

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION ON THE EFFECTIVENESS BETWEEN A RESIDENTIAL MODERN ROOF DESIGN AND TRADITIONAL 'MALAYSTYLE KAMPUNG' ROOF DESIGN IN MALAYSIA TO ACCOMMODATE RAINWATER DRAINAGE

This report is submitted in accordance with the requirement of the Universiti

Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering

Technology (Maintenance Technology) with Honours.

by

ABDUL MUIZZ BIN AZMAN B071510146 930924 - 03 - 5299

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING
TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: INVESTIGATION ON THE EFFECTIVENESS BETWEEN A RESIDENTIAL MODERN ROOF DESIGN AND TRADITIONAL 'MALAY-STYLE KAMPUNG' ROOF DESIGN IN MALAYSIA TO ACCOMMODATE RAINWATER DRAINAGE

Sesi Pengajian: 2018/2019 semester 1

Saya **ABDUL MUIZZ BIN AZMAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
П		kepentingan M	alaysia seba	gaiman	a yang term	aktub dalam A	KTA
	SULIT*	RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat T	ΓERHA	D yang te	lah ditentukan	oleh
		organisasi/bada	an di mana p	enyelic	likan dijalaı	nkan.	
\boxtimes	TIDAK						
V V	TERHAD						
Yang benar,			Disa	ıhkan o	leh penyelia	a:	
ABDU	L MUIZZ BIN AZ	ZMAN	MR.	KHAIRI	IL AMRI BIN	KAMARUZZAN	MAN
Alamat	Tetap:		Cop	Rasmi P	enyelia		
No.3, J	alan 29/1, Lorong	Lombong					
Timah 2	2, Kampung Lom	bong,					
Seksye	n 29, 40460, Shah	Alam.					
Tarikh	1:		Tari	kh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled INVESTIGATION ON THE EFFECTIVENESS
BETWEEN A RESIDENTIAL MODERN ROOF DESIGN AND TRADITIONAL
'MALAY-STYLE KAMPUNG' ROOF DESIGN IN MALAYSIA TO
ACCOMMODATE RAINWATER DRAINAGE is the results of my own research
except as cited in references.

Signature:	
Author:	ABDUL MUIZZ BIN AZMAN
Date:	

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering

Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment

of the requirements for the degree of Bachelor of Mechanical Engineering

Technology (Maintenance Technology) with Honours. The member of the

supervisory is as follow:

Signature:

Supervisor: MR. KHAIRIL AMRI BIN

KAMARUZZAMAN

ABSTRAK

Malaysia menerima hujan lebat sepanjang tahun, kira-kira 2030 mm. Taburan hujan di Malaysia tidak sekata dari sebulan ke sebulan dan dari satu tempat ke tempat yang lain kerana faktor-faktor seperti tiupan angin, litupan awan dan bentuk muka bumi. Penduduk Malaysia perlukan tempat untuk berlindung dari kesan panas matahari dan hujan yang lebat iaitu dengan adanya sebuah rumah. Oleh itu, dalam struktur sebuah rumah, bumbung memainkan peranan penting akan tetapi rumah yang dibina masa kini telah mengikut arus pemodenan hingga mengabaikan kepentingan bumbung untuk menampung pengaliran air hujan seperti pemilihan jenis bahan dan sudut bumbung rumah. Pada waktu yang sama, penambahan beban yang tinggi kepada bumbung, kelembapan kepada bahan binaam dan pertumbuhan kulat dan pereputan, sekaligus ia mengakibatkan kerosakan. Dalam kajian ini, objektifnya adalah untuk membandingkan antara beberapa jenis bumbung moden dan tradisional dan untuk menguji dari segi keberkesanan bumbung mengalirkan air hujan. Empat perbezaan jenis dan sudut bumbung akan diuji dengan struktur model. Selepas itu, keputusan akan direkodkan dan dibandingkan untuk menganalisis. Hasil yang dijangka adalah dapat mengesyorkan pemilihan sudut yang sesuai terhadap jenis bumbung.

