial Gauge adalah alat ukur yang akan digunakan secara meluas untuk mengukur perubahan jarak yang sangat kecil antara dua permukaan. Pada masa kini, alat ini digunakan secara meluas dalam industri perkilangan. Proses mengukur dan mencatat menggunakan "Dial Gauge" yang sedang digunkan pada masa kini dilakukan secara manual. Kaedah manual yang sedang digunakan ialah Mengukur dan mencatat. Masa dan juga bilngan perkerja yang sedia ada dapat dikurangkan dengan pengunaan kaedah "data logging". Proses Merekod separa automatik diperlukan untuk meningkatkan kecekapan dan mengurangkan masa yang diambil untuk pengukuran. Projek ini akan menjadikan proses bacaan dan catatan menggunakan "Dial Gauge" lebih mudah.. Projek ini membentangkan tentang reka bentuk "Dial Gauge" tanpa wayar dan memudahkan pindaan bacaan yang telah diukur tanpa wayar untuk direkodkan dalam Software "Microsoft Excel" melalui pengunaan prinsip "data logging". Analisis Graf juga boleh dibuat menggunakan bacaan yang diambil dengan mengunakan "Software Microsoft Excel". Akhirnya, projek ini mempunyai prospek pengapilikasian yang baik, terutamanya dalam sektor industri yang memerlukan masa yang lebih singkat dan kos yang lebih rendah.

DEDICATION

To My Beloved Parents Mr Muniandy Singaram & Manoranjitham My Supportive Supervisor Mr Wan Norhisyam Bin Rashid and Helpful Co- Supervisor Mr Mazran Bin Ahmad My Friends, Lecturers and University Teknikal Malaysia Melaka UTeM

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my beloved parents who gave me the strength and support to complete my final year project. I have tried my level best and gave my full commitment to do this project by myself without giving up. I would like to express my deepest gratitude to my final year project supervisor Mr Wan Norhisyam Bin Rashid and My Co-Supervisor Mr Mazran bin Ahmad for guiding and giving me all the knowledge, advice, ideas and motivation to carry out this project. I also would like to take this opportunity to thank Universiti Teknikal Malaysia Melaka (UTeM) for giving me the opportunity to carry out this project and allowing me to use the facility available to carry out my project and experiment.

Finally, my deepest thanks to my siblings, brother in law, lecturers, my best friends and everyone who contributed their time, energy, cooperation, constructive suggestion and supported me either directly or indirectly in completion of this report and project from the beginning till the end of this project.

TABLE OF CONTENTS

		Ì	PAGE
TABL	LE OF CONT	ENTS	X
LIST	OF TABLES		xiv
LIST	OF FIGURES	5	XV
LIST	OF SYMBOI	LS	xviii
LIST	OF APPEND	ICES	xxi
CHAI	PTER 1	INTRODUCTION	1
1.1	Introduction	1	1
1.2	Problem Sta	atement	3
1.3	Objectives		4
1.4	Scope		4
СНАІ	PTFR 2	LITERATURE REVIEW	5
			5
2.1	Introductior	1	5
2.2	Wireless Ne	etwork	5
2.3	Bluetooth		6
	2.3.1	Concept of Data Transfer Via Bluetooth in Pen Drive	6
	2.3.2	Design and Implementation of Bluetooth Energy Meter	8
	2.3.3	MCU-Controlling Based Bluetooth Data Transferring System	n 9

	2.3.4	Platform for The Management of Hydraulic Chambers Based On	
		Mobile Devices and Bluetooth Low-Energy Motes	10
2.4	ZigBee		12
	2.4.1	Design and Implementation of a ZigBee-Based Wireless	
		Automatic Meter Reading System	13
	2.4.2	ZigBee and Bluetooth Network Sensory Data Acquisition	15
2.5	Measuremen	nt	16
	2.5.1	Computer Vision Applied Automatic Calibration of Measuring	
		Instruments	17
2.6	Dial Gauge		18
	2.6.1	Dial Indicators Checking up by Laser Interferometry	19
	2.6.2	Image Based Dial Gauge Reading	19
	2.6.3	Method for Upgrading a Dial Indicator to Provide Remote	
		Indication Capability.	21
	2.6.4	Digital Display Dial Gauge	22
2.7	Data Loggin	g	23
	2.7.1	Implementation of a Remote Data Logging System	23
	2.7.2	Location Based Vehicle Data Logging and Diagnostic System and	d
		Method	25
	2.7.3	Temporal Synchronisation of Data Logging in Racing Gameplay	26
	2.7.4	Speech Processor Data Logging Helps in Predicting Early	
		Linguistic Outcomes in Implanted Children	27

