
 ii

HIGH SPEED 3D PRINTING STRATEGY USING 6 DOF NON-MOBILE

ROBOT MANIPULATOR BASED ON SHORTEST DISTANCE

ALGORITHM

BEE SHENG CHONG

A report submitted in partial fulfilment of the requirements for the degree of

Bachelor of Mechatronics Engineering

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

“I hereby declare that I have read through this report entitled “HIGH SPEED 3D

PRINTING STRATEGY USING 6 DOF NON-MOBILE ROBOT MANIPULATOR

BASED ON SHORTEST DISTANCE ALGORITHM” and found that it complies the

partial fulfillment for awarding the degree of Bachelor of Electrical Engineering”

Signature : …………………..

Supervisor’s Name : ..

Date : ..

PM DR MUHAMMAD FAHMI BIN MISKON

 iii

I declare that this report entitled “HIGH SPEED 3D PRINTING STRATEGY USING

6 DOF NON-MOBILE ROBOT MANIPULATOR BASED ON SHORTEST

DISTANCE ALGORITHM” is the result of my own research except as cited in the

references. The report has not been accepted for any degree and is not concurrently in

candidature of any other degree.

Signature : ..

Name : ..

Date : ..

BEE SHENG CHONG

 iv

To my beloved mother and father

 v

ACKNOWLEDGEMENT

 Firstly, I would like to express my sincere appreciation to my FYP supervisor

PROFESOR MADYA DR. MUHAMMAD FAHMI BIN MISKON for his patience

and kindness in guiding me on this project. His passion and sense of responsibility had

help me to keep the progress of the project at a satisfactory level. Besides that, I would

also very grateful to his professional comment and critics which greatly promote my

understanding on the project.

 Meanwhile, I sincerely thank you to both of my FYP panels, DR. MOHD

SHAHRIEEL BIN MOHD ARAS and Pn NURDIANA BINTI NORDIN for the

generous enlightenment they gave to me on the shortcomings and weakness of my

works after the presentation. The suggestions they gave strengthen my report and make

it more complete.

 Lastly, I am very thankful for all the supports and helps which came from my

course mates and friends. Their attitudes of always willing to help and fast respond

resolved most of my confused moment during the work for this project. I would also

like to thank my family for their caring and tolerant to me during this tough time.

 vi

ABSTRACT

 3D printing is an increasing demanded technology nowadays and the 3D

printers sold on the mass market today are limited on its workspace. In order to solve

the problem, a strategy that combining non-mobile articulated robot and 3D printing

is introduced in this project. The main focus in this project is to study, design and

evaluate the shortest distance algorithm in order to achieve high speed 3D printing that

using 6 DOF non-mobile robot manipulator. The Dijkstra’s algorithm is referred in

this project for determine the shortest distance travelled from coordinate to coordinate.

The performance of the shortest distance algorithm is examined and analysed by using

Scilab. Meanwhile, the performance of the manipulator is simulated in V-REP and

corresponding analysis is carried out to measure the speed of the 3D printing. The

result shows that the designed algorithm able to shorten the distance travelled by

percentage ratio of 72.57%. On the other hand, time complexity of the designed

algorithm is 𝑂(𝑛$) while 3D printing analysis result indicates that the algorithm can

increase the efficiency of the 3D printing but the starting coordinate may affect the

efficiency of the 3D printing caused by different trajectory path.

 vii

ABSTRAK

Pencetakan 3D adalah teknologi yang semakin menuntut pada masa kini dan

pencetak 3D yang dijual di pasaran massa hari ini terhad pada ruang kerjanya. Untuk

menyelesaikan masalah ini, satu strategi yang menggabungkan artikulasi robot bukan

mudah alih dengan percetakan 3D diperkenalkan dalam projek ini. Tumpuan utama

dalam projek ini adalah untuk mengkaji, merekabentuk dan menilai algoritma jarak

terpendek untuk mencapai pencetakan 3D berkelajuan tinggi yang menggunakan 6

DOF robot bukan mudah alih. Algoritma Dijkstra dirujuk dalam projek ini untuk

menentukan jarak terpendek dari koordinat ke koordinat. Prestasi algoritma jarak

terpendek diperiksa dan dianalisis dengan menggunakan Scilab. Sementara itu,

prestasi manipulator disimulasikan dalam V-REP dan analisis yang sama dijalankan

untuk mengukur kelajuan percetakan 3D. Hasilnya menunjukkan bahawa algoritma

tersebut dapat memendekkan jarak perjalanan dengan nisbah peratusan sebanyak

72.57. Di samping itu, kerumitan masa algoritma yang direka adalah 𝑂(𝑛$) manakala

hasil analisis percetakan 3D menunjukkan bahawa algoritma dapat meningkatkan

kecekapan pencetakan 3D tetapi koordinat permulaan mungkin mempengaruhi

kecekapan pencetakan 3D disebabkan oleh laluan trajektori yang berbeza.

 viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

ACKNOWLEDGEMENT v

ABSTRACT vi

TABLE OF CONTENTS viii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiii

LIST OF APPENDICES xiv

 1 INTRODUCTION 1

1.1 Motivation 1

1.2 Problem statement 2

1.3 Objective 3

1.4 Scope 3

2 LITERATURE REVIEW 4

2.1 Introduction 4

2.2 Shortest path algorithm based on 4

distance comparison

2.2.1 Dijkstra’s algorithm 5

 2.2.2 Bellman-Ford’s algorithm 7

 2.2.3 Floyd-Warshall algorithm 9

2.3 Comparison of the SP algorithm 11

2.4 Time complexity of algorithm 12

2.4 3D Printing 15

 2.4.1 The process of 3D Printing 15

 2.4.2 Existing 3D Printing Robot 17

2.5 Conclusion 18

 3 METHODOLOGY 19

 3.1 Introduction 19

 ix

3.2 Project Flowchart 19

3.3 Project Methodology Flowchart 20

3.4 Theoretically description of 21

proposed idea

 3.5 Shortest path algorithm design 22

3.6 Find the joint angle by inverse 24

kinematics module

3.7 Find the velocity and acceleration 24

of the joint

 3.8 Material and equipment 25

3.8.1 Scilab and V-REP simulator 25

3.8.2 IRB 4600-40-255 industrial 25

 robot

 3.9 Data collect and method of analysis 29

 3.9.1 Total distance analysis 29

 3.9.2 Time complexity analysis 30

 3.9.3 3D printing time analysis 31

4 RESULT 33

 4.1 Introduction 33

 4.2 Total distance analysis result 33

 4.3 Time complexity analysis result 36

 4.4 3D printing time analysis result 39

5 CONCLUSION AND FUTURE WORK 46

 5.1 Conclusion 46

 5.2 Future work 47

 REFERENCES 48

 APPENDICES 50

 x

LIST OF TABLES

TABLE TITLE PAGE

2.1 Result of Dijkstra’s algorithm on solving 6

Figure 2.1 example.

2.2 Result of Figure 2.2 solved by Bellman-Ford’s 8

algorithm.

2.3 Result of the Step 1 of Floyd-Warshall 10

algorithm.

2.4 The final result of Figure 2.4 example by using 11

Floyd-Warshall algorithm.

2.5 The comparison of the shortest path algorithm. 11

2.6 Time complexity function with respect to 14

problem size.

2.7 The general information of existing 3D 16

Printing Robot.

3.1 The working range and axis max speed of 28

IRB 4600-40-255 industrial robot with respect

to its joints.

4.1 Result of total distance travelled analysis. 35

4.2 Comparison of total distance travelled among 35

two models in different shapes.

