

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DRIVING COMFORT STUDIES FOR DIFFERENT ABSORBER CONTENT: HYDRAULIC OIL VERSUS PRESSURE GAS

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

MUHAMMAD FARIS BIN AZMI B071510407 960510115771

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DRIVING COMFORT STUDIES FOR DIFFERENT ABSORBER CONTENT: HYDRAULIC OIL VERSUS PRESSURE GAS

Sesi Pengajian: 2018

Saya **MUHAMMAD FARIS BIN AZMI** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
		kepentingan Malaysia sebagaimana yang termaktub dalam AKTA					
	SULIT	RAHSIA RAS	MI 1972.				
	ΤΕΡΗΔΟ*	Mengandungi	maklumat T	FERHA	D yang te	lah ditentukan	oleh
	TERMIND	organisasi/bada	an di mana p	enyelic	likan dijalaı	nkan.	
\boxtimes	TIDAK						
	TERHAD						
Yang benar,		Disa	Disahkan oleh penyelia:				
			AHI	MAD Z	CAINAL TA	UFIK BIN	
MUHAMMAD FARIS BIN AZMI		ZAI	ZAINAL ARIFFIN				
Alama	at Tetap:		Сор	Cop Rasmi Penyelia			
LOT 7260, KG. ALOR PASIR							
22040, GUNTONG							
SETIU, TERENGGANU							
Tarikł	1:		Tari	kh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DRIVING COMFORT STUDIES FOR DIFFERENT ABSORBER CONTENT: HYDRAULIC OIL VERSUS PRESSURE GAS is the results of my own research except as cited in references.

> Signature: Author : MUHAMMAD FARIS BIN AZMI Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	AHMAD ZAINAL TAUFIK BIN ZAINAL
	ARIFFIN

Signature:

Co-supervisor:

OMAR BIN ASAROON

v

ABSTRAK

Sistem suspensi dibina untuk menyediakan perjalanan yang selesa ketika melalui jalan yang kasar sambil memperbaiki pengendalian kenderaan. Ia juga membolehkan tayar kekal bersentuhan dengan permukaan jalan terutama di jalan kasar. Penyerap hentak adalah salah satu komponen yang berada dalam sistem suspensi untuk menghilangkan tenaga yang diserap oleh sistem suspensi. Sistem suspensi terdiri daripada roda ataupun tayar, spring, penyerap hentak ataupun strut, sambungan, sesendal dan beberapa komponen lain. Tajuk projek ini adalah untuk mengkaji keselesaan memandu antara dua kandungan penyerap yang berbeza iaitu minyak hidraulik dan gas bertekanan. Dua jenis penyerap hentak yang sedia ada di pasaran telah digunakan dalam projek ini sebagai model untuk melakukan kajian ini. Antara langkah yang dilakukan adalah menguji dan mengkaji kelakuan kedua-dua penyerap hentak dengan melakukan ujian mampatan dan melakukan pengiraan. Bagi mendapatkan data yang lebih baik, ujian simulasi telah dibuat untuk mengetahui tingkah laku kedua-dua penyerap hentak apabila melalui dua jenis keadaan jalan yang berbeza menggunakan perisian MatLab. Ujian getaran turut dilakukan menggunakan dua buah kereta dengan jenis penyerap hentak yang berbeza. Semua data dari setiap ujia telah dikumpulkan dan dibandingkan. Hasil kajian ini menunjukkan bahawa penyerap hentak jenis gas memberikan lebih keselesaan ketika memandu berbanding penyerap hentak jenis hidraulik.

ABSTRACT

The suspension system is built to provide comfortable ride when travelling on the rough road while improve vehicle handling. It also allows the tires to remain in contact with road surface especially on rough road. Shock absorber is one of component install in suspension system to dissipate energy absorbed by suspension system. Suspension system are consisting of wheels or tires, coil spring, shock absorber or strut, linkages, bushing and several other components. This project title is to study the driving comfort between two different absorber content which are hydraulic oil and pressure gas. Two different type of shock absorbers that already available in the market were used in this project as a model to conduct this research. The steps of this project are to test and study the behavior of these two shock absorbers by conducted compression test and doing calculation. In order to get better data, a simulation test had been conducted to know the behavior of these two shock absorbers when travelling on two different road conditions by using MatLab software. Vibration test also has been done using two cars with different type of shock absorber. All data from all test has been collected and being compared. The outcome of this research shows that gas shock absorber gives more driving comfort compared to hydraulic shock absorber.

