

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION OF BUCKLING BEHAVIOUR OF AXIALLY COMPRESSED CONE WITH UNEVEN AXIAL LENGTH HAVING SINUSOIDAL WAVES

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

FAIRUZ MARDHIAH BINTI MAHIDAN B071510486 960909-02-5954

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

🔘 Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: INVESTIGATION OF BUCKLING BEHAVIOUR OF AXIALLY

COMPRESSED CONE WITH UNEVEN AXIAL LENGTH HAVING SINUSOIDAL

WAVES

Sesi Pengajian: 2018

Saya FAIRUZ MARDHIAH BINTI MAHIDAN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

C		SULI	Т*	l N	Mengandu Malaysia s	ıngi m sebagaiı	aklumat nana yang	/ang ber termaktu	darjah b dalam	kesela 1 AKT <i>I</i>	matan a A RAHSI	atau kepen A RASMI	tingan 1972.
٢		TERH	IAD*	N C	Mengandı li mana p	ıngi mal enyelidi	klumat TE kan dijala	RHAD ya 1kan.	ng telah	ditentu	ıkan oleh	ı organisasi/	badan
۵	3	TIDA TERH	K IAD										
Y	ang b	enar,					I	Disahkan	oleh per	nyelia:			
 F	AIRU	Z MAF	RDHIA	HBI	 NTI MAH	IIDAN	I	DR OLAV	VALE I	FAYE	FUNMI		
А М Т 4	Alamat Tetap: Cop Rasmi Penyelia NO 73A, KAMPUNG NELAYAN TELOK GONG, PEL. KLANG 42000, SELANGOR												
Т	arikh:						- -	arikh:					
lika	Lap	oran	PSM	ini	SULIT	atau	TERHAD	, sila	lampi	irkan	surat	daripada	pihak
erku	rkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini												
							ii						

DECLARATION

I hereby, declared this report entitled INVESTIGATION OF BUCKLING BEHAVIOUR OF AXIALLY COMPRESSED CONE WITH UNEVEN AXIAL LENGTH HAVING SINUSOIDAL WAVES is the results of my own research except as cited in references.

Signature:	
Author :	FAIRUZ MARDHIAH BINTI
	MAHIDAN

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	DR OLAWALE IFAYEFUNMI

ABSTRAK

Kajian ini menumpukan kepada penyiasatan kelakuan gelendong kon keluli lembut yang dipotong di bawah kesan beban paksi. Kajian ini dijalankan secara eksperimen menggunakan INSTRON 50kN Universal Testing Machine dan secara numerik menggunakan perisian ABAQUS. Terdapat sejumlah 18 sampel dengan pelbagai nombor gelombang. Kesan panjang paksi yang tidak rata yang mempunyai gelombang sinusoidal serta variasi bilangan gelombang pada kapasiti penyimpanan beban kon diselidiki. Akhirnya, perbandingan antara beban keruntuhan cangkerang konikal sempurna dan tidak sempurna dilakukan. Perbandingan antara perbezaan eksperimen dan numerikal menunjukkan antara 1% hingga 5%. Adalah diperhatikan bahawa panjang paksi yang tidak rata mempunyai kesan yang signifikan terhadap tingkah laku cangkerang konikal

ABSTRACT

The study focuses on investigating the buckling behaviour of mild steel truncated cones under the effect of axial loading. The study is conducted experimentally using INSTRON 50kN Universal Testing Machine and numerically using ABAQUS software. There are a total of 18 samples with various wave number. The effects of uneven axial length having sinusoidal waves as well as the variation of number of waves on the load carrying capacity of cones are investigated. Finally, a comparison between the collapse load of perfect and imperfect conical shells is conducted. Comparison between experimental and numerical shows difference ranging from 1% to 5%. It is observed that uneven axial length had a significant effect towards the buckling behaviour of conical shells but the variation of number of waves shows a minimal effect.

DEDICATION

This report is dedicated to my parents who have always been a constant source of support and encouragement during the challenges of my whole university life. Also to my friends whom I am truly grateful for having in my life.

ACKNOWLEDGEMENTS

I have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals. I would like to extend my sincere thanks to all of them.

I am highly indebted to my supervisor, Dr Olawale Ifayefunmi for his guidance and constant supervision as well as for providing necessary information regarding the project & also for his support in completing the project.

