

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF MODULAR BODY BY AIR DRAG REDUCTION FOR FOOD TRUCK

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

MUHAMMAD NAZRIN BIN MOHD AZMAN B071510741 940625085527

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN AND DEVELOPMENT OF MODULAR BODY BY AIR DRAG REDUCTION FOR FOOD TRUCK

Sesi Pengajian: 2018

Saya **MUHAMMAD NAZRIN BIN MOHD AZMAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
		kepentingan Malaysia sebagaimana yang termaktub dalam AKTA					
	SULII .	RAHSIA RAS	MI 1972.				
	ΤΕΡΗΛΠ*	Mengandungi	maklumat 🛛	FERHA	D yang te	lah ditentukan	oleh
	TERITAD	organisasi/badan di mana penyelidikan dijalankan.					
\boxtimes	TIDAK						
	TERHAD						
Yang	benar,		Disa	ahkan o	leh penyelia	a:	
MUH	AMMAD NAZ	ZRIN BIN MOH	D				
AZMAN		МО	MOHD IDAIN FAHMY BIN ROSLEY				
Alama	at Tetap:		Сор	Cop Rasmi Penyelia			
111 Pa	111 Parit Haji Ali Batu 7 34350 Kuala						
Kurau Perak.							
Tarikh: Tarikh:							

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

iii

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled DESIGN AND DEVELOPMENT OF MODULAR BODY BY AIR DRAG REDUCTION FOR FOOD TRUCK is the results of my own research except as cited in references.

Signature:	
Author :	MUHAMMAD NAZRIN BIN MOHD
	AZMAN

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	MOHD IDAIN FAHMY BIN ROSLEY

v

ABSTRAK

Projek ini akan memberi tumpuan lebih kepada badan trak makanan diatas platform kargo Land Rover Defender 110 kerana platform kargo ini akan digunakan sebagai rujukan untuk mereka bentuk badan trak makanan yang baru. Projek ini adalah mengenai kajian alat aerodinamik yang akan digunakan pada reka bentuk badan trak makanan. Trak makanan semasa mempunyai masalah dalam reka bentuk badan yang menyumbang kepada mengheret pekali. Untuk mencapai objektif projek ini, beberapa model trak makanan dibuat dengan peranti yang berbeza pada reka bentuk badan dan akan dianalisis untuk mendapatkan pekali seret. Selepas itu, pengiraan penggunaan minyak telah dilakukan dianatara model biasa dengan model yang telah diubah menggunakan alat yang dipilih. Hasilnya akan digunakan untuk membina prototaip baru badan trak makanan.

ABSTRACT

This project will be more focus on food truck body on Land Rover Defender 110 cargo platform because this cargo platform will used as reference to design a new food truck body. This project is about study the aerodynamics device that will be used on the food truck body design. The current food truck got some problem in body design that contributed to drag coefficient. To achieve this project requirement, some models of food truck are made with different device on the body design and will be analyzed to obtain the drag coefficient. After that, calculation fuel consumption have been made between standard model and modified model with device that have choose. The result will used to fabricate a new prototype of food truck body.

DEDICATION

I would like to dedicate this to my father, Mr. Mohd Azman Bin Abd Gani and my mother, Mrs. Nor Hida Binti Zaidani, my supervisor Mr. Mohd Mohd Idain Fahmy bin Rosley, and my teammate Mohd Anas, Muhd Suqkri and Muhd Mahadhir for supporting me from the beginning until this project completely finish..

ACKNOWLEDGEMENTS

Alhamdulillah. I am sincerely appreciative and grateful to my supervisor Mr. Mohd Idain Fahmy Bin Rosley for giving me chances and opportunity to get involved in this project. A lot of thanks to him for his ideas, guidance, experience sharing, continuous support, and encouragements in making this Final Year Project (FYP) thesis possible.

I also take this opportunity to thanks to my beloved parents, Mr. Mohd Azman Bin Abd Gani and Mrs. Nor Hida Binti Zaidani who always support me and give me courage since the beginning of this project. Their words have given me the strength to complete this project.