DEDICATION

I would like to give special thanks for My beloved mother Mahani binti Muda

ACKNOWLEDGEMENTS

I would like to thank to my main supervisor Mr. Ahmad Zainal Taufik Bin Zainal Ariffin, and second supervisor Mr. Omar Bin Asaroon for his guidance, support, and constant encouragement during my research for bachelor degree project at Universiti Teknikal Malaysia Melaka (UTeM).

I also would like to thank to lecturer faculty of mechanical engineering Dr. Fauzi Bin Ahmad for allowed me to use test equipment in his lab and also his guidance that involved in finishing my research. His continuous help has made my research fully finished.

Finally, my deepest grateful and thanks go to my mother, Mahani Binti Muda. Her continuous prays and moral support have been brought me here.

TABLE OF CONTENTS

		PAGE
	TABLE OF CONTENTS	X
	LIST OF TABLES	xiii
	LIST OF FIGURES	xiv
	LIST OF SYMBOLS	xvii
	LIST OF ABBREVIATIONS	xviii
	LIST OF PUBLICATIONS	xix
СНА	PTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	2
1.3	Project Objective	3
1.4	Project Scope	3
1.5	Project Significance	4
СНА	PTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Suspension History	5
2.3	Type of Suspension	7
2.4	Shock Absorber x	10

2.5	Shock Absor	rber Type	11
	2.5.1 Meta	l Spring	11
	2.5.2	Elastomeric Shock Observers	13
	2.5.3	Hydraulic Dashpot	14
	2.5.4	Pneumatic Cylinder	15
2.6	Principal of	Shock Absorbers	16
2.7	Hydraulic Sł	nock Absorber	19
2.8	Gas Shock A	Absorber	20
2.9	Literature Re	eview Preview	22
СНАР	PTER 3	METHODOLOGY	24
3.1	Overview		24
3.2	Flow Chart		26
3.3	Comparison Between Two Shock Absorber 2		
3.4	Compression Test 2		29
3.5	Calculation 3		
3.6	MatLab Sim	ulation	32
3.7	Vibration Test 34		

CHAPTER 4 35

4.1	Introduction	35

4.2	Finding of Fixed Variables36		36
4.3	Calculation for Fixed Variables 42		
4.4	Softwa	are Simulation	45
	4.4.1	Step Function	48
	4.4.2	Sine Wave Function	55
	4.4.3	Comparing Between Two Road Condition	60
4.5	Real C	ar Suspension System Test	61
	4.5.1	Vibration Test for Hydraulic Shock Absorber	63
	4.5.2	Vibration Test for Gas Shock Absorber	66
	4.5.3	Comparing Between Two Test	70
4.6	Discus	sion	70
			
СНАР	TER 5	12	
5.1	Conclu	asion	72
5.2	Future	Work	73
DEFE	DENC		
KEFE	KENC.		

APPENDIX	76
----------	----

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Journal Title and Description	22
Table 3.1:	Advantages and Disadvantages of Hydraulic Shock Absorber	28
Table 3.2:	Advantages and Disadvantages of Gas Shock Absorber	29
Table 4.1:	Shock Absorber Results Data	38
Table 4.2:	Name and Weight of Load Force	40
Table 4.3:	Spring Compression Test Data	41
Table 4.4:	Shock Absorber Calculation	43
Table 4.5:	Step High with Displacement for Gas and Hydraulic Absorbe	r 50
Table 4.6:	Step High with Acceleration for Gas and Hydraulic Absorber	53
Table 4.7:	Percentages of Adherence for Hydraulic Shock Absorber	65
Table 4.8:	Percentages of Adherence for Gas Shock Absorber	69

