

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF PICO TURBINE SYSTEM ON THE DOWNSPOUTS USING RAIN WATER

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Maintenance Technology) with Honours.

by

MUHAMMAD SYAIRUL BIN AZMI

B071510280

950828-06-5023

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING TECHNOLOGY

2018

🔘 Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Development of Pico Turbine System On The Downspouts Using Rainwater

Sesi Pengajian: Semester 1 2018/2019

Saya Muhammad Syairul Bin Azmi mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4.	**Si	la tandakan (X)	
]	SULIT*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.
]	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
	3	TIDAK	
	-	TERHAD	
Y	ang	benar,	Disahkan oleh penyelia:
М	uham	mad Syairul Bin	Azmi Mr Khairil Amri Bin Kamaruzzaman
Alamat Tetap:		Tetap: Berek Polis Ban	Cop Rasmi Penyelia:
11	500,	Ayer Itam, Pulau	Pinang.
Тε	arikh:		Tarikh:
*Jika	Lapo	ran PSM ini SULIT	atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan
deng	an m	enyatakan sekali s	sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled Development of Pico Turbine System On The Downspouts Using Rainwater is the results of my own research except as cited in references.

Signature:.....Author :Muhammad Syairul Bin AzmiDate:....

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Maintenance) with Honours. The member of the supervisory is as follow:

ABSTRAK

Tenaga boleh diperbaharui merupakan tenaga yang dihasilkan daripada sumber yang tidak terhad atau sumber yang boleh dikitar semula seperti tenaga solar, angin dan air. Tujuan utama tenaga boleh diperbaharui adalah untuk mengurangkan pengeluaran karbon untuk mengelakkan pemanasan global. Ini bukan hanya untuk masa sekarang, tetapi termasuk untuk masa hadapan anak muda. Tenaga boleh diperbaharui adalah proses dimana tenaga daripada sumber dijadikan tenaga elektrik. Dalam erti kata lain, tenaga boleh diperbaharui merupakan kitaran tenaga. Walau bagaimanapun, dalam projek ini menggunakan sumber air iaitu air hujan daripada longkang bumbung untuk menghasilkan tenaga elektrik dengan menggunakan turbin air mini. Oleh itu, pendekatan ini adalah untuk membangunkan turbin air untuk menjimatkan penggunaan elektrik daripada menggunakan tenaga solar. Keamatan air hujan akan mengubah hasil akhir eksperimen ini.

Semakin tinggi kelajuan air melalui turbin, maka semakin tinggi tenaga dapat dihasilkan. Daripada data yang didapati, air pada kelajuan 0.037 L/s menghasilkan 0V. Hal ini kerana kelajuan dan tekanan air terhadap turbin tidak cukup untuk menghasilkan tenaga elektrik. Kelajuan air minimum untuk menghidupkan turbin adalah 0.055 L/s. Tambahan lagi, daripada data menunjukkan kelajuan air pada 0.335 L/s dan 0.454 L/s menghasilkan kadar tenaga yang sama. Hal ini kerana tahap maksimum turbin ini dapat hasilkan tidak melebihi 17V walaupun kelajuan air semakin tinggi. Sebagai penutup, tenaga elektrik dapat dihasilkan daripada air hujan dengan menggunkan turbin air.

C) Universiti Teknikal Malaysia Melaka

ABSTRACT

Renewable energy is a energy that generated either from a source that are unlimited or from a source that can be recycled such as from the natural sources which is solar, wind and water. The main purpose of renewable energy is to reduce the carbon emission to avoid global warming. This is not only for present time, but its include future of the children. Renewable energy is the process where to generate energy in the form of electricity from treatment of waste or natural sources. In other words, renewable energy is a energy cycle. However, this project will use water as a source of energy to generate electricity using mini turbine system which is by using rain water from the house's gutter and downspouts. Thus, this approach is to develop the hydro turbine power to save more electricity instead of using solar power only. The level of rainfall intensity will affect the result of the experiment due to the rainwater is the source of energy that had been used to transfer the mechanical energy to the turbine before its changed to electrical energy.