 4.3 Comparison of trajectory path between two 42

models in different shapes.

 xi

LIST OF FIGURES

FIGURE TITLE PAGE

 2.1 Five vertices shortest path problem example. 6

 2.2 The shortest path of the Figure 2.1 example. 7

2.3 Six vertices graph with negative edge weights 8

example.

2.4 Example of four vertices graph with negative 9

edge weights.

2.5 The comparison of the performance of insertion 13

sort and quick sort.

 2.6 The 3D printing process flowchart. 15

 3.1 Project flowchart 19

 3.2 Project methodology flowchart. 20

 3.3 Overview of elements in the proposed idea. 21

 3.4 Flowchart of SP algorithm used in this project. 22

 3.5 Demonstration of SP algorithm in graph. 23

3.6 IRB 4600-40-255 industrial robot manipulator 26

axes.

3.7 IRB 4600-40-255 industrial robot dimensions. 27

3.8 Workspace of IRB 4600-40-255 industrial robot. 28

3.9 Model with 100 random coordinates. 29

4.1 Graphical result from Scilab; (a) Model without 34

 algorithm; (b) Model with algorithm

4.2 Graph of execution time versus number of input. 38

4.3 Comparison between theoretical and experimental 39

data.

4.4 Scatter graph of U-shape model in Scilab. 40

4.5 Simulation in V-rep. 40

4.6 Trajectory path of a) Model without algorithm; 41

 xii

b) Model with algorithm

 4.7 Time taken versus number of layers for 41

experiment 1.

4.8 Comparison of time taken for 3D printing 43

between two models in different shape.

 4.9 Trajectory path of three models. 44

 4.10 Comparison of three models in graph. 45

 xiii

LIST OF ABBREVIATION

SP – Shortest Path

RP – Rapid Prototyping

DOF – Degree Of Freedom

CAD – Computer-Aided Drawing

3D – Three-Dimensional

dist – Distance

STL – STereoLithography

AM – Additive Manufacturing

 xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A Total distance travelled analysis coding 50

in Scilab

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Nowadays, 3D printing becomes a trending technology due to the impact it had

brought to rapid prototyping [1]. Many people believe that it will be widespread and

become more common in future because of those benefits it brought to us. For

example, a prototype can be created rapidly in just a few hours by 3D printing

technique compared with traditional manufacturing methods which taken days or even

weeks to receive a prototype[2]. Due to the advantage of 3D printing on saving cost

and time, mitigate risks, able to create complex products and many more, this

technology is increasing demanded on various field, such as, architecture and

construction, healthcare and medical, mechanic, aeronautics and space, and so on [1].

However, 3D printer on the market nowadays cannot create a large enough

prototype because of its limited workspace and size. For example, the 3D printer

produced by CreatBot named as ‘D600’ can only print the largest build volume of

600*600*600*mm and it’s already 30 times larger than it of other ordinary 3D printer

in today mass market. Obviously, this is one of the limitation of 3D printer nowadays.

Hence, if we can implant 3D printing technology on 6 DOF non-mobile robot

manipulator system we may overcome this limitation.

Besides that, 3D printing using 6 DOF non-mobile robot manipulator system

possess a great advantage compared with the traditional additive manufacturing

method. Firstly, conventional method is restricted by both the gravity and printing

environment[3]. Meanwhile, the uses of 6 DOF robot makes the 3D printing on

irregular, or non-horizontal surfaces become possible. The robot can change the

 2

orientation of extrusion for the best strength and appearance of a part during 3D

printing.

Lastly, the robot is using shortest distance algorithm to analyze and decide the

shortest path for the 3D printing process. This energy optimizing technique reduces

the time and energy consumption by the robot to the lowest as possible. Consequently,

it makes the construction of light-weighted, high mobility and longer energy lasting

3D printing robot become possible.

1.2 Problem statement

 The first problem of high speed 3D printing strategy using 6 DOF non-mobile

robot manipulator system by using shortest distance algorithm is to design a shortest

distance algorithm that can determine the sequence of the coordinates to achieve high

speed 3D printing.

 The designed algorithm should be able to minimize the travelled path in order

to increase the speed of 3D printing. Next, the problem is to code the algorithm to the

computer and conduct analysis on its performance.

 The next problem is the complexity of trajectory generation for the robot. The

complexity of trajectory generation of the robot is due to its multiple degree of freedom

[4]. The robot has to find the way to reach a specific point and it got many ways to get

a same point due to its multiple degree of freedom [5].

 The performance of the robot is demonstrated and observed firstly by

simulation using V-rep. This is also one of the problems we concerned about as how

to simulate these trajectories and represent them in the computer.

 Based on the problems described, the project need to address a method on how

to achieve high speed 3D printing with different shape and dimension.

 3

1.3 Objective

The objectives of this project are:

1. To analyse the shortest path problem of 3D printing that using a 6 DOF

manipulator (IRB 4600 industrial robot).

2. To design a shortest path algorithm which can generate corresponding

trajectory based on the shape and dimension given.

3. To evaluate the efficiency and speed of the 3D printing that using IRB 4600

industrial robot.

1.4 Scope

The scope of this project concentrated on:

1. Study on the shortest path algorithm to achieve a high-speed 3D

printing with 6 DOF non-mobile robot manipulator system.

2. Use Scilab simulator to demonstrate the performance of the algorithm.

3. Use V-rep simulator to simulate the 3D printing process.

4. 3D printed a U-shape box but not exceed the workspace limit of the

robot.

5. Use IRB 4600-40-255 industrial robot to conduct the 3D printing.

6. Represented the 3D printed object by octree and the dimensions of the

object is acted as references.

7. To find the efficiency of the algorithm by using method of analysis.

8. The trajectory path that generated by the algorithm.

9. Assuming no obstacles and external factors in the simulation

environment.

 4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter is intended to review, synthesises, analyse and present the

information of previous research works from literature related to 3D printing using

robot. Nevertheless, the shortest path algorithm which is used to optimize the

performance of the robot and resulted in high speed 3D printing is prioritized in this

chapter. In line with this, a few shortest path algorithms such as Dijkstra’s algorithm,

Bellman Ford's algorithm and Floyd–Warshall's algorithm will be introduced and

compared in the coming section. A most suitable SP algorithm is selected as reference

with the appropriate reason provided. Then, time complexity is introduced for the

analysis of algorithm. Subsequently, the chapter is focus on 3D printing and

technology related to it. The 3D printing and its process are enlightened in the

following section. Related subjects such as STL files, slicing software and G-code are

presented and explained along with 3D printing process. The information of existing

3D printing robot is gathered and shown in the later section.

2.2 Shortest path algorithm based on distance comparison

Shortest path algorithm is widely implement in various field especially in

internet addressing computing, intelligent transportation systems, urban geographic

information systems, and military geographical information systems. In this project,

shortest distance algorithm is the main focus which is also the biggest problem urged

to be solved. At present, there are several types of numerical algorithm available for

solving optimization problem. Here are their names: Dijkstra algorithm, Bellman

Ford's algorithm and Floyd–Warshall's algorithm.

 5

2.2.1 Dijkstra’s algorithm

Dijkstra’s algorithm is an algorithm used to find the shortest distance between

nodes in a graph. It was devised by computer scientist Edsger W. Dijkstra in 1956 and

published 3 years later [6].

Dijkstra’s algorithm applies only if [7]:

i. The link values (edges cost) must be positive values (the algorithm will be

broken if the value is negative) but the links can be directional

ii. All vertices in the graph is connected (the algorithm does not work if there

is unconnected part exists)

The steps to apply Dijkstra’s algorithm are shown below [8]:

The starting node is called as the initial node.

