

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: LICENSE PLATE IMAGE RECOGNITION FOR PARKING SYSTEM USING MOBILE APPLICATION

Sesi Pengajian: 2019

Saya GEETHASRI A/P NAGARAJAN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT*

X

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD*

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD

Yang benar,

GEETHASRI NAGARAJAN

Disahkan oleh penyelia:

ZULHAIRI BIN UTHMAY

Karung Berkunci Ne 1752 t Pos Durian Tungge וכהחתיו

rsiti Teknikal Malaysia Melaka " ****

Pensyarah Bektronik Dan Kejuruteraan Kuu

ZULHAIRI BIN OTHMAN

Cop Rasmi Penyelia

indi Labru

NO. 42, JALAN RAJA NALA 18,

TAMAN SAUJAN,

42200 KAPAR,

Alamat Tetap:

SELANGOR

Tarikh: 7 JANUARY 2019

Tarikh:

7 Jan 2019

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitle "License Plate Image Recognition for Parking System using Mobile Application" is the results of my own research except as cited in references.

W-luttafii

Author :

1

Signature:

Date:

¢.

JANUAR 2019

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms scope and quality for the award of Bachelor of Electronic Engineering Technology (Industrial Electronic) with Honours.

Signature:

Supervisor:

6

ZULHAIRI BIIN OTHMAN

v

ABSTRAK

Antara cabaran yang dihadapi oleh pengguna dalam kehidupan seharian, salah satu cabaran yang paling tidak dapat dielakkan adalah menccari tempat letak kereta. Apabila keperluan pengguna meningkat, perjalanan mereka turut meningkat. Ini menyumbang kepada peningkatan dalam penggunaan kenderaan dan peningkat populasi di mana proses mencari tempat letak kereta telah menjadi kerisauan pengguna terutama pada waktu yang sibuk. Semasa waktu ynag sibuk, kebanyakan tempat letak kereta telah ditempah dan ini mengundang pengguna terpaksa mencari tempat letak kereta lain yang menyebabkan gangguan lalu lintas dan membuat pengguna tanpa petunjuk mengenai ruang letak kereta yang kosong. Apabila pengguna melawat pelbagai tempat awam seperti pusat membeli-belah, pawagam dan hotel multiplex semasa waktu perayaan atau hujung minggu, ia menyebabkan masalah mencari tempat letak kereta. Menurut satu kajian yang dijalankan oleh Boston Consulting Group (BCG), iaitu "Unlocking Cities", penduduk Kuala Lumpur menghabiskan purata sekurang-kurangnya 25 limit setiap hari untuk mencari tempat letak kereta yang berjumlah hingga 6.3 hari berturut. Kajian membawa kepada 30 hingga 40 peratus kesesakan lintas. Bagi mengatasi masalah ini pasti keperluan untuk tempat letak kereta yang terancang. Untuk merancang slot kereta tersebut, tempahan slot tempat letak kereta perlu diambil kira dengan ruang tempat letak kereta yang optimum yang bergantung kepada kos dan masa. Oleh itu, kajian ini mencadangkan aplikasi Android yang digunakan untuk melaksanakan prototaip "License Plate Image Recognition for Parking System Using Mobile Application" yang membolehkan pemandu mencari ruang letak kosong dengan berkesan dengan bantuan "Internet of Things". Projek ini direka untuk mengurangkan kesulitan pengguna mencari tempat letak kereta dan ia melibatkan Teknik pemprosesan imej untuk nombor plat kereta.

1.0

ABSTRACT

Among the challenges that users face in day to day life, one of the most unavoidable challenge is finding car parking. As users' daily needs increase, their travelling increase. This made the drastic increase in usage of vehicles and increase in population where finding a car park slot has been a major concern particularly during busiest hours of the day. During peak hours most of the reserved parking area gets full and this leaves the user to search for their parking among other parking area which creates more traffic and leaves them with no indication on availability of parking space. When users visit the various public places like shopping malls, multiplex cinema hall & hotels during the festival time or weekends it creates more parking problem. According to a study conducted by the Boston Consulting Group (BCG) called, "Unlocking Cities", Kuala Lumpur folks spend an average of at least 25 minutes daily in search of parking which totals up to 6.3 consecutive days. This searching leads to 30 to 40% of traffic congestion. In order to overcome this problem, there is definitely a need for designed parking in commercial environment. To design such parking slot, account of reservation should be taken of parking slot with optimal parking space which depends on cost and time. This paper proposes an android application, which is used to implement a prototype of License Plate Image Recognition for Parking System Using Mobile Application that allows drivers to effectively find and reserve the vacant parking spaces with the help of IoT (Internet of Things). This project is designed to reduce the hassles in finding parking and it involves the method of image processing techniques for license plate number.