CHAI	PTER 3	METHODOLOGY	29
3.1	Introduction		29
3.2	Process Flow	V	29
	3.2.1	Problem Statement	33
	3.2.2	Literature Review	35
	3.2.3	Project Requirement	35
	3.2.4	Benchmarking Process	36
	3.2.5	Materials and Equipment Selection	37
3.3	Hardware D	evelopment	42
3.4	Software Al	gorithm Development	44
	3.4.1	Arduino Signal Processing	45
	3.4.2	Visual Basic. NET Development	47
3.5	Optimization	1	52
3.6	Integration		53
3.7	Conclusion		53
CHAI	PTER 4	RESULT AND DISCUSSION	55
4.1	Introduction		55
4.2	Collection o	f Dataset for Project Implementation.	55
4.3	Project Worl	kflow	60
	4.3.1	Dial Gauge	61

	4.3.2	Arduino	64
	4.3.3	Visual Basic	65
4.4	Result Analy	rsis	67
СНАР	TER 5	CONCLUSION AND RECOMMEDATION	72
5.1	Conclusion		72
5.2	Recommenda	ation	73

- **REFERENCES** 75
- APPENDIX 78

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1:	Project Development Flow Chart	31
Table 3.2:	Project Requirement	36
Table 3.3:	Flow Chart of Project Execution	45
Table 4.1:	Time Taken for Measuring and Recording Process of 5 Conte Part of Fan Cowl Lower Contour & Trim Check	our 67
Table 4.2:	Flow Chart for Measuring and Recording Process using Man Method	ual 70
Table 4.3:	Flow Chart for Measuring and Recording Process using Data Logging Method	1 71
Table 4.4:	Comparison between Manual Method and Data Logging Met	thod 68
Table 1:	Gantt Chart for PSM 1	79
Table 2:	Gantt Chart for PSM 2	80

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1:	Bluetooth pen drive	7
Figure 2.2:	Bluetooth Energy Meter	9
Figure 2.3:	Management of Hydraulic Chambers using Mobile	12
Figure 2.4:	Comparisons of ZigBee Bluetooth and ZigBee	14
Figure 2.5:	Wireless Automatic Meter Reading using ZigBee	15
Figure 2.6:	Smart Phone as Data Logger	16
Figure 2.7:	Calibrations	18
Figure 2.8:	Image Based Dial Gauge Reading	20
Figure 2.9:	Image Based Dial Gauge Reading with Remote Display	21
Figure 2.10:	Digital Dial Gauge Side View	22
Figure 2.11:	Digital Dial Gauge Top View	22
Figure 2.12:	Remote Data Logging System	24
Figure 2.13:	Vehicle Data Logging and Diagnostic System	26
Figure 3.1:	Block Diagram of Project Development Process	32
Figure 3.2:	Dial Gauge type 1 used in CTRM industry	33
Figure 3.3:	Dial Gauge type 2 used in CTRM industry	34
Figure 3.4:	Company Data Sheet	34
Figure 3.5:	Dial Gauge	38

Figure 3.6:	Arduino Nano	39
Figure 3.7:	Bluetooth Module HC-05	40
Figure 3.8:	Visual Basic Software	41
Figure 3.9:	Oscilloscope Reading for Pin Testing	42
Figure 3.10:	Excess Voltage to Arduino Control Circuit	43
Figure 3.11:	Connector design for 3D print	44
Figure 3.12:	Digital Dial Gauge Output Pin Signal Conversion Algorithm	46
Figure 3.13:	Continuation of Digital Dial Gauge Output Pin Signal Converse Algorithm	ion 47
Figure 3.14:	Dial Gauge Logger Application (GUI)	48
Figure 3.15:	Reference Calling and Defining	49
Figure 3.16:	Algorithm used for defining disconnect button and com port selection	49
Figure 3.17:	Algorithm for Assigning Button Function	50
Figure 3.18:	Algorithm for Microsoft Excel Data Logging	51
Figure 3.19:	Com Port Selection for Bluetooth Connection	53
Figure 4.1:	First Survey Question with Percentage Pie Chart	56
Figure 4.2:	Second Survey Question with Percentage Pie Chart	57
Figure 4.3:	Third Survey Question with Percentage Pie Chart	58
Figure 4.4:	Fourth Survey Question with Percentage Pie Chart	59
Figure 4.5:	Fifth Survey Question with Percentage Pie Chart	59
Figure 4.6:	Sixth Survey Question with Percentage Pie Chart xvi	60

Figure 4.7:	Connector Pin Label of SPC output	62
Figure 4.8:	Dial Gauge Circuit with SPC output	63
Figure 4.9:	Connector produced from 3D print	64
Figure 4.10:	Arduino Serial Monitor Display of SPC output reading	65
Figure 4.11:	Software for Data logging	66
Figure 1:	Excel Spread Sheet for Recording Data MeasuredError! Bookm	ark not defined

