

### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# AUTOMATIC VENDING PARKING SYSTEM (CYLINDRICAL DESIGN)

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the BACHELOR OF ELECTRICAL ENGINEERING TECHNOLOGY (INDUSTRIAL POWER) with Honours.

by

## FELIX ABON ANAK JINGGAI B071510145

930918-13-5947

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2018

🔘 Universiti Teknikal Malaysia Melaka



### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: AUTOMATIC VENDING PARKING SYSTEM (CYLINDRICAL DESIGN)

Sesi Pengajian: 2018

Saya **FELIX ABON ANAK JINGGAI** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk

tujuan pengajian sahaja dengan izin penulis.

3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

| 4. | **Sila | tandakan | (X) |
|----|--------|----------|-----|
|----|--------|----------|-----|

TIDAK

TERHAD

X

Yang benar,

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA SULIT\* RAHSIA RASMI 1972.

TERHAD\* Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

Disahkan oleh penyelia:

| FELIX ABON ANAK JINGGAI          | SITI NUR SUHAILA BINTI MIRIN |
|----------------------------------|------------------------------|
| Alamat Tetap:                    | Cop Rasmi Penyelia           |
| BLOK 15, G-1, VISTA SERI ALAM,   |                              |
| JLN PERSIARAN, BANDAR SERI ALAM, |                              |
| 81750 MASAI, JOHOR.              |                              |
|                                  |                              |

Tarikh:

Tarikh:

\*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini berlu dikelaskan sebagai SULIT atau TERHAD.

## DECLARATION

I hereby, declared this report entitled AUTOMATIC VENDING PARKING SYSTEM (CYLINDRICAL DESIGN) is the results of my own research except as cited in references.

Signature: .....

Author : FELIX ABON ANAK JINGGAI

Date:

### APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

.....

(Project Supervisor: Siti Nur Suhaila Binti Mirin)

### ABSTRACT

Human population keeps increasing in numbers which cause small country like Malaysia to be crowded especially in a big city like the capital city of Malaysia, Kuala Lumpur. This cause an increased number of vehicle on the road, which contributes to a problem lack of public parking area. This project aims to introduce automatic parking system to overcome such problem. The prototype to develop a multi-storey automatic parking system by using circular shape design which will reduce the amount of land used for the traditional parking area. The prototype will use linear elevator type of mechanism which using rack and pinion to drive the elevator system which used to deliver and receive the vehicles automatically which control by graphical programming written using LabVIEW software that uploads inside Arduino Mega 2560 board microcontroller. In this project, a comparison between automated and manual parking system based on cost, land requirement, safety and time-saving also will be conducted with analysis to determine and prove that automated parking system provide more benefit and cost-effective to be used. As the system operated automatically, human error could be reduced, which improve the security in public parking area.

### ABSTRAK

Bilangan manusia semakin meningkat dalam jumlah yang menyebabkan negara kecil seperti Malaysia menjadi ramai terutama di bandar besar seperti ibu kota Malaysia, Kuala Lumpur. Ini menyebabkan peningkatan jumlah kenderaan di jalan raya, yang menyumbang kepada masalah kekurangan ruang letak kereta awam. Projek ini bertujuan memperkenalkan sistem letak kereta automatik untuk mengatasi masalah tersebut. Prototaip untuk membangunkan sistem parkir automatik berbilang tingkat dengan menggunakan reka bentuk bulat yang akan mengurangkan jumlah tanah yang digunakan berbanding dengan kawasan letak kereta tradisional. Prototaip ini akan menggunakan mekanisme lif linear yang menggunakan rak dan pinion untuk memacu sistem lif yang digunakan untuk menyampaikan dan menerima kenderaan secara automatik yang dikawal oleh pengaturcaraan grafik ditulis menggunakan perisian LabVIEW yang dimuat naik di dalam mikrokontroler papan Arduino Mega 2560. Dalam projek ini, perbandingan antara sistem letak kereta automatik dan manual berdasarkan kos, keperluan tanah, keselamatan dan penjimatan masa juga akan dilakukan dengan analisis untuk menentukan dan membuktikan bahawa sistem letak kereta automatik menyediakan lebih banyak faedah dan kos lebih efektif untuk digunakan. Oleh kerana sistem beroperasi secara automatik, kesilapan manusia dapat dikurangkan, yang meningkatkan keselamatan di tempat letak kereta awam.

