

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN OF SURGICAL LIGHTING SYSTEM USING IMAGE PROCESSING TECHNIQUE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours

by

TAN HAO YAN B071510278 950821-01-7547

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN OF SURGICAL LIGHTING SYSTEM USING IMAGE PROCESSING TECHNIQUE

Sesi Pengajian: 2018/2019 SEMESTER 1

Saya **TAN HAO YAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

	SULIT*	Mengandungi i Malaysia sebag	•				•	_
	TERHAD*	Mengandungi organisasi/bada	maklumat an di mana p			telah kan.	ditentukan	oleh
X	TIDAK TERHAD							
Yang b	enar,		Di	sahkan oleh	n penye	lia:		
			••••					
TAN H	AO YAN		Pr	. SALEHA B	INTI MO	DHAMAI	D SALEH	
128, JA	t Tetap: ALAN JENANG, BATU PAHAT, R		Co	p Rasmi Pe	nyelia			
Tarikh	: 30/11/2018		Та	rikh:				
*Jika La	poran PSM i	ni SULIT atau	TERHAD,	sila lam	npirkaı	n sura	t daripada	pihak

laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh

DECLARATION

I hereby, declared this report entitled "Design of Surgical Lighting System using Image Processing Technique" is the results of my own research except as cited in references

Signature :

Author's Name : TAN HAO YAN

Date : 26th December 2018

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours. The member of the supervisory is as follow:

.....

(PN SALEHA BINTI MOHAMAD SALEH)

ABSTRAK

Sistem pencahayaan pembedahan direka dengan tujuan untuk meningkatkan tapak dan process pembedahan, mengurangkan kos elektrik, dan meminumkan pengalih perhatian pakar bedah dari tapak pembedahan. Projek ini adalah kombinasi rekaan antara elektroknik, perisian dan mekanikal. Bagi bahagian elektronik, Arduino Mega dan Raspberry Pi telah digunakan dalam projeck ini. Raspberry Pi digunakan untuk pemprosesan imej, manakala Arduino adalah untuk mengawal motor stepper. Raspberry Pi akan menghantar isyarat kepada Arduino apabila ia menangkap objek yang berwarna biru dalam bingkai. Ketika Arduino menerima isyarat daripada Raspberry Pi, Arduino akan menghantar signal kepada pemandu motor L298N untuk memandu motor stepper. Motor stepper digunakan untuk mengerakkan lampu dari satu kedudukan ke posisi lain. Untuk bahagian perisian, program yang sesuai akan dimuat naik ke Arduino dan Raspberry Pi 3. Selepas itu, perkakasan dan perisian akan digabungkan bersama-sama. Akhirnya ialah rekaan mekanikal. Mekanisme H-bot telah digunakan dalam sistem percahayaan pembedahan.

ABSTRACT

The surgical lighting system is designed with the purposes to enhance the surgical site and process, reduce the cost of electricity, and minimize the distraction of a surgeon from the surgery site. This system is using an image processing technique. This project is a combination of electronic, software and mechanical design. For the electronic part, an Arduino Mega board and a Raspberry Pi board are used in this project. Raspberry Pi is used to do the image processing, while the Arduino is used for controlling the stepper motors. The Raspberry Pi will send out signals to the Arduino when it captured a blue coloured object in the frame. When Arduino received the signal from the Raspberry Pi, it will transmit the signal to the L298N motor driver in order to drive the stepper motor. The stepper motors are used to move the light and camera from one position to another position. For the software design, there are some suitable programs or coding will upload to Arduino Mega and Raspberry Pi 3. After that, combined the hardware and software together. At the end is mechanical design. H-bot mechanism is applied in the surgical lighting system. It is expected to move the light from one position to another position with the speed of 0.2083cm/s.

DEDICATION

To my beloved parents, I acknowledge my sincere indebtedness and gratitude to them for their love, dream and sacrifice throughout my life. Their sacrifice had inspired me from the day I learned how to read and write until what I have become now. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to achieve my dreams.