LIST OF SYMBOLS

MHz	Mega-Hertz
GHz	Giga-Hertz
Kbps	Kilo-bits per second
%	Percentage

xviii

LIST OF ABBREVIATIONS

3D	Three Dimension
AMR	Automatic Meter Reading
APM	Automatic Polling Mechanism
ARM	Advanced RISC Machine
BLE	Bluetooth Low Energy
CCD	Charged Coupled Device
CI	Cochlear Implant
COM PORT	Communication Port
CSR	Cambridge Silicon Radio Limited
CTRM	Composites Technology Research Malaysia
EEG	Electroencephalogram
FTK	Engineering Technology Faculty
GB	Gigabyte
GPIB	General Purpose Interface Bus
GPS	Global Positioning System
GUI	Graphical User Interface
НСІ	Human Computer Interaction
IEEE	Institute of Electrical and Electronics Engineers
IP	Internet Protocol
ISM BAND	Industrial, Scientific and Medical Radio Band
JSON	JavaScript Object Notation
LAN	Local Area Network

MCU	Microcontroller Unit
PAN	Personal Area Network
PC	Personal Computer
PSM	Project Sarjana Muda
RISC	Reduced Instruction Set Computer
SNHL	Significant Sensorineural Hearing Loss
SPC	Statistical Process Control
SPI	Serial Peripheral Interface Bus
ТСР	Transmission Control Protocol
UART	Universal Asynchronous Receiver-Transmitter
USB	Universal Serial Bus
UTeM	Universiti Teknikal Malaysia Melaka
UUT	Unit Under Test
WI-FI	Wireless Fidelity
WLAN	Wireless Local Area Network
WPAN	Wireless Personal Area Network
WUA	Water User Association

LIST OF APPENDICES

APPENDIX

TITLE

1	Blog Created for Project Progress Update
2	Gantt Chart for PSM 1
3	Gantt Chart for PSM 2

CHAPTER 1

INTRODUCTION

1.1 Introduction

Currently, there are many measuring instruments been used in manufacturing industry to measure small length, angles which cannot be measured by normal measuring instrument. This small length, angles require a special instrument which are specifically designed and amplify the small length, angles to make it obvious. Although it is a very small distance or length, it should be given importance in certain industries such as Aviation industry, Metal Manufacturing Industry, Mechanical Processes and many more.

Dial Gauge is a measuring instrument which will be used widely in to measure the small distance between two surfaces or small amount of component travel. The measurement reading of the dial gauge is obtained by manual observation and recording method. When this method is used the testing efficiency and accuracy will be low. Besides that, the manual recording process also will consume a lot of time, energy and cost.

To improve the time taken for the measuring and recording process semiautomatic data logging method should be used. Thus, the Development and Experimental study of Smart Dial Gauge to perform Data Logging and Analysis for Surface Roughness Check project is introduced. Data-logging is a form where electronica devices are used to sense, measure and record physical in experimental

1

settings. By using the Data Logger, data can be collected remotely and consequently downloaded into a computer.

The aim of this project is to reduce the time taken, cost and number of labors used for the measuring and recording process using dial gauge The time taken, cost and number of labor that had been reduced in this measurement process can be directed or used in other work which can increase the company production and profit.

The data logging that is performed automatically will reduce human error. Besides that, an analysis that is performed with the data of the measured reading can be used as record for emergency situation or for development and improvement purposes. Electronic dial gauge is used this project because digital reading can be easily transferred to the computer and this dial gauge is more accurate than the analogue dial gauge.

To achieve this goal on time, there are several tasks were set that are:

- a) Study on the electronic dial gauge working principle and data extraction process
- b) Assemble Bluetooth device to the existing dial gauge
- c) Transfer data from the dial gauge to computer using Bluetooth module
- d) Perform Data Logging Processes

2

1.2 Problem Statement

Currently, the measuring and recoding process using dial gauge in aviation industry consume a lot of time and man power. The aviation industry that were taken for the reference is CTRM industry.

CTRM industry quality check department looking for minimizing the time taken for the measuring process. With the increasing of time taken for recording process measuring process, the delivery date of the product to the customer also increases.

The time taken for recoding can be overcome by using extra labor. However, if extra labor is used to solve this issue extra cost need to be spend. Thus, a device that can solve all the issue above need to be designed. The measuring device can also help in providing analysis for the measurement performed so that it can be used for the future development.

Besides that, data that had been measured also needed to be kept without loss by the industry because it will be needed for future documentation and as a prove of delivery to the customer as well as for the company reference. Hard copy documentation alone is another problem faced by the CTRM industry for keeping the record.

3