### **DEDICATION**

To my beloved parents, I give a lot of thank for keep motivate and provide support for completing this research. I also want to give thank to all my roommate and colleague, that help to provide solution and overcome challenges through all the process of completing this project. Lastly, I would like to give thank to my supervisor that help guide and assists me until the end of this project.

## TABLE OF CONTENT

| Abstract                            | V    |
|-------------------------------------|------|
| Abstrak                             | vi   |
| Table of content                    | viii |
| List of tables                      | xiii |
| List of figures                     | xiv  |
| Chapter 1: Introduction             |      |
| 1.1 Background of the project       | 1    |
| 1.2 Statement of the problem        | 3    |
| 1.3 Objective                       | 4    |
| 1.4 Scope                           | 5    |
| 1.5 Organization                    | 6    |
| Chapter 2: Literature review        |      |
| 2.1 Automated parking system        | 8    |
| 2.2 Automated parking system design |      |
| 2.2.1 Semi-circular design          | 9    |
| 2.2.2 Vertical design               | 11   |
| 2.2.3 Rectangular design            | 12   |
| 2.2.4 Rotary design                 | 12   |

| 2.2.5 Circular design      | 13 |
|----------------------------|----|
| 2.3 Storage configuration  |    |
| 2.3.1 Crane system         | 14 |
| 2.3.2 Tower system         | 15 |
| 2.3.3 Silo system          | 16 |
| 2.4 Type of arrangement    |    |
| 2.4.1 Tower-rotary type    | 17 |
| 2.4.2 Step-stacker type    | 18 |
| 2.4.3 stacker type         | 19 |
| 2.5 Component and material |    |
| 2.5.1 Arduino Mega 2560    | 20 |
| 2.5.2 DC motor             |    |
| 2.5.2.1 Stepper motor      | 21 |
| 2.5.2.2 DC motor gear      | 23 |
| 2.5.3 Sensor               |    |
| 2.5.1 IR sensor            | 23 |
| 2.5.2 Ultrasonic           | 25 |
| 2.5.4 Mechanical part      |    |
| 2.5.4.1 Rack and pinion    | 26 |
| 2.5.4.2 Hydraulic          | 28 |
| 2.5.5 Motor driver         |    |
| 2.5.5.1 L298N motor driver | 29 |
| 2.5.5.2 Relay              | 30 |
| 2.5.5.3 Power MOSFET       | 31 |

2.6 Preparation of project

| 2.6.1 Comparison between traditional parking                            |    |
|-------------------------------------------------------------------------|----|
| system and automatic parking system                                     | 32 |
| 2.7 Summary of literature review                                        | 34 |
|                                                                         |    |
| Chapter 3: Methodology                                                  |    |
| 3.1 Research design                                                     | 36 |
| 3.11 Flowchart                                                          | 38 |
| 3.2 Selection of material                                               |    |
| 3.2.1 Arduino Mega 2560                                                 | 40 |
| 3.3.2 Stepper motor                                                     | 40 |
| 3.3.3 IR sensor                                                         | 41 |
| 3.3.4 Rack and pinion                                                   | 41 |
| 3.3.5 L298N motor driver                                                | 42 |
| 3.3.6 Relay                                                             | 42 |
| 3.4 Preparation of project                                              | 43 |
| 3.4.1 Schematic circuit                                                 | 44 |
| 3.4.2 Software                                                          |    |
| 3.4.2.1 Arduino IDE software                                            | 46 |
| 3.4.2.2 LabVIEW                                                         | 47 |
| 3.4.2.3 Solidwork                                                       | 48 |
| Chapter 4: Results & discussion                                         |    |
| 4.0 Introduction                                                        | 49 |
| 4.1 Analysis on time for LabView to communicate with Arduino Mega 2560  |    |
| to perform its tasks                                                    | 49 |
| 4.1.1 Time taken for sorting process of vehicles at parking lot 1,2 & 3 | 50 |