xiii

LIST OF FIGURES

FIGURE	TITLE	
Figure 2.1:	Suspension System Diagram	6
Figure 2.2:	Macperson Suspension System	8
Figure 2.3:	Double Wishbone Suspension System	9
Figure 2.4:	Multi-Link Suspension System	9
Figure 2.5:	Metal Spring	12
Figure 2.6:	Elastomeric Shock Absorber Type	13
Figure 2.7:	Hydraulic Dashpot Diagram	
Figure 2.8:	Pneumatic Cylinder Work Diagram	
Figure 2.9:	Dry Fiction Shock Absorber System	
Figure 2.10:	Fluid Friction Principal	17
Figure 2.11:	Compression of Gas in Shock Absorber	
Figure 2.12:	gure 2.12: Working Principal of Hydraulic Shock Absorber	
Figure 2.13:	2.13: Damping Force vs Piston Velocity of Hydraulic Shock Absorber	
Figure 2.14:	Schematic Diagram of Gas Shock Absorber	
Figure 2.15:	Damping Force vs Piston Lift of Gas Shock Absorber	
Figure 3.1:	Flow Chart	26

xiv

Figure 3.2:	Example of Compression Test	30
Figure 3.3:	The Suspension System Force Diagram	32
Figure 3.4:	Equation for MatLab Simulation	33
Figure 4.1:	Shock Absorber Compression Test	37
Figure 4.2:	Coil Spring Compression Test	39
Figure 4.3:	Circuit Diagram for Simulation	45
Figure 4.4:	Simulation Subsytem Diagram	46
Figure 4.5:	Command Window in MatLab	47
Figure 4.6:	Step Function	48
Figure 4.7:	Step Function Body Vertical Displacement for 0.1m	49
Figure 4.8:	Step Function Body Vertical Displacement for 0.3m	49
Figure 4.9:	Step Function Body Vertical Displacement for 0.5m	49
Figure 4.10:	Step Function Maximum Body Vertical Displacement Graph	51
Figure 4.11:	Step Function Body Vertical Acceleration for 0.1m	52
Figure 4.12:	Step Function Body Vertical Acceleration for 0.3m	52
Figure 4.13:	Step Function Body Vertical Acceleration for 0.5m	52
Figure 4.14:	Step Function Maximum Body Verical Acceleration Graph	54
Figure 4.15:	Sine Wave Function	56
Figure 4.16:	Sine Wave Body Vertical Displacement for 5Hz	57
Figure 4.17:	Sine Wave Body Vertical Displacement for 8Hz	57
Figure 4.18:	Sine Wave Body Vertical Displacement for 10Hz	57

Figure 4.19:	Sine Wave Body Vertical Acceleration for 5Hz	58
Figure 4.20:	Sine Wave Body Vertical Acceleration for 8Hz	59
Figure 4.21:	Sine Wave Body Vertical Acceleration for 10Hz	59
Figure 4.22:	Front Tyre on Square Base in Vibration Test	62
Figure 4.23:	First Vibration Test for Hydraulic Shock Absorber	63
Figure 4.24:	Second Vibration Test for Hydraulic Shock Absorber	64
Figure 4.25:	Third Vibration Test for Hydraulic Shock Absorber	64
Figure 4.26:	Percentages of Adherence Graph for Hydraulic Shock Absorber	66
Figure 4.27:	First Vibration Test for Gas Shock Absorber	67
Figure 4.28:	Second Vibration Test for Gas Shock Absorber	67
Figure 4.29:	Third Vibration Test for Gas Shock Absorber	68
Figure 4.30:	Percentages of Adherence Graph for Gas Shock Absorber	69

LIST OF SYMBOLS

D, d	-	Distance
F, Fd	-	Force
Cs	-	Damping Coefficient
X	-	Displacement
Ks	-	Spring Stiffness
Z	-	Velocity
S	-	Second
t	-	Time
Ν	-	Newton
m	-	meter
kg	-	Kilo gram

xvii

LIST OF ABBREVIATIONS

CATIA	Computer Aided Three-Dimensional Interactive Application
MatLab	Matrix Laboratory
DOF	Degree Of Freedom
SOP	Standard Operating Procedure
PUSPAKOM	Malaysian Computerized Vehicle Inspection Company
ECU	Electronic Control Unit

xviii

LIST OF PUBLICATIONS

xix

CHAPTER 1

INTRODUCTION

1.1 Background

For comfortable ride, the suspension system is worldwide used in automotive industries included design of bicycle until most modern vehicle to achieve comfortable ride. The objectives of using suspension system are to separate vehicle body from rough surface and to keep the wheel contact of road surface. A created suspension system must be in specific design which are can operates during full load and empty load vehicle, road condition, braking and speeding also maintain stability of vehicle during straight road and taking a corner.