I would like to express my gratitude towards my parents, Mahidan bin Ngademan and Husna binti Hassan for their kind co-operation and encouragement which help me in completion of this project.

I would like to express my special gratitude and thanks to assistant engineers, Mr. Basri bin Bidin, Mr. Mohd Fauzi bin Suleiman and Mr. Azizul Ikhwan bin Mohd for giving me such attention and time.

viii

TABLE OF CONTENTS

		PAGE
TAB	BLE OF CONTENTS	ix
LIST	T OF TABLES	xiii
LIST	T OF FIGURES	xiv
LIST	T OF APPENDICES	xviii
LIST	T OF SYMBOLS	xix
LIST	OF ABBREVIATIONS	XX
LIST	T OF PUBLICATIONS	xxi
CHA	APTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Statement of the Purpose	2
1.3	Problem Statement	3
1.4	Scope	4
СНА	APTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
	2.1.1 Application of Conical Shells in Industries	5
2.2	Buckling Behaviour	6
	2.2.1 Buckling Behaviour of Conical Shells ix	6

	2.2.2	Buckling of Axially Compressed Conical Shells	7
2.3	Туре	of Imperfections	10
	2.3.1	Initial Geometric Imperfections	10
	2.3.2	Loading Imperfections	12
	2.3.3	Dimple Discontinuity	12
	2.3.4	Uneven Length Imperfections	13
2.4	Revie	w of Literature Study	13
CHAI	PTER 3	3 METHODOLOGY	15
3.1	Resea	rch Design	15
3.2	Conce	eptual Design	16
	3.2.1	Sketching and CAD Design	17
3.3	Mater	ial Selection	18
	3.3.1	Advantages of Mild Steel in Engineering Applications	20
3.4	Fabric	eation Process	21
	3.4.1	Cutting Process	22
	3.4.2	Rust Proof	24
	3.4.3	Specimens Gridding	24
	3.4.4	Thickness Measurement Process	25
	3.4.5	Shaping Process	26
	3.4.6	Welding Process	28

СНАР	TER 4	RESULTS AND DISCUSSION	46
	3.5.14	Job Submission	45
	3.5.13	Model Meshing	44
	3.5.12	Displacement Load on Model	43
	3.5.11	Boundary Conditions	42
	3.5.10	Interactions	41
	3.5.9	Field and History Output	39
	3.5.8	Steps	39
	3.5.7	Sets	38
	3.5.6	Assembly of Model using Instance	37
	3.5.5	Model Section	36
	3.5.4	Material Behaviours	34
	3.5.3	Cone Models Importing	34
	3.5.2	Plate Modelling	33
	3.5.1	Introduction to ABAQUS Analysis Software	33
3.5	Numer	ical Analysis Procedure	33
	3.4.9	Experimental Axial Compression Test	32
	3.4.8	Tensile Test of Material	31
	3.4.7	Conical Shell Measurements	29

- 4.1 Introduction
 - xi

46

4.2	Pre-Test Measurement	46
	4.2.1 Thickness Measurement of Specimens	46
	4.2.2 Diameter of Mild Steel Conical Shell	48
	4.2.3 Measurement of Height of Specimens	50
4.3	Mass Measurement	54
4.4	Experimental Procedure	55
4.5	Experimental Results	56
4.6	Comparison between Experimental and Numerical Results	58
СНАН	PTER 5 CONCLUSION AND FUTURE WORKS	65
5.1	Conclusion	65
5.2	Future Works	66
REFE	CRENCES	67
APPE	NDIX	76

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Compar	rison between studies	14
Table 3.1: Propert	ies of Mild Steel	19
Table 3.2: Compos	sition of Mild Steel	19
Table 4.1: Specim	ens Thickness	47
Table 4.2: Diamete	ers of specimens	49
Table 4.3: Vertical	l height of specimens	51
Table 4.4: Slant he	eight of specimens	53
Table 4.5: Mass of	fspecimens	54
Table 4.6: Experin	nental Collapse Load	57
Table 4.7: Collaps	e load of experimental and numerical test	59