X C Universiti Teknikal Malaysia Melaka

| 4.1.1.1 Time taken for sorting process of vehicles at parking           |    |
|-------------------------------------------------------------------------|----|
| lot 1                                                                   | 50 |
| 4.1.1.2 Time taken for sorting process of vehicles at parking           |    |
| lot 2                                                                   | 52 |
| 4.1.1.3 Time taken for sorting process of vehicles at parking           |    |
| lot 3                                                                   | 54 |
| 4.1.1.4 Comparison time taken for sorting process of vehicles           |    |
| at parking lot 1, 2, & 3                                                | 54 |
| 4.1.2 Time taken for sorting process of vehicles at parking lot 1,2 & 3 | 57 |
| 4.1.2.1 Time taken for sorting process of vehicles at parking           |    |
| lot 1                                                                   | 57 |
| 4.1.2.2 Time taken for sorting process of vehicles at parking           |    |
| lot 2                                                                   | 59 |
| 4.1.2.3 Time taken for sorting process of vehicles at parking           |    |
| lot 3                                                                   | 61 |
| 4.1.2.4 Comparison time taken for retrieve process of vehicles          |    |
| at parking lot 1, 2, & 3                                                | 63 |
| 4.1.3 Comparison time taken for sorting & retrieve process              | 64 |
| 4.2 Analysis on energy consumption of the system                        | 65 |
| 4.3 Analysis on the time management for each process for prediction     |    |
| on real scale of development of this project                            | 68 |
|                                                                         |    |
| Chapter 5: Conclusion & future work                                     |    |
| 5.0 Introduction                                                        | 73 |
| 5.1 Conclusion                                                          | 73 |

| 5.2 Future work | 75  |
|-----------------|-----|
| Reference       | 77  |
| Appendix A      | 80  |
| Appendix B      | 82  |
| Appendix C      | 95  |
| Appendix D      | 100 |

## LIST OF TABLES

| Table 2.1: Specification of Arduino microcontroller board                | 21 |
|--------------------------------------------------------------------------|----|
| Table 2.2: L298N motor driver dual H-bridge specification                | 30 |
| Table 2.3: Comparison between automatic and traditional parking          | 33 |
| Table 2.4: Analysis data between automatic and traditional parking       | 34 |
| Table 3.1: Requirement I/O of Arduino Mega 2560                          | 40 |
| Table 4.1: Power consumption when sorting or retrieval process occur     |    |
| at parking lot 1                                                         | 66 |
| Table 4.2: Power consumption when sorting or retrieval process occur     |    |
| at parking lot 2                                                         | 66 |
| Table 4.3: Power consumption when sorting or retrieval process occur     |    |
| at parking lot 3                                                         | 66 |
| Table 4.1: Average time management for each process                      | 69 |
| Table 4.5: Comparison of time management between traditional car parking |    |
| and automatic car parking system                                         | 71 |

## LIST OF FIGURES

| Figure 1.1 Garage Rue de Ponthieu in Paris                               | 2  |
|--------------------------------------------------------------------------|----|
| Figure 1.2 unprofessional parking                                        | 4  |
| Figure 1.3 Flow chart of frame work                                      | 7  |
| Figure 2.1 Automated parking system (a) Design (b) Storage configuration |    |
| (c) Type of arrangement                                                  | 9  |
| Figure 2.2 Design of semi-circular automatic parking system              | 10 |
| Figure 2.3 Design of semi-circular automatic parking system with         |    |
| separated block building                                                 | 10 |
| Figure 2.4 Design of vertical automatic parking system                   | 11 |
| Figure 2.5 Design of rectangular automated parking system                | 12 |
| Figure 2.6 Design of rotary vertical automated parking system            | 13 |
| Figure 2.7 Design of circular automatic parking system produced by       |    |
| Volkswagen in Germany                                                    | 14 |
| Figure 2.8 Crane system of automated parking system                      | 15 |
| Figure 2.9 Tower system of automated parking system                      | 16 |
| Figure 2.10 Silo system of automated parking system                      | 16 |
| Figure 2.11 Tower-rotary arrangement type                                | 17 |
| Figure 2.12 Step-stacker arrangement type                                | 18 |
| Figure 2.13 Stacker arrangement type (a) horizontal design               |    |
| (b) cylindrical design                                                   | 19 |
| Figure 2.14 Arduino Mega 2560                                            | 21 |
| Table 2.1 Specification of Arduino microcontroller board                 | 21 |
| Figure 2.15 Bipolar NEMA 17 stepper motor                                | 22 |