The higher the flowrate pass through the turbine, the higher the voltage had been produced by the turbine. From the result shows that the flowrate at 0.037 L/s currently giving 0V. This is due to the speed and pressure of the water does not enough for the turbine to generate the power. Flowrate needed to generate power was at least higher than 0.055 L/s. Furthermore, from the result shows that the highest voltage recorded was about 17.14V even though the flowrate are not the same which is 0.335 L/s and 0.454 L/s respectively. This is due to the power of the turbine had been limited to maximum of 17V even the flowrate of the water increase but the turbine only can supply absolutely at 17V maximum voltage. As conclusion, electricity can be produced or collected by using the rainwater.

DEDICATION

I would like to dedicate this to my family where my mother was a strong and gentle sould that taught me to believe in Allah, in hardwork and so much could be done with a little action. To my father, which supporting and encouraging me to believe in myself on everything that I do.

ACKNOWLEDGEMENTS

First of all, I would like to express deepest appreciation to my supervisor, Mr Khairil Amri, who would like to share his idea and opinion for this project. He continually and convincingly motivate me in regard of this research and this project. Without his guidance and help this dissertation would not have been possible.

Secondly, I would like to thank my family and friends who continuously support me with everything that they can help. Without having their support and help, this research will be tough and unsmooth.

Last but not least, I would like to thanks to the University Technical Malaysia Melaka for giving me change and trust to going on this research of pico turbine in a given time to finish my studies. Without the chance given to me, this research is probably will not be proceed.

C) Universiti Teknikal Malaysia Melaka

TABLE OF CONTENTS

TABL	E OF CONTENTS	I
LIST (OF TABLES	VI
LIST (OF FIGURES	VII
LIST (OF APPENDICES	X
LIST (OF SYMBOLS	XI
LIST (OF ABBREVIATIONS	XII
СНАР	PTER 1 INTRODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope	3
1.5	Rational of Study	4
1.6	Expected Result	4
СНАР	PTER 2 LITERATURE REVIEW	5
2.1	Renewable Energy	5
2.1	1.1 History of Renewable Energy	7
2.1	1.2 The Needs of Renewable Energy	7
2.1	1.3 Types of Renewable Energy	8

i

2.1.3.1	Bio Fuel and Biomass	8
2.1.3.2	Tidal Power	10
2.1.3.3	Solar Power	11
2.1.3.4	Wind Power	13
2.1.3.5	Geothermal	14
2.1.3.6	Hydro Power	16
2.2 Turbi	ine System	17
2.2.1 His	story of Hydro Turbine	19
2.2.2 Ty	pes of Hydro Turbine	19
2.2.2.1	Impulse Turbine	19
2.2.2.	.1.1 Pelton Turbine	19
2.2.2	.1.2 Cross Flow Turbine	20
2.2.2.	.1.3 Turgo Turbine	21
2.2.2.2	Reaction Turbine	22
2.2.2.	.2.1 Propeller Turbine	22
2.2.2.	.2.2 Francis Turbine	23
2.2.3 Siz	ze of the Turbine	24
2.2.4 Tu	rbine Blade	25
2.2.4.1	Size of Blade	25
2.2.4.2	Material of Blade	26
2.2.4.3	Angle of Blade	26
2.2.4.4	Number of Blade	27
2.3 Gene	erator	27
2.3.1 Ty	pe of Generator	27
2.3.1.1	Mechanical Generator	27
	11	