'n.

DEDICATION

To my beloved mother and father

viii

C Universiti Teknikal Malaysia Melaka

6

ACKNOWLEDGMENT

I would like to articulate my gratitude and indebtedness to my project guide Mr. Zulhairi bin Othman who has always been a constant motivator and guiding factor throughout the project time in and out as well. It has been a great pleasure for me to get opportunity to work under and complete the project successfully.

Special thanks to all my peers, my beloved mother and father and siblings for their moral support in completing this degree. Lastly, thank you to everyone who had been to the crucial parts of realization of this project. Not forgetting, my humble apology as it is beyond my reach personally mentioned those who are involved directly and indirectly one to one.

1.1

TABLE OF CONTENTS

TABLE OF CONTENTS	x
LIST OF TABLES	xv
LIST OF FIGURES	xvi
LIST OF APPENDICES	xviii
LIST OF ABBREVIATIONS	xix
ACKNOWLEDGEMENT	

CHAPTER 1 INTRODUCTION

b

1.1	Motivation	1
1.2	Project Background	1
1.3	Problem Statement	2
1.4	Objective	3
1.5	Scope	3

CHAPTER 2 LITERATURE REVIEW

2.1	Introdu	uction	5
2.2	Related Researches		
2.3	Smart	Parking System Research	7
	2.3.1	Website and Android	7
	2.3.2	RFID	9
	2.3.3	RFID and GSM	11

		2.3.4	QR code	11
		2.3.5	Ultrasonic Sensor	13
		2.3.6	Infrared Sensor	13
(X.1)		2.3.7	Comparison between Infrared Sensor and Ultrasonic Sensor	14
	2.4	Resear	ch Comparison between Smart Parking System	15
	2.5	Develo	opment Number Plate Recognition System	18
	2.6	Existin	g Number Plate Recognition System	19
		2.6.1	Tracking of Vehicles from License Plate	21
		2.6.2	License Plate Recognition System Based on Image Processing Using LabVIEW	22
		2.6.3	License Plate Extraction of Images using Raspberry Pi	22
	2.7	Compa	arison Development Technique System	23
		2.7.1	Character segmentation and Character Recognition Comparing with Database images	23
	2.8	Image	Processing System	24
		2.8.1	Image Acquisition	25
		2.8.2	Image Pre-processing	26
		2.8.3	Localization	27
		2.8.4	Character Segmentation	28
		2.8.5	Optical Character Recognition	29
	2.8	Pixels		29
	2.10	Hardw	are and Software Review	30

		2.10.1	IR Sensor Module	30
		2.10.2	Arduino Microcontroller	31
		2.10.3	LabVIEW Interfacing	34
		2.10.4	MIT App Inventor	34
0		2.10.5	Firebase Database	35
	СНАРТИ	R3 N	IETHODOLOGY	
	3.1	Introdu	ction	36
	3.2	Plannin	g	36
	3.3	Project	Flow	37
		3.3.1	The explanation of the flowchart project planning is described	39
		3.3.2	Information Gathering	40
		3.3.3	Designing Process	40
		3.3.4	Testing and Troubleshooting	40
		3.3.5	Redesigning	41
	3.4	Flowch	art of Project	42
		3.4.1	Flowchart of Mobile Application and Apps Database	42
		3.4.2	Flowchart process of Car Entry	44
		3.4.3	Flowchart process of Car Exit	46
		3.4.4	Flowchart of Optical Character Recognition System	48
	3.5	Design		50
		3.5.1	Block Diagram of License Plate Image Recognition for Car Parking System using Mobile Application	50
	3.6	Hardwa	are Implementation	51