1. An uncertain distance value is assigned to every node: initial node is set as zero

and other nodes are set as infinity.

2. Place the initial node as current and set all other nodes as unvisited. Make the

unvisited set which is a set of all the unvisited nodes.

3. Consider all the neighbors of current node and compute their tentative

distances. The current assigned value will be replaced by newly calculated

tentative distance if the value is smaller. For example, if the assigned value is

7 for current node A and the connected edge to neighbor node B has a length

of 3, then the distance to B will be 7 + 3 = 10. If B was previously assigned as

a value greater than 10 then it will be changed to 10. Otherwise, the value will

be remained.

4. When all the neighbors of the current node are done considering, the current

node is marked as visited and it will be removed from unvisited set. A visited

node will not be visit again.

5. The algorithm will continue until the destination node has been marked visited

or the smallest tentative distance among the nodes in the unvisited sets is

infinity.

 6

6. If none of the two conditions is achieved, the unvisited node with the smallest

tentative distance will be selected and set as new ‘current node’ then repeat

from step 3.

Figure 2.1 & 2.2 and Table 2.1 show the demonstration of the algorithm.

‘A’ is the starting node.

Figure 2.1: Five vertices shortest path problem example.

Table 2.1: Result of Dijkstra’s algorithm on solving Figure 2.1 example.

Step Current

node

Unvisited

set

A B C D E

1 A {B,C,D,E} 0 4 2 ¥ ¥

2 C {B,D,E} 0 3 2 6 7

3 B {D,E} 0 3 2 5 6

4 D {E} 0 3 2 5 6

5 E {} 0 3 2 5 6

 7

Figure 2.2: The shortest path of the Figure 2.1 example.

2.2.2 Bellman-Ford’s algorithm

Bellman-Ford’s algorithm is similar to Dijkstra’s algorithm but it is more

versatile because it can work with graph in which the edges can have negative weights

[7]. This algorithm uses the principle of relaxation which is same as Dijkstra’s

algorithm but the only difference is Bellman-Ford algorithm relaxes all the edges

instead of choosing the nearest vertex that has not been checked (also known as greedy

strategy). The ordering of its relaxation makes the algorithm can handles negative

weights and also detects negative cycles. It is important to note that if negative cycle

occurs, there will be no shortest path exists on the graph.

Below is the step on how the algorithm works:

1. Allocate the starting node as zero and the rest of the vertices are set as infinity.

2. Start from the first point (starting node), give all the neighbors of the node a

tentative distance cost.

3. Continue with the next node, the node which cannot be defined on the moment

is skipped.

4. After all nodes are checked once, the first iteration is done.

5. Repeat from step 2 until 4, update the tentative distance cost when there is a

smaller value get in this process.

 8

6. The process will stop when there is no change compared with previous iteration

(The algorithm takes at most |V – 1| iteration but it can be ended earlier if no

alteration is found on the next iteration).

The algorithm is demonstrated on Figure 2.3 and Table 2.2 as below.

‘S’ is the starting node

Figure 2.3: Six vertices graph with negative edge weights example.

Table 2.2: Result of Figure 2.2 solved by Bellman-Ford’s algorithm.

Iteration S A B C D E

0 0 ¥ ¥ ¥ ¥ ¥

1 0 10 10 12 9 8

2 0 5 10 8 9 8

3 0 5 5 7 9 8

4 0 5 5 7 9 8

 9

2.2.3 Floyd-Warshall algorithm

Floyd-Warshall algorithm is an algorithm for finding shortest distance in a

weighed graph same as Dijikstra’s algorithm and Bellman-Ford’s algorithm [7].

However, it is an all-pairs shortest path algorithm instead of single-source shortest path

algorithm (Dijkstra’s algorithm & Bellman-Ford’s algorithm). This means that it

computes the shortest distance between every pair of vertices in the graph instead of

starting from a single initial node. Floyd-Warshall algorithm is an example of dynamic

programming, the problem is break down into smaller sub-problems and the answers

of those sub-problems are combined to solve the large, primary problem. It can solve

the graph contains negative weighed edges but no negative-weighed cycles (same as

Bellman-Ford algorithm). It is useful at handling multiple stops on the route because

it can compute the shortest distance between all relevant nodes.

The implementation of Floyd-Warshall algorithm is shown below.

1. A distance array table is constructed to track the shortest path between nodes.

2. Fill in the corresponding weighs into the table by looking at the edges between

the nodes of the graph.

3. Replace the value on the table by the newly calculated value based on equation

(2.1) if the condition is met;

dist[i][j] > dist[i][k] + dist[k][j] (2.1)

i , j and k are value from 1 until number of vertices in the graph, eg. if the graph

contains 4 vertices then;

i = 1 2 3 4 ; j = 1 2 3 4 ; k = 1 2 3 4

4. The algorithm is done as all values of i, j and k have been calculated once.

The example of Floyd-Warshall algorithm is shown in Figure 2.4 below.

 10

Figure 2.4: Example of four vertices graph with negative edge weights.

Step 1: Constructs a table and fill in the corresponding edges weights. The result is

shown in Table 2.3.

Table 2.3: Result of the Step 1 of Floyd-Warshall algorithm.

 1 2 3 4

1 0 -2

2 4 0 3

3 0 2

4 -1 0

Step 2: Computes them by using the formula with different value of i, j and k

Let k = 1, i = 1 and j = 2,

dist[i][j] > dist[i][k] + dist[k][j]

dist[1][2] > dist[1][1] + dist[1][2]

¥ > 0 + ¥

¥ > ¥ (False, nothing happened)

Let k = 1, i = 2 and j = 3,

dist[i][j] > dist[i][k] + dist[k][j]

dist[2][3] > dist[2][1] + dist[1][3]

3 > 4 + (-2)

 11

3 > 2 (True, the value on [2][3] is replaced by 2)

Step 3: The algorithm is done when all values of i, j and k have been calculated once.

Table 2.4 shows the final result of the algorithm.

Table 2.4: The final result of Figure 2.4 example by using Floyd-Warshall algorithm.

 1 2 3 4

1 0 -1 -2 0

2 4 0 2 4

3 5 1 0 2

4 3 -1 1 0

2.3 Comparison of the SP algorithm

The comparison of the shortest path algorithm is shown in Table 2.5.

Table 2.5: The comparison of the shortest path algorithm.

Shortest path algorithm Advantage Disadvantage

Dijkstra’s algorithm Fast and simple Cannot solve graph that

contains negative edge

weights.

Bellman-Ford’s algorithm More versatile and can

solved graph contains

negative edge weights.

Slower than Dijsktra’s

algorithm.

Floyd-Warshall algorithm

Can find the shortest path

between the vertices and

solved graph contains

negative edge weights.

Only show shortest path

cost between nodes

without intermediate

nodes.

 12

Dijkstra’s algorithm is the earliest and simplest SP algorithm among these three

algorithms [9]. Dijkstra’s algorithm is fast because of the greedy strategy it’s used.

Dijkstra’s algorithm greedily selects the nearest vertex that has not been processed yet

and performs the relaxation process on all its outgoing edges. However, Dijkstra’s

algorithm cannot handle graph with negative edge weights, it will break down if the

graph contains negative edge weights.

Compared with Dijkstra’s algorithm, Bellman-Ford’s algorithm is much

slower on solving the same problem. However, it is outstanding on its versatility

because it able to solve the graph with negative edge weights due to the way of its

relaxation.

Floyd-Warshall algorithm does not have a starting node, it shows all the

shortest path cost between each node. This is suitable for problem which has few stops

in a route, but in the other hand it is difficult to know the sequence and the pattern of

the shortest path.

