

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF LOW COST MULTIFUNCTIONAL MODULAR WHEELCHAIR CONTROL SYSTEM

This report is submitted in accordance with the requirement of the Universiti
Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering
Technology (Telecommunication) with Honours.

by

MOHAMMAD AZRI BIN TALIBE B071510013 920101-12-5219

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF LOW COST MULTIFUNCTIONAL MODULAR WHEELCHAIR CONTROL SYSTEM

Sesi Pengajian: 2018

Saya **Mohammad Azri Bin Talibe** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.	
☐ TERHAD* TIDAK TERHAD	Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.	
Yang benar,		Disahkan oleh penyelia:
Mohammad Azri B Alamat Tetap: TB6813, Taman jer Lorong 1, Jln Tgku 91000,Tawau, Saba	n Loong, Osman,	En. Ahmad Fauzan Bin Kadmin Cop Rasmi Penyelia
Tarikh:		Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF LOW COST MULTIFUNCTIONAL MODULAR WHEELCHAIR CONTROL SYSTEM is the results of my own research except as cited in references.

Signature:	
Author:	Mohammad Azri Bin Talibe
Date:	

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	En. Ahmad Fauzan Bin Kadmin
Signature:	
Co-supervisor:	En. Shamsul Fakhar Bin Abd Gani

ABSTRAK

Tesis ini membentangkan pembangunan sistem kawalan kerusi roda pelbagai modul kos rendah yang membantu orang kurang upaya untuk membuat kerusi roda manual menjadi kerusi roda kuasa elektrik tanpa mengganggu struktur asal kerusi roda asal. Projek ini adalah sengaja orang untuk mengatasi masalah bagi orang kurang upaya agar lebih terlibat dalam masyarakat dan memiliki kerusi roda kuasa elektrik sendiri untuk menjadikan kehidupan mereka lebih mudah. Isu ini menjadi serius kerana memberi kesan sampingan kepada pengguna kerusi roda manual seperti bahu nyeri. Projek ini melibatkan penggunaan motor DC untuk menggerakkan kerusi roda pelbagai fungsi yang akan mengawal perisian dan perkakasan Arduino. Perisian dan perkakasan bersambung antara satu sama lain yang akan dilaksanakan dalam projek ini. Gerak motor dikawal oleh kayu bedik yang telah diprogramkan dengan ATMEGA Arduino, motor, DHT 22 sensor kelembapan suhu untuk menunjukkan kelembapan dan suhu di dalam kotak kawalan, sensor ultrasonik untuk mengesan halangan dan joystick disambung dengan menggunakan kabel penyambung. Hasilnya menyimpulkan bahawa untuk membangunkan sistem kawalan kerusi roda pelbagai fungsi berbilang kos rendah dengan menggunakan motor DC bersama dengan visualisasi data IoT.

ABSTRACT

This thesis presents the development of low cost multifunctional modulor wheelchair control system that help disability people to make manual wheelchair into electrical powered wheelchair without disturb original structure of original wheelchair. This project are purposely people to overcome the problem for disability people to be more involved in the society and own electrical powered wheelchair to make their life easier. This issue become serious as it give side effect to manual wheelchair user such as pain shoulder. This project is involved the usage of DC motor to move the multifunctional wheelchair which will be controlling by Arduino software and hardware. The software and hardware connect with each other that will be implemented in this project. The motor motion is controlled by the joystick which been programmed with Arduino ATMEGA, motor ,DHT 22 temperature humidity sensor to show the humidity and temperature inside the control box, Ultrasonic sensor to detect obstacle and joystick is connected by using a connector cable. The results conclude that to develop a low cost multifunctional modular wheelchair control system using DC motor along with IoT data visualization.

DEDICATION

To my beloved parents, thanks for everything. All the sacrifice both of done cannot be repay by me, only god can. This also be dedicated to my friends and supervisor of Universiti Teknikal Malaysia Melaka who involved directly or indirectly in finishing this project report and assisting me at this final year project to complete this project.

ACKNOWLEDGEMENTS

Alhamdulillah, thank you Allah because of his blessing, I finally complete and finish my PSM 2 successfully. With great pleasure, I want to take this opportunity to express my heartfelt gratitude to all people who helped in making this major project work a grand success.

I was grateful to En. Ahmad Fauzan Bin Kadmin, lecturer of Fakulti Teknologi Kejuruteraan (FTK) UTeM for his valuable suggestions and guidance during the execution of this project and also for giving me moral support throughout the period of our study in UTeM. I believe that, without his knowledge and assistance, I will be lost into my wrong turn.

