

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

STUDY OF THE BUCKLING BEHAVIOUR OF AXIALLY COMPRESSED CYLINDER WITH SINUSOIDAL UNEVEN LENGTH

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

ASNIDAH ROSLEH FUNG B071510025 930623125574

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ومومر ميني بالمحصول عليه مالات UNIVERSITI TEXNIMAL MALAVSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Study of the buckling behaviour of axially compressed cylinder with sinusoidal uneven length

Sesi Pengajian: 2019

Saya ASNIDAH ROSLEH FUNG mengaku membenarkan Laporan PSM ini disimpan

di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat

kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

					M	engandungi	maklun	hat yang ber	darjah ke	selamatan al	au
E	3 5	SULIT*			ke	pentingan M	lalaysia	sebagaimana	a yang te	rmaktub dala	am
					A	KTA RAHSI	ARAS	MI 1972.			
	1 1	TERHAD	*		M	engandungi	maklun	nat TERHAD) yang (elah ditentuk	an
					ol	eh organisasi	/badan	di mana penyo	elidikan d	ijalankan.	
Þ	3 1	TIDAK									
	1	TERHAD	9								
Y	ang benar,				D	isahkan oleh	penyelia	a:			
	same	~				la	Pe	Die			
	SNIDAH R	OSLEH	FUN	2	D	R. OLAWAI	FIFAT	FUNM	******		
			. 014					AY IFAYEFU!	IMI		
	lamat Tetap					DK OUAVAA	ensyarah	Kanan Mekan	ikal		
	10.31A, JAI				5.	Jabatan Tekn	juruteraal	Kanan Inuteraan Mekan Mekanikal dan 1 Malaysia Mela	ka		
	8400, KOT.	A KINAB	IALU	SABAH			Teknikal	Malaysia Mela			
1	arikh:				1;	arikh: J	101	117			
ika	Laporan	PSM	ini	SULIT	atau	TERHAD,	sila	lampirkan	surat	daripada	pihak
erku	asa/orgar	nisasi be	rken	aan der	ngan m	nenyatakan	sekali	sebab dan	tempol	n laporan F	SM in
						ii					

DECLARATION

I hereby, declared this report entitled Study of the buckling behaviour of axially compressed cylinder with sinusoidal uneven length is the results of my own research except as cited in references.

Signature:		Smith
Author :		ASNIDAH ROSLEH FUNG
Date:	9/11	2019

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

land Signature:

Supervisor :

DR. OLAWALE IFAYEFUNMI

ABSTRACT

This research propose to investigate the study of the buckling behavior of axially compresses cylinder with having sinusoidal uneven length. Ten mild steel cylinders were manufactured with a constant imperfect wavelength, 2A = 0.56 mm of the height of cylinders. All of the samples were manufactured with 1mm mild steel plate and the radius is 50 mm. The cylindrical samples were all tested under axial compression by using the Instron Machine. The collapse loads of all samples were validated by comparing the experimental results and the numerical results. In this project, all of the results show Young's Modulus, Lower Yield Stress, Upper Yield Stress and Ultimate Tensile strength. These results can be validated by compared to the graphs and deformed shapes. From the results, it can be concluded that the collapsed load decrease as the number of waves increases.

ABSTRAK

Kajian ini mencadangkan untuk menyiasat kajian tingkah laku gelangsar silinder paksi secara paksi dengan mempunyai panjang sinusoidal yang tidak rata. Sebanyak sepuluh silinder keluli ringan dihasilkan dengan panjang gelombang yang tidak sempurna, iaitu 2A = 0.56 mm. Semua sampel dibuat dengan plat keluli ringan dengan ketebalan sebanyak 1 mm dan radius keluli tersebut ialah 50 mm. Sampel silinder semuanya diuji di bawah mampatan paksi dengan memggunakan Mesin Instron. Beban runtuh untuk semua sampel telah disahkan dengan membandingkan hasil percubaan dan hasil berangka analisis komputer. Dalam projek ini, semua keputusan menunjukkan Modulus Young, Tekanan Senyawa Rendah, Tegasan Permintaan Atas dan Kekuatan Tegangan Tepat. Keputusan ini dapat disahkan dengan membandingkan graf melalui hasil percubaan daripada Mesin Instron dan analisis komputer. Dari hasilnya, dapat disimpulkan bahwa beban runtuh menurun seiring dengan peningkatan jumlah gelombang.

vi

DEDICATION

This report is dedicated to my beloved parents, my family members and my friends who always give me fully support and encourages completing my final year project. In addition, my final year group mates who giving me guidance and assists during the project.