In a nutshell, Dijkstra’s algorithm possesses the fastest and simplest

characteristic among these three algorithms. It cannot solve the graph contains

negative edge weights however it is no necessary to deal with the graph contains

negative edge weights in this project. Hence, based on the above reasons, Dijkstra’s

algorithm may be the most suitable SP algorithm for this project.

2.4 Time complexity of algorithm

 The performance of algorithm may vary with different algorithm and there are

a few parameters that can denote that. For example, time complexity, space

complexity, correctness, simplicity and generality. Time complexity indicates how fast

the algorithm runs while space complexity deals with the extra space the algorithm

requires.

 13

As technology advanced, the computer’s speed and memory have improved by

many orders of magnitude. Now the amount of extra space required by an algorithm

is typically not of as much concern. However, time issue has not diminished quite to

the same extent. Many experiment and research show that for most problems, we can

get a greater progress in speed than in space.

Figure 2.5 below shows the comparison of the performance of insertion sort

and quick sort by implemented quick sort on Intel 486 and insertion sort on an IBM

SP2. IBM SP2 is a super computer while Intel 486 is only a personal computer. The

result indicates that a fast computer with an inferior algorithm may perform worse than

a slow computer with a superior algorithm[10].

Figure 2.5: The comparison of the performance of insertion sort and quick sort.[10]

 Hence, time complexity should be the focus of the analysis of the algorithm.

Next, it is important to know that the time efficiency of an algorithm is not a measure

 14

of the running time of a program implementing the algorithm in unit of second or

millisecond because the time taken is affected by the speed of particular computer,

capability of the programmer, the complier used in generating the machine code and

the difficulty of clocking the actual running time of the program. Instead, the basic

operation which contributing the most to the total running time should be identified

and computed for the number of times the basic operation is executed.

It is essential to distinguish the order of growth of an algorithm and Table 2.6

below demonstrates the significance of order of growth on the algorithm. Time

complexity with lower order is better than that with higher order. The order of growth

affected significantly to the running time as the input size n grows larger.

Table 2.6: Time complexity function with respect to problem size

Time

complexity

function

Problem size: n

10 10$ 10(10)

log$ 𝑛 3.3 6.6 10 13.3

𝑛 10 10$ 10(10)

𝑛	log$ 𝑛 0.33 × 10$ 0.7 × 10(10) 1.3 × 102

𝑛$ 10$ 10) 103 104

26 1024 1.3 × 10(7 > 10977 > 10977

𝑛! 3 × 103 > 10977 > 10977 > 10977

Meanwhile, computer scientists used three notations: O (big oh), W (big

omega), and Q (big theta) to compare and rank order of growth. In this research, O-

notation (big oh) will be the only notation used to represent the time complexity of the

algorithm. O-notation is defined as [11]

A function t(n) is said to be in O(g(n)), denoted t(n)Î O(g(n)), if t(n) is bounded

above by some constant multiple of g(n) for all large n, i.e., if there exist some positive

constant c and some nonnegative integer 𝑛7 such that t(n) £ cg(n) for all n ³ 𝑛7

 15

In addition, there are three situations have to be concerned for any algorithm

which are the best case, the average case and the worst case. This is because many

algorithms which running time depends not only on an input size but also on the

specifics of a particular inputs.

2.4 3D Printing

3D printing or additive manufacturing is a process of creating a 3D product

from digital model by adding successive layers of materials until the product is

completed [12]. Each of these layers can be seen as a finely sliced horizontal cross-

section of the final object. It is the reverse of subtractive manufacturing which the final

product is bigger than the initial material [12]. It can produce complex shapes using

less material than traditional manufacturing method. 3D printing was initially used in

rapid prototyping and it had started to develop into next-generation manufacturing

technology that has the potential to allow the local, on-demand production of final

products or parts.

2.4.1 The process of 3D Printing

The 3D printing process flowchart is shown in Figure 2.6 below.

Figure 2.6: The 3D printing process flowchart

Creating a 3D
model

Slicing

Upload to 3D
printer and start

printing

 16

3D printing process starts with creating a 3D model by computer. The 3D

model can be created either with 3D modelling software or based on data generated

from 3D scanner. A STL file is obtained after the 3D model is created. STL

(abbreviation of STereoLithography) file encodes the surface geometry of the 3D

model by tessellation.

Tessellation is a process of tiling a surface with one or more geometric shapes

such that there are no overlaps or gaps. The outer two-dimensional surface of the 3D

model is tessellated using tiny triangles (facets) [13] and the information of the facets

is stored in a STL file. STL file format offers two ways to store the information which

are in binary format or ASCII format [12]. Both of them represents the same

information but they are different in the size of the file. Binary format file is smaller

in size than that of ASCII format file, however binary format file is unreadable by

human while ASCII format file can visually read and checked by human. Even though

there are a lot of formats created for rapid prototyping, STL is the most widely adopted

format by various developers of CAD packages [14].

The next stage is slicing which divide the 3D model into numerous thinly layers

by using slicing software [1]. A tool path is then created and the information is bundled

up into a G-code file which is the term used by 3D printer to produce the prototype

[14]. It is important to notice that the quality of the print is influenced by the slicing

software and its settings.

The final stage is upload the file to the 3D printer and the product is ready to

be fabricated. The file can be uploaded via USB, SD or Wi-Fi depends on the brand

and type of 3D Printer or AM machine. The fabrication of the product is done by

adding layer by layer of successive materials until all the separated two-dimensional

layers are reassembled as a 3D object on the print-bed.

 17

2.4.2 Existing 3D Printing Robot

Nowadays, 3D printing is not long being undergo in a box instead it can be

done in an open environment by using articulated robot. There are few tech company

started to develop this technology and their details are shown in Table 2.7 below:

Table 2.7: The general information of existing 3D Printing Robot.

Developer
Branch

Technology
Joris Laarman Lab MIT

Robot

KUKA KR

120 R2500

robot

MX3D Metal Robot

5-axis Altec

AT40GW

mobile hydraulic

arm and a 6-axis

KUKA robotic

arm

Project

Shop

Pavillion,

Cheekwood

Playhouse and

etc.

MX3D Bridge, Gradient

Screen, Cucuyo, Buttlefly

Screen and Dragon

Benches

Digital

Construction

Platform (DCP)

As a partner of KUKA robotics company, Branch Technology combines

industrial robot with 3D printing and utilises them in architectural fabrication. They

adopted KUKA KR 120 R2500 robot to do the 3D printing with the aids of the

algorithm they developed themselves. The geometry and robotics motion are created

by the algorithm to build complex geometries in open space.

MX3D Metal Robot is the result of research made by Joris Laarman Lab

associated with Acotech and supported by Autodesk. They combine industrial robot

with welding machine and develop a software to drive the robot. The robot can 3D

 18

printing various 3D metal products with complicated shape because of the flexibility

brought by its multiple axis.

A project named as “Digital Construction Platform (DCP)” was initiated by

MIT for the purposes of improve the safety, speed and quality of construction; develop

the automated construction technology which can be used in disaster, hazardous

environment and interplanetary exploration [15]. The DCP consists of a 5-axis Altec

AT40GW mobile hydraulic arm with a 6-axis KUKA robotic arm mounted at its

endpoint [15]. These two robots imitate the biological model of human shoulder and

hand, the large arm is used for gross positioning while the small arm can perform fine

positioning, provide oscillation compensation and improve force control bandwidth.

2.5 Conclusion

The SP algorithm is the main focus on this chapter, the comparison between

the three different algorithms is shown in a table. After the analysis, Dijkstra’s

algorithm is the most suitable algorithm for this project because it is fast and there is

not necessary to deal with negative edge weights in this project. Time complexity is

important for the analysis of algorithm and the running time of an algorithm hugely

affected by the order of growth of the algorithm.