ABSTRACT

Malaysia receive heavy rain throughout the year, around 2030 mm of rain. The distribution of rainfall in Malaysia is irregular from month to month and from one place to another due to affecting factors such as the wind blow, clouds coverage and geographical factor. It is necessary for the Malaysians to own a house in order to protect them from the heat of the sun and heavy rain. Thus, for the structure of the house, roof plays a vital role, however, newly built houses nowadays had undergone modernization to which they neglected the importance of the roof itself where it should be able to sustain the rainwater flow by choosing the roof material and angle of the roof. At the same time, the additional large burden put onto the roof, the humidity of the building materials and fungal growth and decay, would eventually cause damage. In this research. The objective is to compare between a few types of modern and traditional roofs and to observe the effectiveness of these types of roof to flow rainwater. Four different types and roof angle was tested using the model structure. Later, the result are recorded and compared for the purpose of analyzation. The expected result would show the recommendation of suitable angle for each type of the roof.

DEDICATION

I would like to express my sincere gratitude to the Universiti Teknikal Malaysia Melaka (UTeM) for letting me fulfil my dream of being a student here. I would also like to thank the Faculty of Mechanical and Manufacturing Engineering Technology for giving me the opportunity to write an honours thesis.

The thesis becomes a reality with the kind support and help of many individuals. I would to extend my sincere thanks to all of them. In the hopes this work may in some way contribute to their research of roof construction application.

ACKNOWLEDGEMENTS

Alhamdulillah, all thanks should be praise to Allah as He help and ease me so much to complete this project successfully. This research project won't be complete without people surrounding me who give a lot support and help.

Respect, love and thanks to my family members – my father, my mother who gave so much moral support throughout this process. Not forgotten for my siblings and love who encourage me a lot. Thanks so much for your understanding and support.

I would like to thanks my supervisor, Mr Khairil Amri Bin Kamaruzzaman who guide and help me throughout this whole process of completing this research project. He has helped me so much and gives his best dispite having a lot of works and responsible to deliver. Without him, I do believe that this project would not complete.

I would like to also thank all my friends who help me by discussing this project. All gratitude for all people who get involved with this project. I do wish this research would be benefical for future reference. Thank you.

TABLE OF CONTENT

		PAGE
TAE	BLE OF CONTENT	I
LIS	T OF TABLES	VI
LIS	T OF GRAPHS	VII
LIS	T OF FIGURES	VIII
LIS	T OF APPENDICES	XI
LIS	T OF SYMBOLS	XII
LIS	T OF ABBREVIATIONS	XIII
CHA	APTER 1 INTRODUCTION	1
1.1	Project Overview	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Work	4
1.5	Rational Study	5
1.6	Expected Result	5

CHA	APTER 2	LITERATURE REVIEW	6
2.1	Unders	tanding of Roof Concept	6
2.2	Archite	ecture between Modern Roof and Traditional Roof	6
	2.2.1	Traditional Roof Design	7
		2.2.1.1 Traditional Roof Design Arts to Local Climate	8
	2.2.2	Modern Roof Design	9
		2.2.2.1 Modern Roof Design Arts to Local Climate	10
2.3	Roof S	tructure	11
	2.3.1	Roof Inner Space	13
	2.3.2	Roof Trusses Installation	14
	2.3.3	Roof Purlin Installation	15
	2.3.4	Traditional Roof Truss	16
2.4	Type o	f Traditional Roof	18
	2.4.1	Terengganu	18
	2.4.2	Kedah	20
	2.4.3	Kelantan	21
	2.4.4	Malacca	23
	2.4.5	Negeri Sembilan	25
	2.4.6	Perak	27
2.5	Materia	al of Roof	29
	2.5.1	Modern Roof Type	29