C Universiti Teknikal Malaysia Melaka

2.3.1.2	Solar Generator	29
2.3.1.3	Thermal Generator	29
2.3.1.4	Chemical Generator	31
2.4 Down	spouts Pipe	32
2.4.1 Тур	es of Downspouts	32
2.4.1.1	Plain Round Downspouts	32
2.4.1.2	Round Corrugated Downspouts	33
2.4.1.3	Plain Rectangular Downspouts	33
2.4.1.4	Rectangular Corrugated Downspouts	34
2.4.2 Size	e of Downspouts	34
2.4.3 Mat	erial of Downspouts	34
2.4.3.1	Aluminum	35
2.4.3.2	Copper	35
2.4.3.3	Plastic	35
2.5 Batter	y/Cell	36
2.5.1 The	Use of Battery	36
2.5.2 Тур	es of Battery	36
2.6 Weath	ner in Melaka	37
2.6.1 Clir	nate in Melaka	37
2.6.2 Rain	nfall in Melaka	38

iii

CHAPTER 3 METHODOLOGY	39
3.0 Flowchart	39
3.1 Project Overview	40
3.2 Data Collection	40
3.2.1 Journal and Website	40
3.2.2 Observation	41
3.3 Fabrication and Installation	42
3.3.1 Sketching	42
3.3.2 Design on Solidworks	42
3.3.3 Material Selection	45
3.3.3.1 Turbine	45
3.3.3.2 Storage Battery	47
3.3.3.3 Electrical Wire	48
3.3.3.4 Bulb	49
3.3.4 Layout of the Experiment	50
3.3.5 Procedure of Fabrication	51
3.3.5.1 Cutting the Pipe	51
3.3.5.2 Turbine Holder	52
3.3.5.3 Turbine System	54
3.3.5.4 Water Collector with Filter	55
3.3.5.5 Turbine Circuit	56

CHAPTER 4 RESULT AND DISCUSSION	57
4.1 Introduction	57
4.2 Theoretical Result	57
4.2.1 Rainwater Exerted on Roof	57
4.2.2 Water in Gutter	62
4.2.3 Mass Flowrate in Downspouts	66
4.2.4 Turbine Power	68
4.2.5 Turbine Current	71
4.2.6 Battery Charging	72
4.2.7 LED Bulb Current	72
4.3 Experimental Result	73
4.3.1 Water Flowrate Coming Out From Downspout	73
4.3.2 Flowrate against Voltage	76
4.3.3 Flowrate against Battery Charging Rate	78
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	80
5.1 Conclusion	80
5.2 Recommendations	81
REFERENCES	82
APPENDIX	87

v

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.0 : Circuit		56
Table 4.1 : Rainfall Intensity	y against Flowrate	60
Table 4.2 : Flowrate against	Velocity	64
Table 4.3 : Mass Flowrate a	gainst Power	69
Table 4.4 : Heavy Rain Buc	ket Data	74
Table 4.5 : Light Rain Buck	ket Data	75
Table 4.6 : Flowrate vs Volt	age	76
Table 4.7 : Battery Charging		78

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.0 : Map of Melal	Ka	4
Figure 2.0 : Renewable E	nergy in Peninsular Malaysia in 2015/16	6
Figure 2.1.1 : Biofuel Rer	newable Energy Cycle	8
Figure 2.1.2 : Biomass Re	enewable Energy Cycle	9
Figure 2.1.3 : Example of	Tidal Barrage	10
Figure 2.1.4 : Example of	Tidal Stream Generator	11
Figure 2.1.4 : Photovoltai	c Energy Cycle	12
Figure 2.1.5 : Concentrate	ed Solar Power (CSP) Cycle	12
Figure 2.1.6 : Wind Powe	r Cycle	13
Figure 2.1.7 : Dry Steam	Geothermal Energy	14
Figure 2.1.8 : Flash Stean	n Geothermal Energy	15
Figure 2.1.9 : Binary Cyc	le of Geothermal Energy	15
Figure 2.1.8 : Hydroelectr	ricity Cycle	16
Figure 2.2 : Differences b	etween Impulse and Reaction turbine	18
Figure 2.2.1 : Pelton Turb	vine	20
Figure 2.2.2 : Cross-Flow	Turbine	20
Figure 2.2.3 : Turgo Turb	ine	21
Figure 2.2.4 : Propeller T	urbine	22
Figure 2.2.5 : Spiral-Case	Francis	23
Figure 2.2.6 : Example of	turbine size	24
Figure 2.3.1 : Example of	mechanical generator	28
Figure 2.3.2 : Process of s	solar generator	29