My sincere appreciation also extends to all my friends and colleagues who shared their knowledge, ideas, opinions and tips regarding my project especially to Nurul Huda Binti Junit and Nurul Afina Binti Aziz. I would also like to thank all my family members, especially my parents. Lastly, I offer my regards and blessings to all those who supported me directly and indirectly in any respect during the completion of the project.

viii

TABLE OF CONTENTS

TABI	LE OF CONTENTS	PAGE ix
LIST	OF TABLES	1
LIST	OF FIGURES	2
LIST	OF APPENDICES	6
LIST	OF SYMBOLS	7
LIST	OF ABBREVIATIONS	8
CHA]	PTER 1 INTRODUCTION	9
1.1	Project Background	9
1.2	Problem Statement	10
1.3	Objective	12
1.4	Project Methodology	12
1.5	Project Scope	13
CHA]	PTER 2 LITERATURE REVIEW	15
2.1	Importance of Wheelchair to Disable People	15
2.2	Physical Disability	16
2.3	Wheelchair design Technologies	17
2.3.1	Manual Wheelchair ix	17

2.3.2		Electrical Powered Wheelchair	20
2.3.3		Internet of Things (IoT) by ThingSpeak	22
2.4	Electric Pow	vered Wheelchair development	24
2.5	Arduino		34
2.6	DC Motor		36
СНАІ	PTER 3	METHODOLOGY	38
3.1	Introduction		38
3.2	Project Char	racteristic	38
3.2.1		Arduino IDE	45
3.2.2		DC Motor	46
3.2.3		Battery	46
3.2.4		ThingSpeak	47
3.2.5		Ultrasonic Sensor	48
3.2.6		Temperature Humidity Sensor	49
3.3	Methodolog	y Procedures	49
3.3.1		Project Flowchart	50
3.4	Test and Me	easurement	54
3.5	Expected Or	utcomes	54
3.6	Gantt Chart		55

CHA	PTER 4	RESULT AND DISCISSION	56
4.1	Introduction	n	56
4.2	Analysis o	f Software	56
4.2.1		Arduino Coding	56
4.2.2		IoT Platform	58
4.3	Analysis of	Hardware	63
4.3.1		Motor Movement and Performance	63
4.3.2		Temperature Humidity Sensor	71
4.3.3		Ultrasonic Sensor	74
4.3.4		ESP8266-01 WiFi Module	77
4.4	DISCUSSION	ON	79
СНА	PTER 5	CONCLUSION AND FUTURE NETWORK	83
5.1	Introduction	n	83
5.2	Conclusion		83
5.3	Future Wor	·ks	84
REFI	ERENCES		85
APPF	ENDIX		87

LIST OF TABLES

TABLE	TITLE	PAGE
Table 4.1: Button con	mmand for wheelchair movement	64
Table 4.2: Button con	mmand for wheelchair movement	66
Table 4.3: Result for	test data	68
Table 4.4: Result of I	Battery Consumption	70
Table 4.5: Compariso	on value taken Manual and Ultrasonic sensor	76

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1: Numbe	er of percentage mobility device use research by (Jerome, 201	0) 10
Figure 1.2: School	attend by disability status from aged 20 to 24, by (Human Re	esources
and Skills Develop	oment Canada, 2006)	11
Figure 2.1: Pushrii	m-propelled wheelchairs	19
Figure 2.2: Pushrii	m-propulsion wheelchair	20
Figure 2.3: Electric	cal powered wheelchair that was sold in market	
(Source:http://whe	elchairassistance.com/power-wheelchair/electric-wheelchair-	motor-
go-kart.php)		22
Figure 2.4: Real ti	me data example shown in ThingSpeak	24
Figure 2.5: The ba	sic idea design of powered tram city by (Geonea et al., 2015)	25
Figure 2.6: The ele	ectric-powered wheelchair by (Ayten & Dumlu, 2017)	26
Figure 2.7: The ele	ectric detachable wheelchair by (Shu-Chen Chan, 2016)	27
Figure 2.8: Manua	al wheelchair attachable with power add-on device by (Patrick	Tallino,
2013)		28
Figure 2.9: Power	add-on device by (Patrick Tallino, 2013)	29
Figure 2.10: The p	ower assists attach to manual wheelchair by (Franklin Brent I	Butts &
John David Gower	n, 2013)	30