		3.6.1 Circuit Arduino with IR Sensor Module	53
		3.6.2 Circuit Arduino with Servo Motor	53
		3.6.3 Schematic setup for Hardware	54
		3.6.4 Project Installation	56
e	3.7	Circuit Testing	58
	3.8	3.8.1 LabVIEW 2018 Software	59
		3.8.2 NI Vision 2018 Software	62
	3.9	Gantt Chart	63
	СНАРТ	FER 4: RESULTS AND DISCUSSION	
	4.1	Introduction	64
	4.2	Hardware Configuration	64
	4.3	Software Configuration	67
		4.3.1 Mobile Application	67
		4.3.2 Firebase Database	71
		4.3.3 LabVIEW	71
	4.4	Analysis in NI Vision Assistant	74
		4.4.1 Font	75
		4.4.2 Distance of the license plate from the camera	76
	CHAP	FER 5: CONCLUSION AND FUTURE WORK	
	5.1	Introduction	81
	5.2	Conclusion	81
	5.3	Future Work	81
	REFER	RENCES	82
	APPEN	DICES ,	85

xiii

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Summary of researched smart parking journal	15
2.2	Comparison character segmentation and recognition with	23
	database	
2.3	IR Sensor Module specification	31
3.1	Configuration pin in Arduino	55
3.7	Gantt Chart	63
4.1	Car entry process	64
4.2	Car exit process	66
4.3	Mobile application sign up and booking database	68
4,4	Flexibility of OCR image process in different font	75
4.5	Flexibility of OCR image process in different distance at CAM1	77
	(entrance)	
4.6	Flexibility of OCR image process in different distance at CAM1	78
	(exit)	

xiv

1.6

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	K-Chart Parking System	6
2.2	Smart Parking Frame	8
2.3	System Architecture	8
2.4	Smart Parking System using RFID	10
2.5	Smart Parking System Using QR code	12
2.6	Acquisition and Image Processing	24
2.7	Representation of Pixel in RGB Format	25
2.8	Original Image taken as input	25
2.9	RGB to Gray Conversion of Inputted Image	25
2.10	An original car photo	27
2.11	The edge of the image	27
2.12	Dilated Image	28
2.13	The car license plate positioned initially	29
2.14	The image after the character segmentation	29
2.15	IR Sensor Module	30
2.16	The architecture of Arduino UNO	32
2.17	MIT App Inventor	34
3.1	Major steps in methodology	35
3.2	Flowchart of Project Planning	37

3.3	Flowchart of Mobile Application and Apps Database	41
3.4	Flowchart of process of Car Entry	43
3.5	Flowchart of process of Car Exit	45
3.6	Flowchart Optical Character Recognition System	47
3.7	Block Diagram of License Plate Image Recognition for Car	49
3.8	USB WebCam	50
3.9	Laptop	50
3.10	Arduino UNO Microcontroller	51
3.11	Infrared Sensor Module	51
3.12	Servo Motor	51
3.13	Circuit Arduino with IR sensor module	52
3.14	Circuit Arduino with Servo Motor	52
3.15	Schematic setup for hardware	55
3.16	Jumper wire connection	56
3.17	Parking board preparation	57
3.18	Main board parking system	57
3.19	Complete parking system hardware	58
3.20	Circuit testing	58
3.21	LabVIEW software	59
3.22	Block diagram of initializing camera setting	60
3.23	Block diagram image capturing and OCR process	60
3.24	Block diagram Arduino initialization	61

ı

3.25	Block diagram of communication between IR sensor and Servo Motor	61	
3.26	NI Vision Assistant Software	62	
4.1	Sign up database	71	
4.2	Booking database	71	
4.3	First stage of character recognition process	72	
4.4	Training the OCR reader	72	
4.5	Matched license plate	73	
4.6	Pass signal for matched license plate	74	

1001

xvii

E.

LIST OF APPENDICES

APPENDIX

χ.

TITLE

PAGE

Appendix MIT App Inventor

1.1

86

xviii

"

LIST OF ABBREVIATIONS

0.00

FYP	÷.	Final Year Project
GUI	4	Graphical User Interface
JPEG	-	Joint Photographic Expert Group
PC		Personal Computer
FTKEE	÷.,	Fakulti Teknologi Kejuruteraan Elektrik Dan Electronic
LED	÷	Light Emitting Diode
IR		Infrared Radiation
RGB	~	Red Green Blue
RFID	-	Radio-Frequency Identification
GSM	-	Global System for Mobile Communication
IDE		Integrated Development Environment
USB	~	Universal Serial Bus
OCR	8	Optical Character Recognition
TFF	÷	Tagged File Format
bmp	5	Bitmaps
ANPR	-	Automatic Number Plate Recognition
ALPR	÷	Automatic License Plate Recognition
AVI	15	Automatic Vehicle Identification
UK	-	United Kingdom
LCD	÷	Liquid Crystal Display
AVM	ŧ_	Around View Monitor

xix

C Universiti Teknikal Malaysia Melaka

QR	-	Quick Response
SPSR	+	Smart Parking System Based on Reservation
SMS	÷.	Short Message Service
OPS	3	Online Parking System
IoT	3	Internet of Things
ROI	-	Region of Interest