ACKNOWLEDGEMENTS

First and foremost, I would like to grab this chance to express my sincere gratitude to my supervisor, Dr. Olawale Ifayefunmi from the Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM) for his essential guidance, support and encouragement towards the completion of the final year project report. In addition, I would like to thank Mr. Mohd Syafiq Bin Ibrahim and Mr. Wan Shahib Igal Bin Wan Hashim, the technicians from Fabrication Laboratory and Solid Mechanic Laboratory, Faculty of Mechanical and Manufacturing Engineering Technology sincerely. Last but not least, I would like to thank my beloved parents, siblings and my friends for providing mental support throughout this final year project.

TABLE OF CONTENTS

		PAGE
TABL	E OF CONTENTS	ix
LIST	OF TABLES	xiii
LIST	OF FIGURES	xiv
LIST	OF SYMBOLS	xx
LIST	OF ABBREVIATIONS	xxi
CHA	PTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	4
1.3	Problem Statement	5
1.4	Project Scope	6
CHAI	PTER 2 LITERATURE REVIEW	7
2.1	Introduction	7
2.2	The Buckling of Structure	8
2.2.1	Buckling of Cylinder Shell	9
2.3	Imperfection Sensitivity of Axially Compressed Cylinder	10
2.3.1	The Influence of Geometric Imperfection	11
2.3.2	The Influence of Imperfect Boundary Condition	14

2.3.3	The influence of Loading Eccentricity	15
2.3.4	The Influnnce of Crack and Material Discontinuity	16
2.4	The influence of Uneven Length	17
2.5	Summary of Literature Review	18
CHA	PTER 3 METHODOLOGY	19
3.1	Research Design	19
3.2	Research Design	20
3.3	Material Selection	21
3.4	Manufacturing Process	23
3.4.1	Preparation of Design for Cutting Process	24
3.4.2	Cutting Process	25
3.4.3	Polishing of Specimen	28
3.4.4	Grid of Specimen	28
3.5	Thickness Measure	29
3.6	Uni-axial Testing of Tensile Coupon	30
3.6.1	Coupon Test Result	32
3.7	Rolling Specimen	33
3.8	Welding Process	35
3.9	Measuring the Diameter and Height	35
3,10	Axial Compressed Test	37

3.11	Numerical Analysis	38
3.12	Procedure of Simulation by Using SolidWorks	38
3.12.	1 Catia Process	41
3.12.3	2 Procedure for Setting by Using ABAQUS 6.14 Version	42
СНА	PTER 4 RESULT AND DISCUSSION	47
4.1	Introduction	47
4,2	Pre-Test Measurement	47
4.2.1	Thickness Measurement	47
4.2.2	Diameter Measurement	49
4.2.3	Height Measurement	52
4.3	Compression Test	53
4.4	Numerical analysis result	63
4.5	Comparison Between experimental and Numerical Result	63
4.6	Discussion on Effect of Uneven Length	74
СНА	PTER 5 RESULT AND DISCUSSION	75
5.1	Conclusion	75
5.2	Future Work	76

REFERENCES 77

xi

APPENDIX	86
APPENDIX A- THICKNESS OF SPECIMEN	86
APPENDIX B- EXTERNAL AND INTERNAL DIAMETER	95
APPENDIX C- HEIGHT MEASUREMENT	98

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Differend	ces of Research	18
Table 3.1: Composi	tion of Mild Steel	21
Table 3.2: Propertie	es of Mild Steel	22
Table 3.3: Advantag	ges of Mild Steel	23
Table 3.4: Result fo	r Coupon test	33
Table 4.1: Measurer	ment of thickness for all specimen	48
Table 4.2: Measurer	ment for Internal Diameter	50
Table 4.3: Measurer	ment for External Diameter	51
Table 4.4 Height M	easurements for Specimens	52
Table 4.5: Experime	ent data result	62
Table 4.6: Numeric	al analysis result	72

xiii

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Function	ally Graded, FG cylindrical shell (Soleimanin	ia et.al 2016) 9
Figure 2.2: SPLI Par	ttern (Casado et. al., 2014)	14
Figure 2.3: Cylinder	with Imperfect Loading Edges (Kriegsman e	t al. 2012) 16
Figure 3.1: Research	n Flow Chart	19
Figure 3.2: Design S	Sketching of Mild Steel	20
Figure 3.3: 2D Sketo	ching in SolidWorks	24
Figure 3.4: Coupon	Sketching in 2D for SolidWorks	24
Figure 3.5: CO ₂ Las	er Cutting Machine	25
Figure 3.6: Set Up th	he Mild Steel before Cutting Process begin	26
Figure 3.7: Cutting	Process	26
Figure 3.8: Cutting	Process of All Specimens	27
Figure 3.9: Cutting	Process of Coupon	27
Figure 3.10: Cutting	Process complete	27
Figure 3.11: WD-40) Antirust Lubricant	28
Figure 3.12: Grid SJ	pecimens	29
Figure 3.13: Measur	ring Thickness	30
Figure 3.14: Set-up	the Coupon Specimen	31