3.2	Data C	allection		50
3.1	Backgr	ound		49
CHAI	PTER 3	MET	ГНОДОГОСУ	49
	2.8.3	Roof Slope	e Affects the Catchment Area	46
	2.8.2	Rainfall Ca	atchment Area	44
	2.8.1	Slope Ang	le	40
2.8	Roof Fu	undamental		39
		2.7.3.3	Malacca City's Climate Collection Data	39
		2.7.3.2	Malacca City's Temperature Collection Data	38
		2.7.3.1	Malacca City's Rainfall Collection Data	37
	2.7.3	Malacca C	ity's Climate	36
	2.7.2	Rainfall		35
	2.7.1	Temperatu	re	34
2.7	Weathe	r and Clima	ate in Malaysia	34
2.6	Effects	of Ponding	Rainwater on Roof	32
		2.5.2.2	Asbestos – Cement Slate	32
		2.5.2.1	Nypa Palm Leaves	31
	2.5.2	Traditional	l Roof Type	31
		2.5.1.2	Metal Deck	30
		2.5.1.1	Tile	29

	3.2.1	History Approach	50
	3.2.2	Observation	51
3.3	Materia	al Selection	51
3.4	Fabrica	ation / Installation Method	52
	3.4.1	Sketching	52
	3.4.2	CATIA	53
	3.4.3	Model Structure Material	54
	3.4.4	Container	55
	3.4.5	Rain Water	56
СНА	PTER 4	RESULT & DISCUSSION	57
4.1	Introd	uction	57
4.2	Specif	ic observation result	57
4.3	Descri	ption of Experiment	58
	4.3.1	Angle of Roof	58
	4.3.2	Experiment Data Collection	60
4.4	Data o	f modern roof	66
	4.4.1	Tile roof	66
	4.4.2	Metal Deck roof	70
4.5	Data o	f traditional roof	75
	4.5.1	Nypa leave roof	75

	4.5.2 Asbestos Roof	80
4.6	Flow rate data	83
СНАР	PTER 5 CONCLUSION AND RECOMMENDATION	88
5.1	Conclusion	88
5.2	Recommendations	89
REFE	RENCES	92
APPE	NDIX	95

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Amount of annual rainfall at certain location	35
2.2	The Minimum Standard of Slope Ratio of Different Material	42
	Roof Covering	
4.1	The Equivalent Grades, Degrees and Radians for Common Roof	59
	Pitch	
4.2	Collection Data of Water Flow Rate	64
4.3	Result Data of Tile Roof	67
4.4	Result Data of Metal Deck	71
4.5	Result Data of Nypa Leave Roof	76
4.6	Result Data of Asbestos Roof	81
4.7	Result Data of Flow Rate	83

LIST OF GRAPHS

GRAPH	TITLE	PAGE
2.1	Malacca City's Climate Graph	37
2.2	Malacca City's Temperature Graph	38

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Traditional House Air Ventilation	8
2.2	Example Design of Modern House	9
2.3	Roof Structure	12
2.4	Water Tank in Roof Space	13
2.5	Installation of Roof Trusses	14
2.6	Purlin Building Component	15
2.7	Traditional Structural Tightening Method	17
2.8	Traditional Structural Wood Carving Method	17
2.9	Terengganu Traditional House	18
2.10	Plan Rumah Bumbung Limas Bungkus Terengganu	19
2.11	Kedah Traditional House	20
2.12	Plan Rumah Bumbung Panjang Kedah	20
2.13	Kelantan Traditional House	21
2.14	Plan Rumah Bumbung Panjang Kelantan	22
2.15	Melaka Traditional House	23
2.16	Plan Rumah Bumbung Panjang Melaka	24
2.17	Negeri Sembilan Traditional House	25
2.18	Plan Rumah Bumbung Panjang Negeri Sembilan	26
2.19	Perak Traditional House	27
2.20	Plan Rumah Bumbung Panjang Perak	28
2.21	Tile Roofing	29

2.22	Metal Deck Roofing	30
2.23	Nypa Palm Leave Roof	31
2.24	Asbestos Roof	32
2.25	Malacca City's Climate Diagram Data	39
2.26	Geometry of Rafter Span, Run and Rise	40
2.27	Slope Ratio	41
2.28	Footprint Roof	45
2.29	Rainfall Illustration on the Roof	46
2.30	Gable Roof of a House	47
3.1	Flow Chart	49
3.2	Roof Model Sketching	52
3.3	3D Catia Design of Roof Model	53
3.4	Roof Model Structure	54
3.5	Transparent Water Container	55
3.6	Custom Rain Shower	56
4.1	Roof Pitch Illustration	58
4.2	Roof Material Installation	60
4.3	Check the Material In Correct Position	61
4.4	Setup Rain Shower	62
4.5	Locate the Container	63
4.6	Set the Stopwatch	63
4.7	Tile Roof Material	66
4.8	Graph of Average Time vs Slope Ratio Tile Roof	68
4 9	Concrete Tile Surface Design	69