Figure 2.3.3 : How thermal generator works	30
Figure 2.3.4 : Example of chemical generator	31
Figure 2.4.1 : Round Downspouts	32
Figure 2.4.2 : Corrugated Round Downspouts	33
Figure 2.4.3 : Plain Rectangular Downspouts	33
Figure 2.4.4 : Rectangular Corrugated Downspouts	34
Figure 2.6.1 : Melaka Climate in 2016	37
Figure 2.6.2 : Annual average rainfall in Melaka 2016	38
Figure 3.1 : Flow Chart	39
Figure 3.2 : Sketching of Turbine System	42
Figure 3.3.1 : Turbine Blade	43
Figure 3.3.2 : Full Turbine Assembly	43
Figure 3.3.3 : Turbine System with Arrangement	44
Figure 3.4.1 : Image of the turbine	45
Figure 3.4.2 : Storage Battery	47
Figure 3.4.3 : Example of electrical wire	48
Figure 3.4.4 : Example of bulb	49
Figure 3.4.5 : Layout for experiment	50
Figure 3.5.1 : Equipment and Tools to Cut the Pipe	51
Figure 3.5.2 : Measuring and Marking Length of Pipe	51
Figure 3.5.3 : Result of cutting the Pipe	52
Figure 3.5.4 : The marking drilled area	53
Figure 3.5.5 : Screw Nut Bolt Location	53
Figure 3.5.6 : Turbine System	54
Figure 3.5.7 : Water Collector with Filter	55
VIII	

Figure 3.5.8 : Turbine Circuit	56
Figure 4.0 : Level of Rainfall Intensity Per Hour	58
Figure 4.1 : Graph of Rainfall Intensity against Flowrate	61
Figure 4.2 : Gutter Used and Location	62
Figure 4.3 : Graph of Flowrate Against Velocity	65
Figure 4.4 : Graph of Mass Flowrate against Power	70
Figure 4.5 : Flowrate against Voltage Graph	76
Figure 4.6 : Graph of Power against Charging Rate	79

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	"Tarif" in Peninsular Malaysia	87
Appendix 2	Gantt Chart	88

LIST OF SYMBOLS

- CO₂ Carbon Oxide
- °F Farenheit
- °C Degree Celcius
- mA milliampere
- Ω Ohm
- Mpa Mega Pascal
- L Litre
- Mm Millimetres
- Inch Inches
- W Watt
- K Kilo
- V Voltage
- AH Ampere per Hour
- Ft Feet
- l Length
- P Power
- Kg kilogram
- **ρ** Density
- **g** Gravity = 9.81 m/s
- **m** Mass flow rate
- H_{net} Net head
- Hgross Gross head
- η Product of efficiencies

LIST OF ABBREVIATIONS

GHE	Green House Effect
SREP	Small Renewable Energy Power Programe
PV	Photovoltaic
CSP	Concentrated Solar Power
PVC	Polyvinyl chloride
AC	Alternating Current
DC	Direct Current
emf	Electrical Potential
LED	Light Emitting Diode

CHAPTER 1

INTRODUCTION

1.1 Project Background

Renewable energy is a energy that generated either from a source that are unlimited or from a source that can be recycled such as from the natural sources which is solar, wind. And water. However, this is not the only types of renewable energy. Nowadays, energy are important in this modern century where there is many types of technology that need an energy to operate for example an electronic devices which required electricity or a transportation which need gasoline to move.