xiv

Figure 3.15: Shows the coupon specimen	31
Figure 3.16: Coupon Specimen at the end of test process	32
Figure 3.17: Coupon Specimen after completing the test	32
Figure 3.18: Conventional Hand Rolling Machine	34
Figure 3.19: Rolling Specimen	34
Figure 3.20: Roll Specimen	34
Figure 3.21: Welding Specimen	35
Figure 3.22: Measuring External Diameter	36
Figure 3.23: Measuring Internal Diameter	36
Figure 3.24: Measuring Height	36
Figure 3.25: Universal Testing Machine	37
Figure 3.26: Testing process	37
Figure 3.27: Drawing the Circle	39
Figure 3.28: Extrude the circle	39
Figure 3.29: Process Cylinder to get the diameter	40
Figure 3.30: Process of creating the wave on the top of cylinder	40
Figure 3.31: Cylinder with four sinusoidal wave	41
Figure 3.32: Process of extracting the surface of cylinder	41
Figure 3.33: Process of joining and hide process	42
Figure 3.34: Process for creating the part	44
Figure 3.35: Setting the properties	44

XV

Figure 3.36: Setting the plate	44
Figure 3.37: Creating the Output of force and Displacement	45
Figure 3.38: Interaction between surface to surface contacts	45
Figure 3.39: Setting the boundary condition for top	45
Figure 3.40: Setting the mesh size	46
Figure 3.41: Setting the Job manager	46
Figure 4.1: The parts divided for measurement	49
Figure 4.2: Compression Testing	53
Figure 4.3: Graph of Load (kN) versus Compression Extension (mm) for spec	imen zero
wave 0-1	54
Figure 4.4: Graph of Load (kN) versus Compression Extension (mm)for spec	imen zero
wave 0-2	54
Figure 4.5: Graph of Load (kN) Versus Compression Extension (mm) for Spe	cimen 4-1
	55
Figure 4.6: Graph of Load (kN) Versus Compression Extension (mm) for Spe	cimen 4-2
	55
Figure 4.7: Graph of Load (kN) versus Compression Extension (mm) for Spe	cimen 4-3
	56
Figure 4.8: Graph of Load (kN) versus Compression Extension (mm) for spec	imen 6-1
	56
Figure 4.9: Graph of Load (kN) versus Compression Extension (mm) for Spe	cimen 6-2
	57
Figure 4.10: Graph of Load (kN) versus Compression Extension (mm) for Sp	ecimen 6-3
xvi	57
-7712	

C Universiti Teknikal Malaysia Melaka

Figure 4.11:Graph of Load (kN) versus Compression Extension (mm) for Specimen 8	-1	
	58	
Figure 4.12: Graph of Load (kN) versus Compression Extension (mm) for specimen 8	4-2	
	58	
Figure 4.13: Graph of Load (kN) versus Compression Extension (mm) for specimen 8	1-3	
	59	
Figure 4.14: Graph of Load (kN) versus Compression Extension (mm) for specimen		
10-1	59	
Figure 4.15: Graph of Load (kN) versus Compression Extension (mm) for specimen		
10-2	60	
Figure 4.16: Graph of Load (kN) versus Compression Extension (mm) for Specimen		
10-3	60	
Figure 4.17: Graph of Load (kN) versus Compression Extension (mm) for specimen		
12-1	61	
Figure 4.18: Graph of Load (kN) versus Compression Extension (mm) for specimen		
12-2	61	
Figure 4.19: Graph of Load (kN) versus Compression Extension (mm) for specimen		
12-3	62	
Figure 4.20: Graph of Load (kN) versus Compression Extension (mm) for Specimen		
zero wave 0-1	63	
Figure 4.21: Graph of Load (kN) versus Compression Extension (mm) for Specimen		
zero 0-2	64	
Figure 4.22: Graph of Load (kN) versus Compression Extension (mm) for specimen 4	4-1	
	64	