| Figure 2.16 DC motor gear                                                          | 23 |
|------------------------------------------------------------------------------------|----|
| Figure 2.17 IR sensor-based obstacle detection schematic circuit                   | 24 |
| Figure 2.18 Working principle of IR sensor                                         | 25 |
| Figure 2.19 Comparison IR sensor and Ultrasonic sensor in distance                 |    |
| measurement with different materials.                                              | 26 |
| Figure 2.20 Rack and pinion arrangement                                            | 27 |
| Figure 2.21 Rack and pinion (a) straight teeth (b) helical teeth (c) roller pinion | 28 |
| Figure 2.22 Hydraulic system                                                       | 29 |
| Figure 2.23 L298N motor driver                                                     | 29 |
| Figure 2.24 Relay module 1 channel SPDT                                            | 31 |
| Figure 2.25 Power MOSFET H-bridge connection                                       | 32 |
| Figure 3.1 Control process of the automatic parking system.                        | 38 |
| Figure 3.2: Flowchart of (a) emergency status (b) storage command                  |    |
| (c) retrieval command.                                                             | 38 |
| Figure 3.3 Process flow of the methodology                                         | 39 |
| Figure 3.4 Two stepper motor connected with the L298N motor driver                 | 42 |
| Figure 3.5 SPDT Relay connected as H-bridge with Motor gear.                       | 43 |
| Figure 3.6 Block diagram of the automatic parking system                           | 44 |
| Figure 3.7 Full schematic circuit of the automatic parking system                  | 45 |
| Figure 3.8 Arduino IDE software workplace                                          | 46 |
| Figure 3.9 Function and control pallete                                            | 47 |
| Figure 3.10 Design of the automatic parking system (a) front view (b)              |    |
| top view (c) cross-view                                                            | 48 |
| Figures 4.1 Graph analysis of time taken for sorting process at parking lot 1      | 51 |
| Figures 4.2 Graph analysis of time taken for sorting process at parking lot 2      | 53 |

| Figures 4.3 Graph analysis of time taken for sorting process at parking lot 3  | 55 |
|--------------------------------------------------------------------------------|----|
| Figures 4.4 Graph analysis of time taken for retrieve process at parking lot 1 | 58 |
| Figures 4.5 Graph analysis of time taken for retrieve process at parking lot 2 | 60 |
| Figures 4.6 Graph analysis of time taken for retrieve process at parking lot 3 | 62 |
| Figures 4.7 Example of timing belt attached to pulley with used in parallel    |    |
| Conveyor                                                                       | 64 |
| Figure 4.8 Graph analysis of power consumption when perform tasks at           |    |
| parking lot 1                                                                  | 67 |
| Figure 4.8 Graph analysis of power consumption when perform tasks at           |    |
| parking lot 2                                                                  | 67 |
| Figure 4.8 Graph analysis of power consumption when perform tasks at           |    |
| parking lot 3                                                                  | 68 |
| Figure 4.11 Flow of automatic car parking process                              | 69 |
| Figure 4.12 Front panel control of LabView for Automatic parking               |    |
| system for one part of single lifting platform                                 | 71 |
| Figure 4.13 Dual lifting platform of automatic car parking system              | 72 |



### **CHAPTER 1**

### **INTRODUCTION**

#### **1.0 Introduction**

In this chapter, it provides an information regarding automatic parking system evolution from the first design in the year 1905 in Paris until now. It's have been long topic debate by researchers to improve the system which evolves from semi-automatic follow by fully automatic, until recently which become an intelligent system or robotic. The outcome objective and scope of this project will benefit the citizen which made living in a crowded city such as Kuala Lumpur, Malaysia. This project is expected to solve the problem including the requirement of land spaces, time-saving, and parking issues such as unprofessional parking, small accident, etc. Furthermore, it will convert the traditional parking system into more reliable and efficient system while providing better cost-effective to invest, at the same time will boost the economics of the surrounding area.

#### 1.1 Background of the project

The automatic parking system is new technology to replace existing traditional parking system that will solve numerous problem includes less land requirement, user-

friendly and more parking spaces provided. As the global technology is growing year by year to more advanced level, it not possible for the technology that exists nowadays to be used for developing automatic parking system to improve the system redundancy of existing traditional parking system. Furthermore, a research predicted that total income that comes from automated parking system will generate up to \$356.5 million or RM1386.81 million yearly by 2020 globally according to(Jog, Sajeev, Vidwans, & Mallick, 2015). Thus, it will benefit the country due to able give high income with huge profit simultaneously solve the lack of public parking issues.

Automatic parking system or automatic garage not generally new idea or concept but already been first introduced. Garage Rue de Ponthieu situated in Paris develop by architect Auguste Perret was the long establish mechanical parking system that has been acknowledging which build in the year 1905 for storage vehicles at first or second floor according to the book, Mechanical Parking Guide was written by Hamelink (2011). Although the first build garage was semi-automated which required the worker to park manual and have lifting system in the centre to lift the vehicles to the upper level, it resembles most of the existing automatic parking system concept nowadays.