Figure 2.11: Circuit diagram of the power assists system by (Franklin Brent Butts &	
John David Gowen, 2013)	31
Figure 2.12: Mid-wheel drive type of wheelchair by (Mehdi Mirzaie, 2016)	32
Figure 2.13: The prototype of the constructed project by (Sutradhar et al., 2017)	33
Figure 2.14: The electric power system circuit by (Sutradhar et al., 2017)	34
Figure 2.15: Arduino ports and possible connection	35
Figure 2.16: Block diagram control Wheelchair	36
Figure 3.1: Project Diagram	40
Figure 3.2: Sketch of Project Design attach to wheelchair	41
Figure 3.3: Top view of the Project Design	42
Figure 3.4: Front view of the Project Design	43
Figure 3.5: Hollow axle and x,y axis	44
Figure 3.6: DC Motor manufactured by Ling Ying Motor	46
Figure 3.7: Battery brand Kyoko 12V	47
Figure 3.8: Ultrasonic sensor	48
Figure 3.9: Temperature Humidity Sensor	49
Figure 3.10: Project Flowchart	53
Figure 4.1: Library declaration in Arduino Software	57
Figure 4.2: Declaration of Integer and Arduino pin	58
Figure 4.3: Thingspeak Channel Set-up	59
Figure 4.4: API keys in the Thingspeak	60

Figure 4.5: Command in Arduino for API keys	60
Figure 4.6: Command in Arduino for each Field	61
Figure 4.7: The 4 Field of data can be seen in Thingspeak	62
Figure 4.8: Direction DC motor follow the current direction	65
Figure 4.9: Circuit design of DC motor, motor driver, Arduino and Joystick	65
Figure 4.10: Command speed PWM in Arduino	67
Figure 4.11: Set up for the test of velocity	68
Figure 4.12: Test result of 100%, 50% PWM for Velocity (m/s) Vs. Time(s)	69
Figure 4.13: Battery Consumption (V) for 100% and 50% PWM	70
Figure 4.14: Circuit connection for DHT22	72
Figure 4.15: Command that was set in the Arduino for DHT22	73
Figure 4.16: Temperature data in Thingspeak	73
Figure 4.17: Humidity data in Thingspeak	74
Figure 4.18: Circuit connection for Buzzer and ultrasonic sensor	75
Figure 4.19: Command that was set up in the Arduino	75
Figure 4.20: Set up for test Ultrasonic sensor	76
Figure 4.21: Object distance manual Measure (cm) vs. sensor (cm)	77
Figure 4.22: Connection circuit of ESP8266-01	78
Figure 4.23: Command set up for ID name and password	78
Figure 4.24: Blue LED turn on indicates the internet connection was success	79
Figure 4.25: Front view of fabricated project 4	81

Figure 4.26: Back view of fabricated project	81
Figure 4.27: Side view of fabricated project	82

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1 Development of L	ow Cost Multifunctional Modula	ar Wheelchair Control
System Coding		87
Appendix 2 Development of L	ow Cost Multifunctional Modula	ar Wheelchair Control
System Schematic Circuit		96
Appendix 3 Gantt chart		97

6

LIST OF SYMBOLS

% - Percent

mm - Millimeter

cm - Centimeter

V - Volts

 Ω - Ohm

kg - Kilogram

s - Second

g - Gravity = 9.81 m/s

I - Moment of inertia

1 - Length

LIST OF ABBREVIATIONS

IoT Internet of Thing

DC Direct Current

Wi-Fi Wireless Fidelity

I/O Input/Output

GPS Global Positioning Satellite

LCD Liquid Crystal Display

PWM Pulse Width Modulation

Tx Transmit

Rx receive

CHAPTER 1

INTRODUCTION

This chapter gives a brief on the project background, problem statement, objective, scope, and methodology of the project. Understanding on the project can be gain from this chapter.

1.1 Project Background

Low cost multifunctional modular wheelchair control system is a project that help disability people to make manual wheelchair into electrical powered wheelchair without disturb original structure of original wheelchair. In market, electrical powered wheelchair is expensive. So, low cost multifunctional modular wheelchair control system can help disability people to use this features to help them in daily life.

This project are purposely people to overcome the problem for disability people to be more involved in the society and own electrical powered wheelchair to make their life easier. This project also can help disability people more happy to go work, study and event have a social life to the fullest.

As an overview of this project, there will be a device which is the low cost multifunctional modular wheelchair control system that can be attach to manual wheelchair. The microcontroller will control all the operation which is receive data from joystick and transmit data to the motor for the movement also LCD display to show the status of the operation such as speed of motor, DHT 22 temperature humidity sensor to show the humidity and temperature inside the control box, Ultrasonic sensor to detect

obstacle. The microcontroller also allowed device to send data information via IoT system. That can be read at the ThingSpeak for analyse the data.