ACKNOWLEDGEMENT

First of all, thanks to God for giving me the strength, health, knowledge and patience to successfully complete this project report in the given time even though there are some difficulties faced during completing this project report but I had overcome all of those difficulties. I would like to express my special thanks to my supervisor, Madam Saleha Binti Mohamad Saleh who gave me the golden opportunity, encouragement, guidance, and advice to do this excellent project on the topic of Design of Surgical Lighting System using Image Processing Technique. Besides that, I really appreciate my supervisor Madam Saleha Binti Mohamad Saleh which helps me in doing a lot of research and I came to know about many new things I am really thankful to him. This project report might be impossible to complete without all of her help. Last but not least, thank you to all my friends that give me support and advises in helping me finishing this Finale Year Project report. Thank you very much.

TABLE OF CONTENTS

		PAGE
ABS	TRAK	i
ABS	TRACT	ii
DED	DICATION	iii
ACK	NOWLEDGEMENT	iv
TAB	SLE OF CONTENTS	V
LIST	OF TABLES	viii
LIST	OF FIGURES	X
LIST	OF ABBREVIATIONS	xiv
CHA	APTER 1 INTRODUCTION	1
1.0	Introduction	1
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objective	2
1.4	Scope	2
CHA	APTER 2 LITERATURE REVIEW	5
2.0	Introduction	5
2.1	Theory	5
	2.1.1Surgical Light	5
	2.1.2Image Processing	6
	2.1.3Types of Image Processing	7
	2.1.4Image Processing Techniques	9
2.2	Computer System	19
	2.2.1Hardware	19
	2.2.2Software	20
2.3	Types of Image in OpenCV	20
	2.3.1Comparison	23
2.4	Review of Previous Researches	23
	2.4.1Image Analysis	24

	2.4.2Met	hods of Control Lighting System	27
	2.4.3Con	nparison of Previous Researches	29
2.5	Conclusio	n	31
СНА	PTER 3	METHODOLOGY	32
3.0	Introduction	on	32
3.1	Flowchart		32
3.2	Milestone	1	34
3.3	Milestone	2	36
	3.3.1Stuc	dy on Arduino Mega 2560 Board	36
	3.3.2Stud	dy on Raspberry Pi 3 Model B	37
	3.3.3Stud	dy on L298N Motor Driver	39
	3.3.4Stuc	ly on Stepper Motor	39
	3.3.5Stuc	ly on Light Sensor Module	40
	3.3.6Stuc	dy on Logitech Webcam C210	41
3.4	Milestone	3	42
	3.4.1Desi	ign the Surgical Lighting System	42
	3.4.2Cod	ing the Program for the Surgical Lighting System	43
	3.4.3Test	ting the Colour Detection Program	44
	3.4.4Test	ting the Communication between Arduino and Raspberry Pi	44
	3.4.5Ana	llysis the System in Terms of Light Intensity	44
3.5	Conclusio	n	45
СНА	PTER 4	RESULT AND DISCUSSION	46
4.0	Introduction	on	46
4.1	Mechanica	al Design	46
4.2	Software l	Design	50
	4.2.1Cod	ling in Raspberry Pi	50
	4.2.2Cod	ing in Arduino Board	54
4.3	Operation	of the Whole System	57
4.4	Result and	d Data Analysis	61
	4.4.1Colo	our Detection by using Two Difference Resolution of Webcam	61
	4.4.2Tim	e taken for the light moving between certain distance	65
	4.4.3Ligh	nt Intensity	67
4.5	Discussion	n	74
4.6	Conclusio	n	77

CHAPT	ER 5	CONCLUSION AND RECOMMENDATION	78
5.0 In	ntroduction		78
5.1 C	Conclusion		
5.2 R	tecommenda	ition	79
REFERI	ENCES		80
APPENI	DIX		83
Appendix	x A:	Gantt chart	83
Appendix	x B:	Coding for Colour Detection by using Raspberry Pi	84
Appendix	x C:	Coding for Controlling Stepper Motor by using Arduino	87