4.10	Metal deck Roof Material	70
4.11	Graph of Average Time vs Slope Ratio Metal Deck Roof	72
4.12	Water Left at End of Metal Deck	74
4.13	Nypa Leave Roof Material	75
4.14	Graph of Average Time vs Slope Ratio Nypa Leave Roof	77
4.15	Illustrations of Nypa Leave Installation	78
4.16	Asbestos Roof Material	80
4.17	Graph of Average Time vs Slope Ratio Asbestos Roof	82
4.18	Graph of Flow Rate vs Degree	84

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
Appendix 1	Gantt Chart		95

LIST OF SYMBOLS

°N North

∘**E** - East

° Degree of angle

, Foot

" Inch

m - Meter

mm - Millimeter

°C Degree Celsius

Q Volumetric flow-rate

% Percent

m² Square Meter

L Liters

s - Second

V - Volume

kg Kilogram

LIST OF ABBREVIATIONS

MetMalaysia Jabatan Meteorologi Malaysia

UTeM Universiti Teknikal Malaysia Melaka

WHO World Health Organization

KALAM Pusat Kajian Alam Bina Dunia Melayu

UTM Universiti Teknologi Malaysia

IRC International Residential Code

AS/NZS Australian/New Zealand Standard

ARI Average Recurrence Interval

MIG Metal Inert Gas

BS British Standard

UPM Universiti Putra Malaysia

UV Ultraviolet

CHAPTER 1

INTRODUCTION

1.1 Project Overview

Malaysia is a country that is filled with wonderful arts in house architecture during the old times. Every house architectural was built with the compatibility accordingly Malaysia weather and it has brought tremendous comfort to the residents. Nowadays, during the era of globalization, the elements of art available in traditional houses are frantically fading due to the new trends of modern architectural house structure. In addition, Malaysia's economy where it had caused the increment of the cost of construction for the materials such as wood and steel. The issues that had been raised are, house construction in Malaysia had switched to the cost saving production to the point that they no longer prioritize the elements that were necessary for every house designation to ensure the residents' comfort.

Roof is an essential element and it needs to be emphasized on when constructing a house. It does not only beautify the design of the house but also protect the house from heat and rainfall. Thus, in this study, the comparison of the type of the roof is conducted between modern roof which is often used in house construction nowadays and traditional roof which is used by the Malay society during the old days. The comparison is to collect data on which type roofs are more effective on term of rain drainage.

However, the issues with the modern house architecture could be assured when most of the house buyers tend to renovate or reconstruct their house roof due to the flow of air and

rain impact. According to L. ida (2017), "Dr. Uniey also stressed, for every purchase of the house, the main thing that should be paid attention upon is the roof because the roof is the first element that receive the impact of the rain and heat. Roof also functions as the protector during hot weather and it is capable of draining the water of the building quickly when it is raining".

1.2 Problem Statement

Jabatan Meteorologi Malaysia (MetMalaysia) stated that Malaysia is located near the equatorial line between the 1°N - 7°N and the 98°E - 119°E vertical line, a tropical country with a humid and hot climate throughout the year. In closing the houses, the structure of the roof is an important part in the construction of the residential house architecture since it would help to ensure better flow of the rain water that would cause a few problems such as adding extra high load to the roof, impact of humidity on roofing material, fungal growth and decay and dengue.

The house structure was made of materials (wood, bamboo, galvanized and others) that carries own load so that mean the structure will be influenced by its own load to hold. So, when the extra load such as occurrence rainwater ponding weight keep increasing to the point of roof it could no longer resist the load, it would have caused damage to the structure of house roof.

Impact of humidity on roofing material causes for the defect such as the decaying of wooden materials and rusty steel materials. The humid condition would accelerate the