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1:	Geometry of perfect cone	8
Figure 2.2:	Geometry of analysed cone (a) subjected to: (b) axial compression	8
Figure 2.3:	Photograph of collapsed cone subjected to axial compression	9
Figure 2.4:	Locations of dimple on cone slant	13
Figure 3.1:	Working Process Flow Chart	15
Figure 3.2:	Conceptual design of a perfect truncated cone	16
Figure 3.3:	Conceptual design of cone having 12 sinusoidal waves of imperfect	tion 17
Figure 3.4:	Dimension of a perfect truncated cone	18
Figure 3.5:	Mild steel plate with 1mm thickness	20
Figure 3.6:	Overall fabrication process of a conical shell specimen	21
Figure 3.7:	Arrangement of 2D drawing in Solidworks	22
Figure 3.8:	LaserJet Cutting Machine	23
Figure 3.9:	A perfect truncated cone cut-out after cutting process	23
Figure 3.10:	Rust proof process by using WD-40	24
Figure 3.11:	A truncated cone with gridlines	25
Figure 3.12:	Thickness measurement at gridlines intersection	26

Figure 3.13:	Conventional Slip Roll Machine	27
Figure 3.14:	Rolling process of a specimen	27
Figure 3.15:	Metal Inert Gas (MIG) Welding	28
Figure 3.16:	A complete conical structure formed after welding process	28
Figure 3.17:	Measurement of a specimen's mass	29
Figure 3.18:	Measurement of inner diameter of a specimen	30
Figure 3.19:	Measurement of outer diameter of a specimen	30
Figure 3.20:	Arrangements of coupons on mild steel sheet	31
Figure 3.21:	INSTRON Universal Testing Machine	32
Figure 3.22:	Plate construction in ABAQUS software	33
Figure 3.23:	A cone with 12 number of waves imported into ABAQUS	34
Figure 3.24:	The elastic material behaviour of the model	35
Figure 3.25:	The plastic material behaviour of the model	35
Figure 3.26:	Section created containing all of the model part	36
Figure 3.27:	The average thickness that was used for current model	37
Figure 3.28:	Independent instance type for both model and plate	37
Figure 3.29:	Five sets created with different parts of model and plate	38
Figure 3.30:	Type of step procedure	39
Figure 3.31:	Field Output selection	40
Figure 3.32:	History Output selection	40
Figure 3.33:	Type of interaction between plate and model xv	41

Figure 3.34:	The property of interaction	42
Figure 3.35:	Boundary conditions of the model	43
Figure 3.36:	Direction and magnitude of compression load applied	43
Figure 3.37:	Meshed model according to approximate global size	44
Figure 3.38:	General tab of job manager	45
Figure 4.1:	Top and bottom diameter of a cone	48
Figure 4.2:	Vertical heights measurement location	50
Figure 4.3:	Slant height measurement location	52
Figure 4.4:	Specimen setup for axial compression testing	55
Figure 4.5:	A specimen after compression test	56
Figure 4.6:	Comparison of experimental & numerical graph of load versus extensi for cone with no waves	on 60
Figure 4.7:	Comparison of experimental & numerical graph of load versus extensi for cone with four waves	on 60
Figure 4.8:	Comparison of experimental & numerical graph of load versus extensi for cone with six waves	on 61
Figure 4.9:	Comparison of experimental & numerical graph of load versus extensi for cone with eight waves	on 61
Figure 4.10:	Comparison of experimental & numerical graph of load versus extension for cone with ten waves	on 62
Figure 4.11:	Comparison of experimental & numerical graph of load versus extensi for cone with twelve waves	on 62
Figure 4.12:	Experimental and numerical comparison of physical collapse pattern xvi	63

Figure 4.13: Experimental and numerical graph of collapse load with different wave 64 number

xvii

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDICES

APPENDIX	K TITLE	PAGE	
Appendix 1	Cone Calculations	76	
Appendix 2	Thickness Measurement of Specimens	77	
Appendix 3	Inner and Outer Diameter of Top Circumference	84	
Appendix 4	Inner and Outer Diameter of Bottom Circumference	90	
Appendix 5	Specimen Axial Height	96	
Appendix 6	Specimen Slant Height	98	

xviii

LIST OF SYMBOLS

Fcrit	-	Critical buckling load
Fcyl	-	Critical buckling load of cylinder
β	-	Cone semi-vertex angle
r1	-	Top radius of cone
r ₂	-	Bottom radius of cone
h	-	Height of cone
L	-	Slant length of cone

xix

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

- UTeM Universiti Teknikal Malaysia Melaka
- **FEM** Finite Element Method
- CAD Computer Aided Drawing
- **DXF** Drawing Interchange Format
- MIG Metal Inert Gas
- **CNC** Computer Numerically Controlled
- **TIFF** Tagged Image File Format
- IGES Initial Graphic Exchange Specification