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Comparison between Analog and Digital Image Processing Technique	ie 9
Table 2.2:	Comparison between Binary, Grayscale and Coloured Image	23
Table 2.3:	Output Image with Different Threshold Value [11]	27
Table 2.4:	Comparison of Previous Research	29
Table 4.1:	Result of Colour Detection with C210 Webcam	62
Table 4.2:	Result of Colour Detection with C270 Webcam	62
Table 4.3:	Number of Steps for Stepper Motors = 1	65
Table 4.4:	Number of Steps for Stepper Motors = 10	65
Table 4.5:	Number of Steps for Stepper Motors = 20	66
Table 4.6:	Number of Steps for Stepper Motors = 50	66
Table 4.7:	Number of Steps for Stepper Motors = 60	66
Table 4.8:	Light Position at Location 1	69
Table 4.9:	Light Position at Location 2	69
Table 4.10): Light Position at Location 3	70
Table 4.11	: Light Position at Location 4	70
Table 4.12	2: Light Position at Location 5	70
Table 4.13	3: Light Position at Location 6	71
Table 4.14	4: Light Position at Location 7	71

Table 4.15: Light Position at Location 8	71
Table 4.16: Light Position at Location 9	72
Table 4.17: Light Intensity Value when the Light is on the Position	72

LIST OF FIGURES

FIGURE	IIILE	PAGE
Figure 1.1:	Surgical Room	2
Figure 1.2: LA P	Performance in Different Phase during Surgery [2]	3
Figure 2.1: Ceilin	ng-Mounted Surgical Light	ϵ
Figure 2.2: Type	of Image Processing	7
Figure 2.3: Exam	nple of Analog and Digital Image	8
Figure 2.4: The M	Methods of Image Processing	10
Figure 2.5: Exam	nple of Edge Detection Image	11
Figure 2.6: Exam	nple of Colour Detection Process for Red Colour	12
Figure 2.7: Exam	nple of Image after Image Enhancement Process	12
Figure 2.8: Exam	nple of Contrast Stretching Image	13
Figure 2.9: Exam	nple of Noise Filtering	14
Figure 2.10: Exa	mple of Histogram Modification Image	14
Figure 2.11: Exa	mple of Image Segmentation	15
Figure 2.12: Exa	mple of Colour-Based Segmentation	16
Figure 2.13: Exa	mple of Threshold Image	17
Figure 2.14: Exa	mple of Watershed Segmentation Image	18
Figure 2.15: Exa	mple of a binary image	21
Figure 2.16: Exa	mple of Grayscale Image	22

Figure 2.17: Example of Coloured Image	22
Figure 2.18: Different shapes of the object and its signature [9]	24
Figure 2.19: Colour Detection [10]	25
Figure 2.20: (i) Original image (ii) Image after Edge Detection [10]	26
Figure 2.21: Original Image [11]	27
Figure 3.1: Overall Project Flowchart	33
Figure 3.2: Flowchart of Three Parts in Overall Project	34
Figure 3.3: Flowchart of the Literature Review	36
Figure 3.4: Arduino Mega 2560 Board	37
Figure 3.5: Connector Diagram of Raspberry Pi 3 Model B	38
Figure 3.6: Raspberry Pi 3 Model B	38
Figure 3.7: L298N Motor Driver	39
Figure 3.8: NEMA 17 (17HS4401) Stepper Motor	40
Figure 3.9: Light Sensor Module	40
Figure 3.10: Logitech Webcam C210	41
Figure 3.11: SolidWorks Software	42
Figure 3.12: Workplace in SolidWorks software	42
Figure 3.13: Raspbian Desktop	43
Figure 3.14: Arduino IDE Software (1.6.7)	43
Figure 3.15: Workplace in Arduino IDE	44
Figure 4.1: Mechanical Design of the Frame of Surgical Lighting System	47