3D printing and its process are detailed in the later section, it shows how the

3D printing works and the elements inside it. STL file and slicing software play an

important role in 3D printing, however it will not be included in the research scope.

Then, the information of existing 3D printing robots is gathered and shown in a table.

There are three technology company are developing this technology with different

approach. All of them used 3D printing for architectural innovation and their works

are worth to be referred as they are the pioneer in this sector.

 19

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter discusses about the procedure and the method used in this project.

It covers all the elements involved in making this project to achieve its goal and

objective. It gives the reader an insight on the process of this project from initial stage

to final stage.

3.2 Project Flowchart

This project flowchart lists down the steps that are taken throughout this

project. It shows from survey on prior research work to the simulation and

experimental test. The project flowchart is shown in Figure 3.1.

Figure 3.1: Project flowchart

Simulate and analyze the performance of the model by V-rep

Implantation of the algorithm to IRB 4600 by V-rep

Simulation and analysis of the algorithm

Design algorithm using Scilab

Literature Review and Proposed idea

Research on 3D Printing and SP algorithm

Start

 20

3.3 Project Methodology Flowchart

The project methodology flowchart is shown in Figure 3.2.

Figure 3.2: Project methodology flowchart.

 21

3.4 Theoretically description of proposed idea

The main focus of the idea is on finding the most efficient trajectory path to

complete the 3D printing by implementation of shortest path algorithm. In this project,

Dijkstra’s algorithm is referred as shortest path algorithm to achieve the goal. The

overview of elements in the proposed idea is shown in Figure 3.3 below.

Figure 3.3: Overview of elements in the proposed idea.

From the figure, we can see that the stages from CAD drawing until extract

coordination are not included in this project. Hence, the research is started from

creating a U-shape box model. The algorithm will automatically generate the

coordinate of the U-shape box and subsequently determine the shortest way to

complete it.

 22

IRB 4600-40-255 industrial robot is programmed using LUA language (a type

of programming language) to apply shortest path algorithm in the 3D printing. The

joint angles of the manipulator (𝜃9, 𝜃$, 𝜃(, 𝜃), 𝜃2,, 𝜃3) corresponding to the Cartesian

coordinate are calculated by using the inverse kinematic module in the V-REP

simulator. The V-REP simulator also provides the position, velocity and acceleration

profiles of every joints. The performance of the manipulator is tested, simulated and

evaluated in the V-REP simulator before it can be tested in the reality. In the working

environment, it is assumed that there is no obstacle along the path.

3.5 Shortest path algorithm design

The brief description of SP algorithm used in this project is shown in Figure

3.4 below.

Figure 3.4: Flowchart of SP algorithm used in this project.

Set a starting point as first node and the unvisited
nodes are put into a unvisited set.

Calculate the distance from the first point to another
point by Pythagoras theorem then compare the
distance.

Set the nearest point as next point.

The point is set as new referred point and the previous
referred point is removed from unvisited set.

Continue until the unvisited set left only 2 points.

 23

Distance calculation by Pythagoras theorem as (3.1)

Distance, 𝑑> = ?(𝑥> − 𝑥>B9)$ + (𝑦> − 𝑦>B9)$ (3.1)

where d = distance between the referred node and its neighbor nodes.

 𝑥> = x position of the referred node

 𝑥>B9 = x position of the neighbor node

 𝑦> = y position of the referred node

 𝑦>B9 = y position of the neighbor node

The demonstration of the SP algorithm used in this project is displayed in Figure 3.5.

Figure 3.5: Demonstration of SP algorithm in graph.

 24

a) The initial point is set as starting node and the distance between it and other

points is calculated by using Pythagoras Theorem. Meanwhile, all unvisited

points are put into an unvisited set.

b) The nearest point is selected and set as new referred point. On the same time,

the previous referred point is removed from unvisited set.

c) The algorithm continue until there are only 2 points left in the unvisited set.

d) The sequence of the points is determined.

3.6 Find the joint angle by inverse kinematics module

In this project, the mathematical calculation of inverse kinematics is not being

emphasized because this research is focusing on the trajectory generation only.

Nevertheless, the joint angle of the robot can be found by using the inverse kinematics

module (IK module) in V-REP simulator [16].

3.7 Find the velocity and acceleration of the joint

The velocity and acceleration can be obtained by using Jacobian method as

shown (3.2) & (3.3) below [17].

�̇� = 𝐽(𝜃)H9. �̇� (3.2)

�̈� = 	 𝐽(𝜃)H9. (�̈� − K L
LM
𝐽(𝜃)N . �̇�)	 (3.3)

where 𝜃 = angle of joint

 �̇� = angular velocity of joint

 �̈� = angular acceleration of the joint

 𝐽	= Jacobian matrix

 �̇� = velocity of the end-effector

 �̈� = acceleration of the end-effector

 25

The angular velocity and acceleration of each joints are obtained from the V-REP

simulator in this project.

3.8 Material and equipment

3.8.1 Scilab and V-REP simulator

Scilab and V-REP are the simulator to simulate the performance of the

algorithm and manipulator. Scilab is an open source, high-level numerical oriented

programming language for numerical calculation, representation and programming. In

addition, data analysis, numerical computation and creating model are done by using

Scilab.

V-REP is a 3D robot simulator which allows the users to model, edit and

program various type of manipulator [18]. It was chosen for this work since it currently

has a free full license for education purposes, with all the characteristics of the

commercial version, and also includes, on its library, the model of the IRB 4600-40-

255 industrial robot [19]. The trajectory planning of the manipulator and time analysis

are performed and simulated in the V-REP environment.

3.8.2 IRB 4600-40-255 industrial robot

IRB 4600 series is the product of ABB Robotics which comes in 4 versions,

and they are IRB 4600-20-250, IRB 4600-40-255, IRB 4600-45-205 and IRB 4600-

60-205. They are highly productive general-purpose robot boosted for short cycle

times where compact robots can help create high density cells. They have ultra-wide

working range with flexible mounting with floor, tilted, semi-shelf and inverted

mounting.

 26

The manipulator axes of the IRB 4600-40-255 industrial robot is displayed in the

Figure 3.6.

Figure 3.6: IRB 4600-40-255 industrial robot manipulator axes.[20]

General info

• Number of axes: 6

• Mounting: Floor, shelf, inverted or tiled

• Controller: IRC5 Single cabinet, IRC5 Dual cabinet

• Reach: 2.55 m

• Height: 1922 mm

• Weight: 425 kg

 27

• Dimensions robot base: 512 x 676 mm

• Payload: 40 kg

• Armload: 20 kg

• Position repeatability: 0.06 mm

• Path repeatability: 0.28 mm

• Supply voltage: 200-600V, 50-60 Hz

The dimensions of the IRB 4600-40-255 industrial robot is shown in Figure 3.7.

Figure 3.7: IRB 4600-40-255 industrial robot dimensions.[20]

 28

The workspace of the IRB 4600-40-255 industrial robot is illustrated as Figure 3.8.

Figure 3.8: Workspace of IRB 4600-40-255 industrial robot.[20]

The working range and axis max speed of the IRB 4600-40-255 industrial robot are

displayed in the Table 3.1.