0.0

C Universiti Teknikal Malaysia Melaka

4

CHAPTER 1

INTRODUCTION

1.1 Motivation

The elementary inspiration of this project is to diminish the traffic congestion that occurs in and around the urban zones which is caused by vehicles looking for parking. Many articles are seen in the newspapers regarding the parking problem in all over Malaysia like Kuala Lumpur, Penang, Johor Bahru and many metropolitan cities. During rush hours most of the reserved parking area gets occupied and this makes the user to find for their parking among other parking area which creates more traffic and leaves them with no sign on availability of parking space. Smart city is an innovation that focus to coordinate various information and communication solutions to local with crucial services like smart parking inside the all streets. Nowadays, the parking system has been improved with new advance technology that allowing urban groups to reduce the congestion level altogether. Internet of Things (IoT) is also new progression which helps in identification of vehicle availability by primary data and computational ability to make an intelligent parking system. The main motive of using IoT for parking is to gather the data easily for available parking slots. This work presents the basic model of IoT-based Real Time smart Parking System with attainable data to make it easier for users to locate a free parking slot at the shopping malls or hotels.

1.2 Project Background

This system develops the car park as an IoT network, and the information that contain the number of spaces in car park areas will be exchanged to the data center. The data center performs as a cloud service to display the parking lots and frequently updates and are accessible any time by the user in the network by using mobile application. This research additionally implements a system prototype based on Arduino with License Plate Recognition method using a smartphone that provides the communication and user interface for both the control system and the cars' number plate to confirm the feasibility of the proposed system. The user will register car number plate using Android application which will be in saved in Cloud for reservation purpose. Upon reaching the parking entrance, the number plate of the car will be captured by the camera. This system able to automatically remove and perceive a car plate number's characters from the captured image. It includes a camera to grab an image, to find the location of the number in the image and then remove the characters for characters recognition tool to translate it into attainable data format. This system will make comparison with the existing data stored in the image database which managed by the admin. The user is unable to access into the parking lot if the number plate does not match.

1.3 Problem Statement

2

Currently, the common strategy of finding a parking spot is manual where the driver generally searches a space in the street through luck and experience. User having difficulty to find parking during peak hours where most of the reserved parking area gets full. When users visit the various public places like shopping malls and hotels during the festive season or weekends it creates more parking problem. This process requires extra time and effort when the user fails to find parking space in a city with high vehicle density.

1.4 Objectives

The objectives of this research are as follows:

- To study and develop the relation between LabVIEW and license plate recognition using camera.
- To design and integrate a smart monitoring parking system hardware and software with LabVIEW and Android application.
- To analyze the efficiency of license plate image recognition with the image database.

1.5 Scope

This system is build based on the Arduino and Android application. Scope of this project will be divided into four modules which integrates between microcontroller, sensor, hardware and the software. Microcontroller will be the central processing unit where it integrates between the IR sensor, servo motor and the image database at the same time send information to users. Hardware compromises of Infrared sensor to indicate the car entry and exit and USB WebCam camera where it acts as machine vision to recognize the character on the license plate of car and send to LabVIEW database for interpretation of matching license plate. Microcontroller scope is limited to check presence and lifting up and down the barricade. Image recognition scope is to recheck that the exact car that have made the booking have accessed the parking. If else, fine or clamp will be issued for unauthorized vehicle. The main scope of this project is to develop a monitoring parking system using image recognition technique to accomplish car user needs that can control and monitor the

2

car at parking spaces specifically in shopping center building and hotel. This system focuses in the building which has limited parking spaces.

 (\mathbf{r}_{i})

C Universiti Teknikal Malaysia Melaka

4

1

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents literature review of the development of License Plate Image Recognition for Parking System Using Mobile Application. The main idea behind this project is to enable the client to book a parking slot in advance and display number of free slots in that particular area. This chapter additionally covers the theoretical background and concepts of this project in relation with the parking system type, image recognition method, and communication through mobile application. Besides that, the advantages and disadvantages of this project will be shown too.

2.2 Related Researches

The study of previous researches related directly or indirectly have been discussed and reviewed based on K – Cart as shown in figure 2.1. K – Chart is a method to show the understanding and flow of the project related to establish a new method to complete this project. This chart is a basic knowledge to this project to prevent drawbacks when completing this project.

(C) Universiti Teknikal Malaysia Melaka

ź.