Figure 4.2: Holder for Camera and Light	47
Figure 4.3: (a) Front View; (b) Side View; (c) Top View	48
Figure 4.4: The Overall Connection of the Circuit for Surgical Lighting System	49
Figure 4.5: Overview of the Main Components Wiring of the System	49
Figure 4.6: Coding for Import Necessary Packages and Initializing Camera	50
Figure 4.7: Coding for Converting the Captured Image and Creating Filter	51
Figure 4.8: Coding for Adding Filter to the Mask	51
Figure 4.9: Coding for Showing the Filtered Part	51
Figure 4.10: Coding for Bounding the Particular Colour Object	52
Figure 4.11: Coding for Calculating the Different in Distance	52
Figure 4.12: Coding for Sending Signals to Arduino after Calculate the Distance	53
Figure 4.13: Coding for Setting the GPIO pins	54
Figure 4.14: Coding to Setup the Pins of Arduino	55
Figure 4.15: Coding for Controlling the Stepper Motors	55
Figure 4.16: Coding for After Receiving Signals from Raspberry Pi	56
Figure 4.17: H-bot Mechanism in this Project	57
Figure 4.18: Frame for Capturing Image	58
Figure 4.19: Result of Colour Tracking with one hand	58
Figure 4.20: Result of Colour Tracking with Two Hands Appear in Frame	59
Figure 4.21: Light Moving in Left or Right or Forward Based on Colour Tracking	60
Figure 4.22: Different Type of Blue Coloured Objects	61

Figure 4.23: Result of Blue Colour Detection by using C210	63
Figure 4.24: Result of Blue Colour Detection by using C270	64
Figure 4.25: Graph of Time Taken against Distance	67
Figure 4.26: Light Sensor Module is Attached to the Glove	68
Figure 4.27: The Light Intensity is Taken from 9 Different Points	68
Figure 4.28: Graph of Light Intensity Value against Locations	72
Figure 4.29: Graph of Light Intensity Value against the Locations where Light is	
Focused	73
Figure 4.30: Adafruit DC Motor & Stepper Motor HAT	74
Figure 4.31: Adafruit DC Motor & Stepper Motor HAT	74
Figure 4.32: Result of Adding Threading command to the Programming	75

LIST OF ABBREVIATIONS

LA	Luminaires Action
IDE	Integrated Development Environment
CAD	Computer-Aided Design
DVT	Deep Vein Thrombosis
OpenCV	Open Source Computer Vision Library
RGB colour	Red-Green-Blue colour
I/O pins	Input / Output pins
GUI	Graphical User Interfaces
USB	Universal Serial Bus
VCI	Voice Control Interface
CSI	Camera Serial Interface

CHAPTER 1

INTRODUCTION

1.0 Introduction

The background, problem statement, objectives and scopes of this project will be discussed in this chapter. The background of the study is mainly talking about the medical procedure and surgery. However, the problem statement is conferred about what is the problem to cause this project is carried out. Besides that, the scopes of the projects are to ensure the objectives can be achieved.

1.1 Background of Study

The medical procedure is a process of an action aimed at achieving or resulting in the healthcare outcomes. There are several kinds of medical procedure, such as propaedeutic, diagnostic, therapeutic, surgical, anaesthesia, and so on. Surgical is a crucial and risky medical procedure. Some surgeries posed a higher risk due to the difficulty of the procedure, the significance of the organ and the body part which are going to operate.

Furthermore, there are several common risks that can occur during or after surgery. Firstly, blood clots usually are referred to as deep vein thrombosis (DVT) are a significant risk of surgery [1]. DVT can be caused by the inactivity during recovery or it may start at the area of surgery. Besides that, skin is a natural barrier to protect the human body, therefore infection can take place at any time when the skin is opened. Even though surgery is done in a very clean environment, but surgical incision had created a major chance of infection to invade the body. Furthermore, the injury will also be caused during

surgery. In the process of surgery, damage to parts of the body can take places. For an instance, a patient who underwent the surgical removal of the appendix may cause an accident injury on the intestine, which is attached to the appendix. This damage may be discovered during surgery and repaired immediately, or problems may arise during rehabilitation when medical personnel detects problems. Moreover, surgery can cause paralysis. It is one of the most critical complications in the surgical procedure. Although it is very uncommon, it can occur during surgery, especially for the surgical procedure which related to the brain and spine. The percentage of paralyzed after surgery may be greater. It depends on the type and position of surgery.