Table 3.1: The working range and axis max speed of IRB 4600-40-255 industrial robot

with respect to its joints. [20]

Axis movement Working range Axis max speed

Axis 1 +180°	𝑡𝑜	-180° 175°/s

Axis 2 +150°	𝑡𝑜	-90° 175°/s

Axis 3 +75°	𝑡𝑜	-180° 175°/s

Axis 4 +400°	𝑡𝑜	-400° 250°/s

Axis 5 +120°	𝑡𝑜	-125° 250°/s

Axis 6 +400°	𝑡𝑜	-400° 360°/s

 29

3.9 Data collect and method of analysis

The data gathered in this project are total distance travelled from coordinate to

coordinate, basic operation count in the algorithm, execution time of the program and

time taken for a complete 3D printing.

The collected data will be analyzed by few method, such as total distance

travelled analysis, time complexity analysis and 3D printing time analysis.

3.9.1 Total distance analysis

The objective of this analysis is to examine the efficiency of the algorithm on

optimizing. The performance of the SP algorithm can be evaluated by consider the

total cost of the outcome or in other words the total distance travelled [21].

In detail, two models with 100 random coordinates are firstly generated in

Scilab as Figure 3.9 below.

Then, the algorithm is implanted on one of the models while another without the

algorithm. The total distance travelled by both models are calculated and recorded.

Figure 3.9: Model with 100 random coordinates.

 30

The total distance travelled from coordinate to coordinate can be calculated

mathematically by equation (3.4) & (3.5):

𝑇 = 𝑑9 +		𝑑$ +		𝑑(+		𝑑) +⋯+	𝑑>H9 + 𝑑> (3.4)

𝑇 = Σ𝑑> (3.5)

where T = Total distance travelled from coordinate to coordinate

 d = Distance between the connected coordinates

The data are collected from 5 different set of models and the reduction percentage

between two models is calculated. Subsequently, the mean of the reduction percentage

is computed to show the average value of the result. Equation (3.6) to (3.8) are used to

analyse the recorded data:

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = c1 − deMfg	L>hMf6ij	MkfljggjL	em	9hM	neLjg
deMfg	L>hMf6ij	MkfljggjL	em	$6L	neLjg

o × 100% (3.6)

𝑀𝑒𝑎𝑛,µ = rsn	em	tjkij6Mfuj	kfM>e
2

 (3.7)

After that, in order to examine the robustness of the algorithm, 5 different shapes in

two dimensional are constructed in Scilab and their total distance travelled between

coordinates are recorded and comparison between model with algorithm and without

algorithm is presented in a table.

3.9.2 Time complexity analysis

 In this analysis, the objective is to analyse the time efficiency of the algorithm.

Basic operation count in the algorithm and execution time of the program are measured

and evaluated mathematically after programmed in Scilab.

 31

The method of calculating the time complexity started from decide on a

parameter indicating an input size. Next, identify the algorithm’s basic operation and

check whether the number of times the basic operation is executed depends only on

the size of an input. If it also depends on some additional property, the worst-case,

average-case and, if necessary, best-case efficiencies have to be investigated

separately. Then, set up a sum expressing the number of times the algorithm’s basic

operation is executed. Finally, using standard formulas and rules of sum manipulation,

either find a closed-form formula for the count or, at the very least, establish its order

of growth [11].

 Later, execution time of the algorithm on different number of input is measure

and recorded. A graph of execution time versus number of input is plotted and

compared it with the calculated time complexity in order to examine the result.

Theoretical execution time is calculated by using equation (3.9) below:

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒, 𝑇(𝑛) = 𝑐et𝐶(𝑔(𝑛))								; 𝑐et = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.9)

Where

 𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑝𝑢𝑡

𝑐et = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	𝑜𝑓	𝑎𝑛	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚�𝑠	𝑏𝑎𝑠𝑖𝑐	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 							𝐶�𝑔(𝑛)� = 𝑇𝑖𝑚𝑒	𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

3.9.3 3D printing time analysis

The objective of this analysis is to evaluate the efficiency of the algorithm on

3D printing. It is made up of two experiments, first experiment is to investigate the

relationship between the presence of algorithm and the time taken on 3D printing while

second experiment is to analyse the efficiency of the algorithm based on starting

coordinate.

 32

The first experiment started by constructing two equal size U-shape box model

in Scilab. Subsequently, one of them is implanted with algorithm while another

doesn’t. The sequence of coordinates is generated in Scilab and exported to V-rep.

Then, the model is 3D printed in v-rep for 2, 3, 4, 5 and 6 layers separately and the

time taken for each of them is recorded. Lastly, the time taken for both models are

compared in a table and a graph of time taken versus number of layers is plotted to

observe the differences. On the other hand, in order to investigate the robustness of the

design, 4 more models with different shape are being created and 3D printed in v-rep

simulation environment separately. The time taken for completing each model are

recorded and their comparison are displayed in a bar chart.

For second experiment, three models of equal size U-shape box are created and

implanted with algorithm in Scilab. The starting coordinate are set as (0.1,0), (0.3,0)

and (0.6,0) respectively. Next, the sequence of coordinates is generated in Scilab and

exported to V-rep. The model is 3D printed in v-rep for 2, 4, 6, 8 and 10 layers

separately and the time taken for complete the 3D printing is recorded. After all, the

collected data are shown in a table and a graph of time taken versus number of layers

is plotted to observe the differences.

 33

CHAPTER 4

RESULT

4.1 Introduction

In this chapter, the result will be presented with the aids of figures and tables.

The result is obtained from the simulation and experimental analysis by Scilab and V-

rep simulator.

4.2 Total distance analysis result

The Dijkstra’s algorithm is modified and applied to determine the sequence of

the coordinates. In the initial phase, 100 random generated coordinates are used as a

model to illustrate the performance of the algorithm. In addition, both the coordinates

and the sequence are generated randomly by using Scilab. To demonstrate the

performance of the algorithm, a model with algorithm and a model without algorithm

are created and the comparison is made according to the outcome. The graphical result

from Scilab is shown in Figure 4.1.

 34

From observation, the model without algorithm is disorganized and the sequence of

the coordinates is random. Meanwhile, the model with algorithm is arranged in order.

In order to examine the efficiency of the algorithm, the total distance travelled by both

models is measured and the result is shown in Table 4.1 below.

Figure 4.1: Graphical result from Scilab
a) Model without algorithm
b) Model with algorithm

 35

Table 4.1: Result of total distance travelled analysis.

Model
Total distance travelled (m)

1st 2nd 3rd 4th 5th

Without

algorithm
68.24 64.68 72.77 69.54 67.33

With

algorithm
19.18 18.06 18.47 18.84 19.29

Reduction

percentage

K1 −
19.18
68.24N

× 100%

= 71.89%

K1 −
18.06
64.68N

× 100%

= 72.08%

K1 −
18.47
72.77N

× 100%

= 74.62%

K1 −
18.84
69.54N

× 100%

= 72.91%

K1 −
19.29
67.33N

× 100%

= 71.35%

Mean of reduction percentage, µ = �9.4�B�$.74B�).3$B�$.�9B�9.(2
2

= 72.57% (4.1)

In a nutshell, the total distance travelled between coordinates is able to be reduced to

the mean of 72.57% in the presence of the algorithm.

Besides that, in order to investigate the robustness of the algorithm, few shapes are

being created and the comparison of total distance travelled between two models are

displayed on the Table 4.2.

Table 4.2: Comparison of total distance travelled among two models in different

shapes.

Shape
Total distance travelled (m) Reduction

percentage Without algorithm With algorithm

21.05 12.70
K1 −

12.70
21.05N × 100%

= 39.67%

 36

10.86 6.51
K1 −

6.51
10.86N × 100%

= 40.06%

27.16 15.88
K1 −

15.88
27.16N × 100%

= 41.53%

17.47 11.10
K1 −

11.10
17.47N × 100%

= 36.46%

28.65 17.19
K1 −

17.19
28.65N × 100%

= 40.00%

In brief, the total distance travelled between coordinates on different shapes can be

reduce to 36.46% ~ 41.53% in the presence of the algorithm. However, the efficiency

of the algorithm on shapes are lower than that compared with the 100 random numbers

model. The factor that caused the result is the variability of the sequence of input data.