1.2 Problem Statement

Electrical powered wheelchair and manual power assist for wheelchair user is low. According to research that had been done by (Jerome, 2010) at United States participant in the research only 27% user electrical powered wheelchair while only 6% of the user use manual power assist wheelchair. For the manual wheelchair is 63% of user as state in the pie chart at Figure 1.1. High amount of user for the manual wheelchair that been worried because there a side effect such as pain shoulder 86% for the person with a spinal cord injury as state by (Koesters & DiGiovine, 2015).

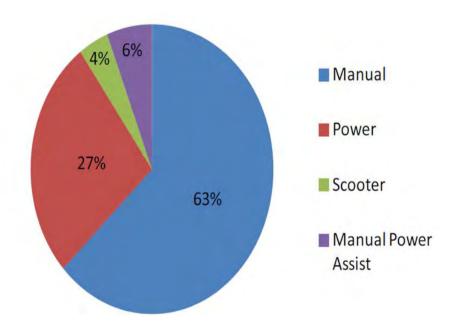


Figure 1.1: Number of percentage mobility device use research by (Jerome, 2010)

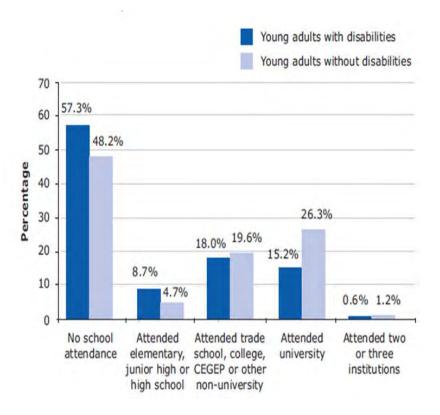


Figure 1.2: School attend by disability status from aged 20 to 24, by (Human Resources and Skills Development Canada, 2006)

As state by (Human Resources and Skills Development Canada, 2006) as shown in Figure 1.2 people that have a disability aged between 20 – 24 years are not continue their study comparing people that have not have disability. This finding was worried because disability people don't want to continue their study and stop study. Physical disability while using a wheelchair had been affect them to attend to the studies.

Hence, the invention of this project hopefully can overcome the problem by developing low cost multifunctional modular wheelchair control system that can give benefit to all disability people and make their live easier and enjoy for them feel like normal people so that there are no boundaries for what are they capable to do.

1.3 Objective

The objective of this development project are:

- To develop a low cost multifunctional modular wheelchair control system using DC motor along with IoT data visualization
- To analyze the performance of low cost multifunctional modular wheelchair control system.

1.4 Project Methodology

To make this project can be done, a right strategy and method need to make this task achievable. This technique deliberately to guarantee the task can be done in the period of time and less problem that will occur. To guarantee this project achievable then few technique must be done and considered. The step below are summarize from flowchart.

- Make a research on manual power assist from previous journal, books, pattern project and trusted internet resources.
- ii. Design and measure the project on actual manual wheelchair to get the accurate project design that can fit on manual wheelchair.
- iii. The project was install and the data can be sent using IoT that can the data visualization can be seen at ThingSpeak

- iv. The project was assemble after all the hardware and software function properly.
- v. The project design will be test software and hardware then if it was success next step can be proceed.
- vi. Report and result can be made from the data collection.

At the end of this project, all the objective that had been state can be achieved, solved all the problem that will be faced while do this project the most important this project help all the community that was need this type of project. Then, the project con perform move according to the coding that that been set on the controller when received an input from joystick, DHT 22 temperature humidity sensor to show the humidity and temperature inside the control box, Ultrasonic sensor to detect obstacle motor will move the project as an output. This low cost multifunctional modular wheelchair control system should be well known so that many new design even more low cost project can be made to help to give benefit in human civilization.

1.5 Project Scope

Manual powered assist is project that introduce the development of low cost multifunctional modular wheelchair by using DC motor and microcontroller.

This project is involved the usage of DC motor to move the multifunctional wheelchair which will be controlling by Arduino software and hardware. The software and hardware connect with each other that will be implemented in this project. The input of this project will be given by the joystick when the user move it. The joystick connection with Arduino by using a cable. Arduino will process the data that was received from the

(C) Universiti Teknikal Malaysia Melaka