Finally, I also want to express my thanks to everyone who involves directly or indirectly in this project especially to my teammate to finish this project. The commitment and sacrifice that given towards me have helped me to gain knowledge and experience. Without them, this report would have been impossible.

TABLE OF CONTENTS

TABI	LE OF CON	TENTS	PAGE x
LIST	OF TABLE	S	14
LIST	OF FIGUR	ES	15
LIST	OF APPEN	DICES	18
LIST	OF SYMBO	DLS	19
LIST	OF ABBRE	VIATIONS	20
CHA	PTER 1	INTRODUCTION	21
1.1	Backgroun	d of Study	21
1.2	Problem St	atement	22
1.3	Project Obj	ective	23
1.4	Project Sco	pe	23
CHA	PTER 2	LITERATURE REVIEW	24
2.1	Introductio	n	24
2.2	Food Truck		24
2.2.1		Factors that contribute to the development of food trucks.	25
2.3	Aerodynam	nics	29
2.3.1		Aerodynamic Drag x	30

2.3.2		Types of Drag	32
2.3.3		Pressure Drag	32
2.3.4		Skin Friction Drag	34
2.3.5		Drag Reduction	35
2.3.6		Drag Reducing Technique	35
2.4	Method of A	erodynamic Testing	38
2.4.1		Wind Tunnel Testing	39
2.4.2		Virtual Wind Tunnel	42
2.4.3		Computational Fluid Dynamics Testing	43
2.5	Material		44
2.5.1		Fiberglass	44
2.5.2		Aluminium	45
2.5.3		Mild Steel	46
2.6	Selective La	ser Sintering (SLS)	47
			4.0
СНАР	TER 3	METHODOLOGY	49
3.1	Introduction		49
3.2	Overall Proc	ess	49
3.3	Reference B	ody Analysis	50
3.3.1		List of Specification	51
3.4	Process Flov	v Chart	52

xi

3.5	Gant Chart	54
3.6	Site Visit	55
3.7	Concept Design	56
3.7.1	Product Design Concept	57
3.8	Material Selection	61
3.8.1	Consider in Choosing Material	62
3.9	Body Reduction Drag	62
3.10	Computer Aided Drafting (CAD) Design	64
3.10.1	SolidWork Software Application	64
3.11	Computational Fluid Dynamics (CFD) Analysis	65
3.12	Fabrication Process	67
3.13	Fuel Consumption Calculation	67
снар	TER 4 RESULT AND DISCUSSION	70
CIM		70
4.1	Introduction	70
4.2	Computer Aided Drafting (CAD) Design	70
4.2.1	SolidWorks Design	71
4.3	HyperMesh By Altair HyperWork	72
4.4	Computational Fluid Dynamics (CFD) Analysis	73
4.4.1	Virtual Wind Tunnel Result	74
4.5	Final Design	84

xii

C Universiti Teknikal Malaysia Melaka

4.6	Fuel Consumption Calculation	87
4.7	Fabrication	89
4.8	3D Printing using Selective Laser Sintering (SLS)	90
СНАН	PTER 5 CONCLUSION	91
5.1	Introduction	91
5.2	Summary of Project	91
5.3	Achievement of Project	92
5.4	Challenge Dealing	92
5.5	Project Conclusion	93
5.6	Recommendation for Future Work	93
REFE	RENCES	94
APPE	NDIX	97

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1: Food truck selection	in the Klang Valley	28
Table 2: Drag the coefficient of length perpendicular to the flo	of two body dimensions (L: length along the flow ow)	, D; 33
Table 3: Variation of drag co- bodies (L: length, D: diameter	efficient with Reynolds number for three dimensi	onal 34
Table 4: Advantages and disa	dvantages open circuit wind tunnel	40
Table 5: Advantages and disa	dvantages of closed circuit wind tunnel.	41
Table 6: Properties of alumini	um used in the preparation of sandwich composit	es. 45
Table 7: Advantages and disa	dvantages of SLS	48
Table 8: Land Rover Defende	r specification	51
Table 9: Gant chart		54
Table 10: advantages and disa	dvantages type of material	61
Table 11: Drag coefficient and	d reduction percent from standard model.	83