4.3 Time complexity analysis result

 After the algorithm is being programmed in Scilab, the basic operation of the

program is defined and shown below:

ALGORITHM

//Determine the sequence of the coordinates by choosing nearest coordinate.

//Input: An array of random coordinates 𝐴[𝑐9, 𝑐$,… , 𝑐6H9, 𝑐6]

//Output: The coordinates are arranged by nearest coordinate strategy.

Line 1 While n>2 do

Line 2 for i = 2 to n-1 do

 37

Line 3 𝑑 = �𝑐9$ − 𝑐>$ //Find the distance by Pythagoras Theorem

Line 4 M = min(d) //Find the minimum distance

Line 5 A [𝑐9]= {} //Eliminate referenced coordinate from the set

Line 6 𝑐� = 𝑐9 //Coordinate M become referenced coordinate

Line 7 end

In the above algorithm, n number of coordinates are firstly included in a set of

A. When the size of n is more than 2, it will fall into the for loop. In the for loop, the

distance between coordinates will be calculated by Pythagoras Theorem from n-1 to 2

times in each loop which the distance to last coordinate is not necessary to be

calculated. In a meanwhile, the minimum distance or nearest coordinate from

referenced coordinate will be selected as new referenced coordinate and the previous

referenced coordinate will be eliminated from the set A. Moreover, the algorithm will

access n-1 coordinates once so that is no need to distinguish among the worst, average

and best cases.

Let us denote G(n) the number of times this operation is executed. There are 3

operations from line 4 to line 6 that will be executed once per loop hence there is

constant number 3 times with n-1 for n number of coordinates.

𝐺(𝑛) = �(𝑖
6H9

>�(

+ 3) = 3(𝑛 − 1) +�𝑖
6H9

>�(

For distance calculation, the algorithm will repeat the loop from n-1 times to

finally 2 times. For example, if there are 4 coordinates, the first loop will calculate 3

times, the second loop will calculate 2 times and the loop will stop at there as only left

the last coordinate in the set A. Hence, according to Summation Formulas:

�𝑖
6H9

>�(

= (𝑛 − 1) + (𝑛 − 2) +⋯+ 3 + 2 =
𝑛(𝑛 + 1)

2 ≈
1
2𝑛

$

(4.1)

(4.2)

 38

Hence, the time complexity of the algorithm in O(g(n) is

𝐺(𝑛) = 3(𝑛 − 1) +
1
2𝑛

$ = 𝑂(𝑛$)

The execution time, t for different number of input, n is recorded and a graph

of execution time versus number of input is plotted and shown in Figure 4.2 below.

Figure 4.2: Graph of execution time versus number of input.

From the Figure 4.2 above, we can see that the execution time increased

quadratically as the input size growth. In order to examine and compare the collected

data, a graph is plotted in Scilab according to the calculated equation (4.4) below:

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒, 𝑇(𝑛) = 𝑐et K3(𝑛 − 1) +
1
2𝑛

$N								 ; 𝑐et = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Where

 𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑝𝑢𝑡

𝑐et = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	𝑜𝑓	𝑎𝑛	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚�𝑠	𝑏𝑎𝑠𝑖𝑐	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ex
ec

ut
io

n
tim

e,
 t

(s
)

Number of Input, n

Exection time versus number of input

(4.3)

(4.4)

 39

The result is shown in Figure 4.3 below,

Figure 4.3: Comparison between theoretical and experimental data.

Overall, the experimental data is matched with the theoretical data except for the last

segment and this may be caused by the variability of input data. In conclusion, the time

complexity of the algorithm is 𝑂(𝑛$) and it is proved by comparing theoretical data

with experimental data.

4.4 3D printing time analysis result

The model of U-shape box with dimension 1x1 which created in Scilab is shown in

Figure 4.4.

 40

Figure 4.4: Scatter graph of U-shape model in Scilab.

Figure 4.5 below is showing the simulation in v-rep.

Figure 4.5: Simulation in V-rep

 41

Experiment 1

Figure 4.6 below shows the trajectory path of both models.

Figure 4.6: Trajectory path of a) Model without algorithm; b) Model with algorithm

The graph in Figure 4.7 below displays the comparison of time taken between two

models on different number of layers.

Figure 4.7: Time taken versus number of layers for experiment 1.

0

2

4

6

8

10

12

14

16

2 3 4 5 6

Ti
m

e
ta

ke
n

Number of layers

Time taken versus number of layers
Model with algorithm Model without algorithm

 42

From the graph above, we can notice that the time taken for model with

algorithm is always less than that of model without algorithm. Besides that, the time

gap between them is increasing as the number of layers increased. This indicates that

with the trajectory path generated by algorithm able to decrease the time taken to do

the 3D printing. As the number of layers increases, the effectiveness of the algorithm

is getting larger.

In order to examine the robustness of the algorithm on 3D printing, another 4

models with different shapes are created and 3D printed with 5 layers. The result is

shown in Table 4.3 and Figure 4.8 below.

Table 4.3: Comparison of trajectory path between two models in different shapes.

Shapes Without algorithm With algorithm

Square

Plus

Semi-

circle

 43

Donut

Figure 4.8: Comparison of time taken for 3D printing between two models in

 different shape.

Overall, the efficiency of the 3D printing on different shapes can be increased with the

implementation of the algorithm. However, the magnitude of the optimizing is

different according to the complexity and the volume of the object.

8.11

2.56

15.16

8.36

13.1

4.56

25.49

13.26

0 5 10 15 20 25 30

square

plus

semi-circle

donut

Time taken (s)

Sh
ap

e

Time taken for different shape

With algorithm Without algorithm

 44

Experiment 2

Figure 4.9 below shows the trajectory path of three models.

Figure 4.9: Trajectory path of three models.

Figure 4.10 below displays the comparison of time taken between three models on

different number of layers.

Model 1 starting coordinate at (0.1,0)

Model 2 starting coordinate at (0.3,0)

Model 3 starting coordinate at (0.6,0)

 45

Figure 4.10: Comparison of three models in graph.

From the observation, time taken of model 1 and 3 which started at (0.1,0) and

(0.6,0) respectively are almost equal while time taken is longer for model 2 which

started at (0.3,0) compare to both model 1 and 3. This shows that the starting

coordinate may influence the efficiency of algorithm on 3D printing. The trajectory

path is different when the starting coordinate is altered.

In conclusion, trajectory path affects the efficiency of 3D printing and the

algorithm can generate a more efficient path. The effectiveness of the algorithm is

increasing proportionally with the increasing of volume of the object. Meanwhile, the

algorithm may start at any coordinate and it will affect the efficiency. With different

starting coordinate, the algorithm may generate a more efficient or less efficient

trajectory path.

0

5

10

15

20

25

2 4 6 8 10

Ti
m

e
ta

ke
n

Number of layers

Time taken versus number of layers
Model 1 Model 2 Model 3

 46

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

 In conclusion, the shortest distance algorithm is designed based on Dijkstra’s

algorithm. The result shows positive outcome which indicate that the algorithm is able

to increase the efficiency of 3D printing.

 Three sets of experimental analysis are conducted to evaluate the performance

of the algorithm. The analysis result is presented by equation, calculation or

comparison with the aids of figures and tables. The comparison graph is generated

from Scilab and Microsoft Excel to illustrate the difference between few models.