Figure 1.1: Garage Rue de Ponthieu in Paris (Hamelink, 2011)

The prototype will consist of a mechanical system to store and retrieval of vehicles into or out of the parking spaces provided. It will have a centre lift to perform the task and automatically check for which parking spaces available after the driver leaves their vehicles at the base centre platform and store the vehicles. When the driver returns, the control system will command the centre lift to retrieve and return the vehicles back to the owner safely. As cylindrical or circular shape prototype is chosen, it will use silo type system for storage configuration which will use robotic arm or platform as lift mechanism. The rack and pinion will also integrate into the lifting mechanism for smooth and easier movement while at the same time able to carry the payload caused by the vehicles. Due to cylindrical shape is chosen, the centre lift will rotate for storage and retrieval process which make the automatic parking system more effective.

The safety features will add to increases its functionality and avoid unpredictable event to occur by using the PIR sensor to detect any living motion on the centre lift before the storage and retrieval process able to continue.

#### **1.2 Statement of the problem**

The automated parking system is a system which provides more spaces for parking and safety features to help improve the life of a citizen in a crowded city such as Kuala Lumpur, Malaysia. Its assists the citizen by fully automatic park their vehicle to available vacant parking slot, thus reduce time consumption to search for availability vacant parking spaces which the traditional parking building that mostly used this day as shown in **figure 1.2**.



Figure 1.2: unprofessional parking

A lot of research has been made to improve this problem by switching this traditional parking to Automated parking system which more efficient and safe to be used for all citizen. According to book with the title "Mechanical Parking Guide" written by Leon Hamelink, the fully automatic parking system better than traditional, because it provides more benefit include flexibility in term of shape design, vehicles are more secure against damage, theft, and burglary. It helps the driver to park their vehicle effortless and reduce the incident that mostly occurs during parking which could damage their or another vehicle if not properly park in the parking slot.

#### **1.3 Objective**

The objective of the research project as stated below:

- a) To design the multi-storey automatic parking system prototype that using cylindrical design with stacker type of arrangement.
- b) To develop a prototype of multi-storey automatic parking system that storage configuration used the robotic arm as centre lifting mechanism.
- c) To testing and analyse energy consumption and time management for automatic parking system.

#### 1.4 Scope

The scopes of this research include:

- a) Design circular shape disc for each level of parking using prospect plexiglass plastics with an outer circle radius, 14cm and inner circle,7cm in Solidworks software.
- b) Design the robotic arm with a platform for lifting mechanism situated at the centre of the prototype with a height of 31.77cm in Solidworks software.
- c) Develop and assemble each part need for parking spaces which in circular shape disc and lifting mechanism into a complete single prototype using bolt and nut with a gap between each floor level are 7cm.
- d) The prototype is testing and analyses to obtain data comparison between traditional parking and automatic parking system regarding land benefit on spaces, cost-effective and time-saving.
- e) The entry and exits only through single lifting mechanism in silo system which used the single robotic arm to sort or retrieval process that will cause system redundancy to be high. Thus, the research will improve the lifting mechanism in silo system to reduce system redundancy.
- f) The research will improve existing cylindrical or circular shape of automatic parking system to more cost-effective design, less land requirement and utilize more parking spaces each level.
- g) The paper will compare between traditional parking and automatic parking system which will solve the problem of lack and inefficient parking building issues, thus help citizen to reduce their time for finding parking spaces, dealing with unprofessional parking ethic, etc.

h) The automatic parking system will provide well-managed power consumption will help to reduce cost operation which better compares to traditional parking system that constantly needs lightning in each parking area either the floor parking area have vehicles or not.

#### 1.5 Organization

This research organized into 5 main chapter which provide information regarding this project prototype. Chapter 1 is introduction that briefly explain about research background, problem statement, objectives and scope of this research include with rational research and summary of the methodology. Chapter 2 is the literature review that explain the related work done by previous researchers which include design of the automatic parking system, storage configuration and type of arrangement to utilize spaces as possible for parking. It helps to compare which design that more close to realize the objective and scope of this research. Chapter 3 will explain the methodology of this research in detail which include material used for building the prototype, simulation of the design in Solidwork software, schematic circuit, programming used to control the process, etc. Chapter 4 will give the results analysis and discussion of this research. The data collected from prototype will be analyse and compare with traditional parking to determine the research realize it objective. Lastly, Chapter 5 represent conclusion and recommendation where conclude the findings of this research and future improvement that can be done.