14

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1: Standards	of food truck body	22
Figure 2: Trend sear	ching food truck in Malaysia	27
Figure 3: External fl	ow across Austin A70	30
Figure 4: Classificat	ion of drag	32
Figure 5: (a) Deflect	tion overview and (b) Deflection angle, $\boldsymbol{\theta}$.	36
Figure 6: Hump and	curved boat-tail flaps geometry.	37
Figure 7: Passenger	car roof fitted with vortex generators	38
Figure 8: Open circu	ait Wind Tunnel	39
Figure 9: Closed cire	cuit Wind Tunnel	41
Figure 10: Altair Hy transient application	perWorks Software icon and high fidelity resu	lts for complex 43
Figure 11: Flow path	tern around a Peterbilt 587 truck using CFD	44
Figure 12: Main con	nponents of an SLS machine	47
Figure 13: Land Rov	ver Defender HCPU Malaysian Army	50
Figure 14: Cargo ba	se platform	51
Figure 15: Food truc	ek modular unit basic	51
Figure 16: Land Roy	ver Defender HCPU cargo basic dimensions	52

Figure 17: Methodology flow chart	53
Figure 18: Structure in the making at Federal Vehicle Body Builder.	55
Figure 19: Concept aerodynamic body at Kota Fesyen and welding joint in structure body	56
Figure 20: Design 1	57
Figure 21: Design 2	58
Figure 22: Design 3	59
Figure 23: Design 4	60
Figure 24: Front side edge fairing / Deflector	62
Figure 25: Trailer tail or boat tail	63
Figure 26: Lancer Evolution VIII with vortex generators	64
Figure 27: Wind tunnel size	66
Figure 28: Wind tunnel set up	66
Figure 29: Food truck body concept design	71
Figure 30: Food truck body on Land Rover Defender 110	71
Figure 31: Meshing proses in Hypermesh	72
Figure 32: Virtual wind tunnel analysis	73
Figure 33: Standard (no device) streamlines.	74
Figure 34: Velocity magnitude on food truck body (standard)	75
Figure 35: Deflector stream lines	75
Figure 36: Velocity magnitude on food truck body (deflector)	76

Figure 37: Deflector + Vortex Generator stream lines	76
Figure 38: Velocity magnitude on food truck body (Deflector + Vortex Generator).	77
Figure 39: Deflector + spoiler stream lines.	77
Figure 40: Velocity magnitude on food truck body (Deflector + Spoiler).	78
Figure 41: Deflector + Trailer Tail stream lines.	78
Figure 42: Velocity magnitude on food truck body (Deflector + Trailer Tail).	79
Figure 43: Standard (no device) coefficients graph	80
Figure 44: Deflector coefficients graph	80
Figure 45: Deflector + Vortex Generator coefficients graph.	81
Figure 46: Deflector + spoiler coefficients graph.	82
Figure 47: Deflector + trailer tail coefficients graph.	82
Figure 48: Final design of food truck body on Land Rover Defender 110	84
Figure 49: Deflector device	85
Figure 50: Trailer Tail device	85
Figure 51: Complete fabricate for mock up food truck with size 1:2	86
Figure 52: shellac wood and part of trailer tail.	89
Figure 53: 3D printer Farsoon SS 402P	90
Figure 54: Before and after part of deflector from SLS.	90

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1 = Deflector		97
Appendix 2 = Trailer Tail		98

LIST OF SYMBOLS

- **D** = Drag force
- ρ = Density of free stream air
- **V** = Velocity of free stream air
- S = Cross sectional area or drag area
- **Cd** = Coefficient of drag
- **Re** = Reynolds number
- \mathbf{L} = Length of the body
- θ = Deflection angle
- $\boldsymbol{\mathcal{V}}$ = Kinematic viscosity of the fluid
- **C**_r = Rolling Coefficient
- P_D = Power to overcome the aerodynamic drag force
- **F**_r = Rolling Resistance
- $\mathbf{P}_{\mathbf{R}}$ = Power to overcome the rolling resistance.
- $\mathbf{P}_{\mathbf{T}}$ = Power loss of transmission.
- **G** = Fuel Consumption