Since the surgical procedure is critical and it bringing large effect to the human being who is going to be operated, therefore the operation room should have a better environment which can reduce the distraction and increase the efficiency of the surgeon. Figure 1.1 shows an example of the environment in a surgical room.

Figure 1.1: Surgical Room

1.2 Problem Statement

Operation light is a medical equipment which is to assist the surgeon during surgery by providing a consistent light beam in a specific region and do not project any shadows. Surgery is a crucial and significant medical treatment procedure for a human being subjected to. Therefore, an optimum luminance must be there at any time during the surgery. Figure 1.1 shows the statistic of luminaires action (LA) performance in different phase during surgery. According to Moojiweer.R (2011), it found the rate of repositioning of the lighting system is high and it is cumbersome during surgery especially at the operation phase is the highest [2]. Even though electric motors are provided to ease the adjustment of the light, but the sometimes the position of the light is not accurate and not achieve the requirement or need of the surgeon. Therefore, the surgeon needs to operate the light by releasing one hand from the operation area. Even if the illumination system is controlled by the nurse, there will have a communication between surgeon and nurse has to be done to locate the light. This two method have disadvantages which are the surgeon may be distracted and lost his or her focus from the operation.

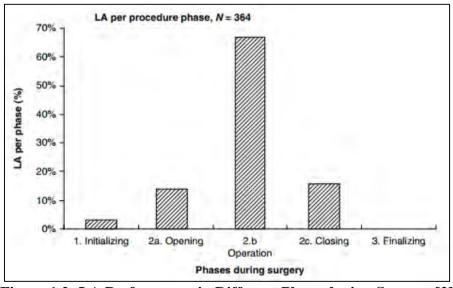


Figure 1.2: LA Performance in Different Phase during Surgery [2]

1.3 Objective

In this study, there are a few objectives that will be achieved:

- To design an automation surgical lighting system by following the hand movement of the surgeon
- To develop an algorithm for automation surgical lighting system by using image processing techniques
- iii. To test and analyse the performance of the system in term of light intensity

1.4 Scope

In order to achieve the objectives of the project, there are several important criteria that need to consider:

- i. SolidWorks will be used to design the surgical lighting system.
- OpenCV (Open Source Computer Vision Library) will be used as the library for image processing.
- iii. The colour tracking will only be focused.
- iv. The system is operated on a specific area (rail) only.
- v. The specific colour (blue colour) of the glove is detected and the colour is not present in the surrounding area of the system.
- vi. The light specification, types of surgery and environment condition of surgery is not the main focus of this project.
- vii. The light intensity of the environment is assumed constant.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

In this chapter, the theory and numerous information which related to this project title will be discussed. Furthermore, the methods used by previous researches will also be reviewed and some analysis about it will be done.

2.1 Theory

2.1.1 Surgical Light

Surgical light is a medical equipment that used during a surgical procedure. It is used to assist the surgeon by providing a high luminance to a specific area. A good surgical light should be not projected shadow to the area which is operating by the surgeon. Based on the World Health Organization (WHO), the surgical light designed to run for a period of time and do not emitting excessive heat. Surgical light can be classified by the type of the lamp, such as conventional (incandescent), and LED. It also can be classified by the installation configuration on, such as ceiling-mounted, on a floor stand, wall-mounted. Figure 2.1 shows an example of a surgical light. The type of the surgical light in the figure is LED ceiling-mounted surgical light.

Figure 2.1: Ceiling-Mounted Surgical Light

2.1.2 Image Processing

A tactic to transform an image into digital form and carry out several operations on it, so as to get an improved image or to pick up several valuable data from it is known as image processing. Nowadays, image processing has been growing in response to three major issue with the image:

- (i) Image digitization and coding to make an easy transmission, printing, and storage of images;
- (ii) Image enhancement and retrieval in order, for instance, the image of the surface of other planets captured by the different probe can more easily to understand or analyze;
- (iii) Image segmentation and description as an early period of Machine Vision.

 [3]

Generally, there is three basic step in order to have done image processing. Firstly, using suitable equipment to capture and record images such as camera or laptops, or using equipment such as an optical scanner to import the image. Next, the captured image will be analyzing and manipulating, which consist of the