LIST OF PUBLICATIONS

1. Ifayefunmi, O., Wang, S. H., Mahidan, F.M. 2018. "Experimental investigation of buckling behaviour of axially compressed truncated cones with imperfect length", in *Proceedings of Mechanical Engineering Research Day 2018*, pp. 212-213, May 2018.

2. Ifayefunmi, O., Mahidan, F.M. 2019. "Buckling of cones with imperfect length subjected to axial compression", in *Proceedings of the 38th International Conference on Ocean, Offshore and Arctic Engineering*, Glasgow, Scotland, United Kingdom, June 9 - 14, 2019, abstract accepted.

CHAPTER 1

INTRODUCTION

1.1 Background

Aeronautical, marine, offshore and mechanical are among the industries where conical shell structure are used as structural parts. The conical shell structure are regularly being utilized as pressure vessels, pipelines, offshore platforms and transition elements between two cylinders that have different diameters. For example, in aeronautical application, the load carrying capacity is usually constrained by elastic buckling. This is as a result of the high value of radius-to-thickness proportion of thin conical shells. Thin shell structures also broadly used in the field of civil engineering. A few cases that utilize thin shells as structural components are storehouses, rooftops, container, tanks, pipes, pressure vessels, submarines and aircraft wings (Deshpande, 2010).

Practically, thin conical shell structures are subjected to different loading conditions such as axial compression. The limit to which the structures can be loaded or deform is affected by many factors. One of them is instability. One must really understand the behaviour of shell structure in order to carry out buckling analysis of conical shells (Ifayefunmi, 2014). Buckling is a mechanical and numerical instability, prompting to a failure mode (Monfared, 2012). It is one of the popular phenomena in solid mechanics and a menace for thins shells that are subjected to axial loading. The impact of buckling is the loss of structure's stability which is very important for many

fields such as mechanical, chemistry, aerospace engineering, marine industry etc. (Boorboor et al., 2012).

In thin-walled shell structures, small geometric imperfections can cause a significant reductions in buckling strength. Amazigo & Budiansky (1972), Narasimhan & Hoff (1971) and Stein (1968) are among the researches who did research on buckling imperfection stability of shell-of-revolution structures containing small geometric imperfections. However, practically the imperfections happen locally rather than axisymmetric or have the shape of buckling modes (Cooper & Dexter, 1974).

1.2 Statement of the Purpose

The purposes of this study are:

- 1) To design and fabricate truncated cones with and without sinusoidal waves as imperfection at the boundary of small diameter cone using mild steel.
- To study the effect of different sinusoidal wave number on buckling behaviour of axially compressed truncated conical shell structure.
- To compare the experimental and numerical results of axially compressed truncated conical shell.

1.3 Problem Statement

The behavior of steel plate has been studied over the years. One of the behavior of steel plate is buckling. It is a phenomenon which occurs in structures which are stiff in the loaded and slender in another direction (Bhoi & Kalurkar, 2014). This phenomenon on imperfect shells is one of the most difficult issues in industry. The buckling load of certain structures depends on the initial geometric imperfections. When a structure is imperfect, the buckling load of that structure will reduce (Sofiyev, 2010).

Buckling behavior of conical shells is affected by the material and geometric properties of the shells, type of load applied on it and any geometric imperfection on the shells (Maali et al., 2012). It is very crucial to study the failure phenomenon of conical shells as the slightest imperfection on it can result in significant decrease of buckling capacity of the structure. Small geometric imperfections in thin-walled shell structures can cause vast reduction in buckling strength (Cooper & Dexter, 1974).

From the literature study, it was discovered there have been only one study on the buckling load of conical shells having uneven length as imperfection. Researchers are more focused on the initial geometric imperfection, dimple discontinuity, loading conditions imperfection and uneven length. This study attempts to concentrate on the effect of uneven axial length towards the buckling behaviour of conical shell for further investigation due to lack of data on the said effect.

3