LIST OF ABBREVIATIONS

- **CFD** = Computational Fluid Dynamics
- **CAE** = Computer Aided Engineering
- **VG** = Vortex Generators
- **VWT** = Virtual Wind Tunnel
- **CAD** = Computer Aided Design
- **SLS** = Selective Laser Sintering
- **JPJ** = Road Transport Department Malaysia (Jabatan Pengangkutan Jalan).

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Food truck is a moving food store. Due to the cost of living and rental of high business sites, many traders or restaurant owners turn to the food truck business. This is because the food truck allows them to trade in different locations everyday from trading in just one location (Anenberg and Kung, 2015). In Malaysia, associate with the pop-up restaurant phenomenon which become particularly popular by offering gourmet cuisine and variety of specialties and ethic menus.

The good design for a food truck is important for long-term durability and is safe on the road. A good planning in the food truck design can save the cost and time of making a food truck. In this study, there is more focus on the design of the food truck body. Food trucks are used as reference designs to design a new food truck body. The goal of this project is to design, analyse, and compose the body for food trucks. This design is referred to the used trucks now. It can be adjusted, lightweight and withstand heavy loads. This project is based on the LEGO concept in which the food truck body can be adjusted and produce more space.

Material selection is important as the need for design must be simple, low cost, easy to fabricate at the same time light weight. Examples of these materials are fiberglass, aluminium sheets and light steel sheets that are similar to the advanced boating bodies. **Figure 1** is the example of standard food truck body.

Figure 1: Standards of food truck body

1.2 Problem Statement

This project is done to modify the Land Rover Defender HCPU to portable food trucks. If viewed on the Land Rover it is impossible to be used as a food truck due to the small truck chassis but if carefully planning for this modification, Land Rover is capable of being a fully equipped and affordable food truck.

The body designs nowadays often use heavy material, excessive and heavy structure designs to be loaded by the truck. The current food truck needed design with modular unit, low cost, compact, and low drag body. The modification of this food truck must also comply with the road specification set by JPJ to be safely used on the road. Current food truck body fix and buyer need to buy additional vehicle as a supply truck. This food truck design must be durable, lightweight, and not over design. But there are some criteria that are considered which are materials used, functionality, and the building process. Additionally, this project also wishes to improve on the air drag reduction design on this existing food truck.

1.3 Project Objective

The objective of the present research is:

- 1) To develop a new design of food truck body.
- 2) To analyse the aerodynamics of food truck body.
- 3) To fabricate a low drag food truck body prototype.

1.4 Project Scope

The scope of the present research is :

- 1) Design a food truck body using SolidWork Software.
- To study the analysis of the food truck body aerodynamics design using Virtual Wind Tunnel by HyperWork Software.
- To study the fabrication process of food truck body on Land Rover Defender HCPU Malaysian Army cargo base platform.

23

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will discuss and explain about the fundamental, theories and concepts of this project. This chapter also review about the perspective, materials and process handling that will be used in this project.

2.2 Food Truck

Food trucks are trucks specially designed for cooking and selling food with complete kitchen fittings. Some food truck dealers also sell frozen food, packaged food or cook food in the food truck itself like sandwiches, hamburgers, French fries, and other fast food. Developing to today, the food truck already grown as more extensive service scope, we can see the food truck anywhere and anytime. The food truck is the combination of delicious and fashion, it also growing in popularity all over the world.

In Malaysia, only two food trucks like La Famiglia launch in the Klang Valley in October 2014. Immediately continue today, and there are 70 food trucks today in the Klang Valley alone (Abirami Durai, 2016). In 2017, Selangor has about 130 food work trucks, and this amount is double by 2018, as Amirudin Shari, State Government Exco for Youth Development, Sports, Culture and Entrepreneurial Development (Anthony See Lum Lok, 2017).