Most of the energy comes from fossil fuel, however the fossil fuel is not an unlimited source compare to renewable energy which is limitless. Even though fossil fuels can be made by implementing dead tree or plant, according to (Chris Wooford, 2017), the author say that "It takes about 400 million years to form a planet's worth of fossil fuel but it only takes 60 years to use 80 percent of the fossil fuel". This means that the fossil fuels was totally running out, this will increase the price of the fossil fuels due to the high demand. Furthermore, the fossil fuel will cause environmental impact to the earth.

The main purpose of renewable energy is to reduce the carbon emission to avoid global warming. This is not only for present time, but its include future of the children. Global warming also known as climate change or the rise in average temperature of the earth. Overall, renewable energy is a energy cycle. However, this project will use water as a source of energy to generate electricity using mini turbine system which is by using rain water from the house's gutter and downspouts.

1.2 Problem Statement

In Peninsular Malaysia, the rate of charge for the electricity had increased. According to (Ministry of Energy Green Technology and Water (KeTTHA), (2014) shows that the charge for electricity in Peninsular Malaysia had increased include the residential area which the increases will give higher bill to the community as shown in Appendix 1. Malaysia energy supply was increased significantly over last 20 years. Based on (Suruhanjaya Tenaga (Malaysian Energy Comission), 2010), "Electricity from the residential sector had increased by 3.8 percent compared to the previous year while electricity consumption in commercial sector had increased 2.6 percent from previous year. Energy consumption in the industry sector recorded an increase of 2.9 percent. Overall, the total electricity consumption increase 3.0 percent compared to previous year.". Malaysia electricity generation is primarily using depleting fossil fuel resources.

Fossil fuel is being used to generate energy to supply in every place especially in a city. In case of the impact of the fossil fuels to the environment is that, Malaysia's electricity generation is heavily dependent on depleting fossil fuel which emits CO₂ that contributes to global warming due to green house effect (GHE). In addition, national policy and law-related Malaysia give commitment during COP 15 based on (Hon. Douglas Uggah Embas, 2011), "Prime Minister of Malaysia, Datuk Seri Najib Tun Razak annouced Malaysia will have reduction of 40% in carbon emission need to be achieved through energy efficiency, energy conservation and renewable energy".

In economy perspective, by implementing energy efficiency, energy consumption can be reduced. The benefits for the country is that the profit of the county will increase. On this project, pico hydro turbine will be used to generate electricity from rainwater. Installations below 5 kW are called pico hydro. Pico hydro is the lowest generating cost amongst off grid energy options.

According to (Ho-Yan, 2011), "Hydro power is driven by extracting the potential energy from water over a height difference. The water energy is converted to mechanical energy when passing through the turbine blade and whether to be use directly or convert it into electrical energy by means of a generator." These type of hydro power installations can provide electricity to home even in a small amount of electricity. There are many of these installations had been used around the world, especially to the nations that provide an renewable energy without the purchase of fuel.

1.3 Objectives

- To develop the mini turbine system using low cost material and rainwater.
- To apply the conversion of energy from turbine system to produce energy power from rain water.
- To charge the rechargeable battery by using the mini turbine system for future use.

1.4 Scope

This project is to develop turbine system in house located in Taman Muzaffar Height, Ayer Keroh, Melaka. Data of this project will be collect based on the rainy day which the rain water will be the source to generate the pico turbine system. This research will focus on the capability and capacity of the pico turbine system to produce electricity. The purpose is to supply energy to light up a bulb located at car porch. Energy from the pico turbine will give electricity to light up the bulb during the midnight which will give benefit to every household.

Figure 1.0 : Map of Melaka

Source : <u>https://www.bacalahmalaysia.com/2018/01/11/pembahagian-kerusi-parlimen-</u> melaka-percaturan-cacat-pembangkang/

1.5 Rational of Study

The reason to study this project is based on the today environment where the electricity are increased due to limitation of fossil fuel to generate the electricity and the climate change where the increase in temperature that caused by carbon emission due to burning the fossil fuels.

1.6 Expected Result

- The mini turbine system works efficiently in supplying electricity from the waste water.
- The light bulb will turn on after generating the power from the mini turbine system.