Spring and damper are the main component of the suspension system that placed between the vehicle body and axles. For damper also known as shock absorbers, it main task is to absorb kinetic energy from disturbance road and prevent vibration go through into the vehicle body. This part works by convert the kinetic energy which is vibration cause from disturbances into thermal energy. Thermal energy produced from convertion will produced heat that absorb by hydraulic fluid.

Shock absorbers that commonly used widely are hydraulic shock absorbers and gas shock absorbers. Both types of shock absorbers still have same operation which is almost same design and shape. Its also usually comes with metal spring attach with shock absorbers to help return to initial condition after disturbance has been resolved. For design a shock absorbers, the main factor to be consider are comfort and vehicle handling also road holding. The increasing or decreasing of settling time as known as time to shock absorbers return to initial condition can effect the comfort and handling. The effect of comfort and vehicle handling can cause more damage or disaster toward vehicle even driver itself.

For vehicle user, they choose their car's shock absorbers themselves based on their own reason. That why many manufacturers offer with various spec of shock absorbers and metal springs. But, the vehicle user commonly chooses between gas or hydraulic types of shock absorbers due to its widely used in the industries.

As a user, we must learn and know what the different between these two shock absorbers and their own benefit or disability. To know the comparison between gas shock absorbers and hydraulic shock absorbers available in the market must be study to know their different.

1.2 **Problem Statement**

There are several problems must be considered during doing the research such as:

- a) The ability of shock absorbers to maintain the comfort and increase the vehicle handling among different type of shock absorbers.
- b) The function of shock absorbers to remain the road holding during rough road to maintain stability of the vehicles.

c) The suitable type of shock absorbers to be use based on vehicle purpose such as daily use or race.

1.3 **Project Objective**

For this project, there were some objectives that must be achieved. There are:

- a) To find the different between gas shock absorbers and hydraulic shock absorbers that already available in the market.
- b) To find the data related to these type of shock absorbers by doing some testing and calculation.
- c) To stimulate the behaviour of both types of shock absorbers by using simulation software.
- d) To assess the performance and capability between these shock absorbers by conduct real test in lab.

1.4 **Project Scope**

The project scope are limited to some used process and equipment:

a) Conduct compression test by applying force onto these two types of shock absorbers and find the damping coefficient for each shock absorbers using calculation.

- b) Run simulation to get graph of shock absorbers behaviour on two different road condition by using MatLab software with standard measurement input data.
- c) Conduct a real test to measure the capability of shock absorbers as known as vibration test by using real selected cars with different types of shock absorbers.

1.5 **Project Significance**

From this research, student should be able to learn and improve the knowledge about the different between types of shock absorbers available in the market. Each types of shock absorbers used on same model of the car will give a different output in source of comfortable ride or car handling. That why many shock absorbers were designed specifically and in different type for selected car model to improve something important during driving the car. By doing this project or research, the different between the gas shock absorbers and hydraulic shock absorbers can be known after the comparison between them are successfully done using suitable method.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Suspension framework is the system consist of tire, damper, spring and linkage in a vehicle connect through wheel to allow any related motion to happen between these two (Reza N. Jazar, 2008). In the meantime, it enhances traveller comfort and vehicle strength in a specific level. Conventional, commercial oriented suspension are detached and are for all time intended for comfort or stability purpose. The issue comprises in the exchange of connection amongst comfort and stability.

2.2 Suspension History

R. Tredwell was inspired the first pattern of coil spring in 1763 and they did not have to be seperated and lubricated periodically compared to leaf spring as aadvantages of coil spring. Gottlieb Daimler in Germany is the leading exponent when some European car maker had tried coil spring for their suspension system. A leaf spring is a straightforward type of spring normally utilized for the suspension in wheeled vehicles. Initially called a covered or carriage spring, and now and then alluded to as a semi-circular spring or truck spring, it is one of the most seasoned types of springing, showing up on carriages in England after 1750 and from that point moving to France and Germany (Sheldon Axle Company, 2008). The venerable leaf spring still used in rear suspension today that introduced today by Obadiah Elliot of London in 1804. General Motors,