 The total distance travelled analysis shows that the total distance travelled

between coordinates is reduced to a mean of 72.57% with standard deviation of 1.14

in the presence of the algorithm. In addition, robustness testing shows that the

algorithm still able to optimize the travelling path to 36.46% ~ 41.53%. Moreover, the

time complexity analysis indicates the algorithm is in order of growth of 𝑛$ which

representing time complexity of 𝑂(𝑛$). The result is proven by comparing theoretical

result which generated by Scilab with experimental result.

 Subsequently, 3D printing time analysis illustrates the efficiency of the

algorithm on 3D printing. Experiment 1 shows that the 3D printing speed is

respectively high when the algorithm is implanted. Besides that, the robustness test

indicates that the 3D printing speed can still be improved on different shapes.

Experiment 2 denotes the starting coordinate of the 3D printing may affects the speed

of the 3D printing as the trajectory path will be different for different starting point.

 47

Lastly, most of the research in this project are focus on the design and analysis

of the shortest distance algorithm, such as analysis of time complexity. Besides that,

fundamental knowledges about 3D printing, Scilab and V-rep simulation are also

learned from this research.

5.2 Future work

 The future work of this project is to increase the speed of 3D printing by

improve the efficiency of the shortest distance algorithm. Although the result is

showing positive outcome, however, the trajectory path that generated by the

algorithm still is not the optimum result. Besides that, it is recommended to establish

a research on extracting coordinates from CAD drawing for variety of 3D printed

objects. It can strengthen this research on its robustness testing by analyse the result

from various 3D printed objects. Finally, conducting the experiment in real

environment is suggested in order to investigate the effects of external factors on the

performance of the 3D printing.

 48

REFERENCES

[1] R. C. Luo and P.-K. Tseng, “Trajectory generation and planning for

simultaneous 3D printing of multiple objects,” 2017 IEEE 26th Int. Symp. Ind.

Electron., pp. 1147–1152, 2017.

[2] H. J. Nyman and P. Sarlin, “From bits to atoms: 3D printing in the context of

supply chain strategies,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., pp. 4190–

4199, 2014.

[3] K. H. Hee, P. C. Youn, and L. M. Cheol, “A study on the 3D printing simulator

for construction and application of robust control Using SMCSPO,” 2017 IEEE

Int. Conf. Multisens. Fusion Integr. Intell. Syst., 2017.

[4] A. Pepe, D. Chiaravalli, and C. Melchiorri, “A hybrid teleoperation control

scheme for a single-arm mobile manipulator with omnidirectional wheels,”

IEEE Int. Conf. Intell. Robot. Syst., vol. 2016–Novem, pp. 1450–1455, 2016.

[5] K. Lee, J. Oh, O. Sim, H. Bae, and J. H. Oh, “Inverse kinematics with strict

nonholonomic constraints on mobile manipulator,” Proc. - IEEE Int. Conf.

Robot. Autom., pp. 2469–2474, 2017.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer.

Math., vol. 1, pp. 269–271, 1959.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithm, Second Edi. The MIT Press, 2001.

[8] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm,

“Partitioning graphs to speedup Dijkstra’s algorithm,” ACM J. EA, vol. 11, pp.

1–29, 2006.

[9] X. Yang, D. Liu, L. Cong, and L. Liang, “Shortest path algorithm based on

distance comparison,” pp. 3137–3139, 2014.

[10] R. C. T. Lee, S. S. Tseng, R. C. Chang, and Y. T. Tsai, Introduction to the

Design and Analysis of Algorithms. McGraw-Hill Education (Asia), 2005.

[11] A. (Villanova U. Levitin, Introduction to The Design & Analysis of Algorithms,

2nd ed. Pearson Education, 2007.

[12] C. C. K., L. K. F., and L. C. S., Rapid Prototyping: Principles and Applications,

 49

Second Edi. World Scientific Publishing Co. Pte. Ltd., 2003.

[13] V. Seheda, “Paralepiped-plane optimizing algorithm for finding the trajectory

of cutting instrument in full perpendicular processing of three-dimensional

component through the information obtained from the STL-file,” Mod. Probl.

Radio Eng. Telecommun. Comput. Sci. 2008 Proc. Int. Conf., pp. 59–62, 2008.

[14] A. C. Brown and D. De Beer, “Development of a stereolithography (STL)

slicing and G-code generation algorithm for an entry level 3-D printer,” IEEE

AFRICON Conf., 2013.

[15] S. J. Keating, J. C. Leland, and L. C. and N. Oxman, “Toward site-specific and

self-sufficient robotic fabrication on architectural scales,” Sci. Robot., vol. Vol.

2, no. Issue 5, 2017.

[16] V. Vladareanu, S. B. Cononovici, R. I. Munteanu, H. Wang, Y. Feng, and L.

Vladareanu, “Modelling Inverse Kinematics for Virtual Environment Robot

Simulation,” Proc. - 2017 21st Int. Conf. Control Syst. Comput. CSCS 2017, pp.

500–505, 2017.

[17] R. K. Mittal and I. J. Nagrath, Robotics and control. Tata McGraw-Hill

Publishing Company Limited, 2003.

[18] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable robot

simulation framework,” Intell. Robot. Syst. 2013 IEEE/RSJ Int. Conf. on. IEEE,

pp. 1321–1326, 2013.

[19] R. F. T. Alen and M. F. Silva, “Development and simulation on V-REP of an

algorithm for the RoboCup@Work BNT,” 2014 IEEE Int. Conf. Auton. Robot

Syst. Compet. ICARSC 2014, pp. 315–320, 2014.

[20] A. A. Robotics, “Data sheet IRB 4600 features and specification,” 2018.

[Online]. Available:

https://library.e.abb.com/public/241c8d349f9140839b6bd453f911ac45/IRB46

00_ROB0109EN_J_datasheet.pdf?x-

sign=UqzkUZ/cqzAWEWu97+z4/sI1iWhCuLz2RL4VYVIoTFQJJC1r+jwpA

DlXiAo0zny3.

[21] B. Rahnama, M. C. Ozdemir, Y. Kiran, and A. Elci, “Design and

implementation of a novel weighted shortest path algorithm for maze solving

robots,” Proc. - Int. Comput. Softw. Appl. Conf., pp. 328–332, 2013.

 50

APPENDIX A

Total distance travelled analysis coding in Scilab

x=rand(1,100)

y=rand(1,100)

z=rand(1,100)

[j,s]=size(x)

scatter3(x,y,z)

comet3d(x,y,z)

j=1

Q(1)=0

r=1

while j<s-1

 j=1:s-1

 p=sqrt((x(j)-x(j+1))^2+(y(j)-y(j+1))^2+(z(j)-z(j+1))^2)

end

Q=sum(p)

scf()

scatter3(x,y,z)

E(1)=0

q=1

cx(1)=x(1);cy(1)=x(1);cz(1)=x(1);

while s>2

[j,s]=size(x)

i=1:s-1

d=sqrt((x(1)-x(i+1))^2+(y(1)-y(i+1))^2+(z(1)-z(i+1))^2)

[m,k]=min(d)

c1= x(k+1)

c2= y(k+1)

c3= z(k+1)

 51

[row,column]=find(x==c1 & y==c2 & z==c3)

x(:,column)=[]

y(:,column)=[]

z(:,column)=[]

x(1)=c1

y(1)=c2

z(1)=c3

cx(q+1)=c1

cy(q+1)=c2

cz(q+1)=c3

E(q)=m

q=q+1

crdx=cx'

crdy=cy'

crdz=cz'

end

N=sum(E)

comet3d(crdx,crdy,crdz)