xvii

Figure 4.23: Graph of Load (kN) versus Compression Extension (mm) for specimen 4-2
65
Figure 4.24: Graph of Load (kN) versus Compression Extension (mm) for Specimen 4-3
65
Figure 4.25: Graph of Load (kN) versus Compression Extension (mm) for specimen 6-1
66
Figure 4.26: Graph of Load (kN) versus Compression Extension (mm) for Specimen 6-2
66
Figure 4.27: Graph of Load (kN) versus Compression Extension (mm) for specimen 6-3
67
Figure 4.28: Graph of Load (kN) versus Compression Extension (mm) for specimen 8-1
67
Figure 4.29:Graph of Load (kN) versus Compression Extension (mm) for Specimen 8-2
68
Figure 4.30: Graph of Load (kN) versus Compression Extension (mm) for Specimen 8-3
68
Figure 4.31: Graph of Load (kN) versus Compression Extension (mm) for Specimen
10-1 69
Figure 4.32: Graph of Load (kN) versus Compression Extension (mm) for specimen
10-2 69
Figure 4.33: Graph of Load (kN) versus Compression Extension (mm) for specimen
10-3 70
Figure 4.34: Graph of Load (kN) versus Compression Extension (mm) for specimen
12-1 70

xviii

Figure 4.35: Graph of Load (kN) versus Compression Extension (mm) for specimen	
12-2	71
Figure 4.36: Graph of Load (kN) versus Compression Extension (mm) for specimen	
12-3	71
Figure 4.37: Comparison experimental and numerical analysis deformable shape	73
Figure 4.38: Graph of Collapsed Load versus Number of Wave	74

LIST OF SYMBOLS

L	-	Length
t	-	Thickness
R		Radius
Е		Young Modulus
υ	-	Poisson's Ratio
2A	÷	Amplitude of Waves

LIST OF ABBREVIATIONS

SDI	Single Dimple Imperfection			
SPLI	Single perturbation Load Imperfection			
SPL	Single Perturbation Load			
Fcyl	Elastic Critical Buckling Load Approach			
SPLA	Single Perturbation Load Approach			
DXF	Drawing Exchange File			
MIG	Metal Inert Gas			
F	Local coordinate direction when available			
Н	Global direction for vector-value output			
U	Translation and rotation			
CF	Concentrated force and moment			
FG	Functionally Graded			
U2	Spatial displacement			
RF2	Reaction force			
RF	Reaction force and moment			

xxi

CHAPTER 1

INTRODUCTION

1.1 Background

Cylindrical shells are widely used in many divisions of engineering for example, pipelines, cooling towers, nuclear containment vessels, metal silos and tanks for storage of bulk solids and liquids, and pressure vessels. Axial compression such as global bending, external or internal pressure and wind loading are some of the utmost common loading forms in applied design structures. The loading conditions for these shells are pretty varied dependent on the specific purpose of the shell.

The circular cylinder is overall in column design, such as in shape tubing, piping and in offshore platforms Thin-walled cylinders of various constructions. Stiffened and unstiffened metallic and coated composite thin (large diameter to thickness ratios) shells are used commonly in underwater, surface, air, and space vehicles as well as in the construction of pressure vessels, storage bins, and liquid storage tanks (Simitses, 1986). However, according Rotter 2003, the cylindrical shells under axial compression has been known to be generally sensitive to imperfection in the shell.

In addition, according to Blachut, 2015, whenever the cylindrical segments are connected together and to arrange as prime load bearing structure in axial compression, the interaction between the two neighbouring cylindrical segments becomes critical. A cylindrical shell in the meridional direction under compression can fail by overall buckling (global/Euler), local buckling or the material strength being reached. Various failure mechanisms of composite cylindrical shells, as affected by initial geometric imperfections, boundary conditions, lamina stacking sequence, anisotropic coupling effects and load eccentricity, were identified by in terms of laminate configurations and shell proportions (Priyadarsini et al., 20110).

According to Ifayefunmi and Fadzullah 2017, the buckling behaviour of cylinders under axial compression depends on its geometry parameter such as the radius-tothickness ratio (thinness ratio) but for thin cylinders with high radius-to-thickness ratio, their failure is usually noticed by elastic buckling. The failure by the plastic collapse was influenced by a lower radius-to-thickness ratio for thicker cylinders. The imperfection such as a non-uniform length, a noon-uniform loading, inaccurate modelled boundary conditions, the influence of pre-buckling deformation and material discontinuity or crack are sample of the imperfection that linked to the actual buckling load of axially compressed cylinder.

Furthermore, according to Karyadi, 1991, pure bending will influence of the length variation in the linear buckling behaviour of isotropic cylindrical shells subjected to pure bending and the results of this study show that the maximum critical bending stress is essentially equal to the critical uniform axial compressive stress. Narayana et al., 2015, conclude that a better explanation for the nonlinear phenomenon as this approach can effectively capture the influence of imperfections on post-buckling behaviour of imperfect cylindrical shells. According to Blachut, 2010, once the axial compression is applied, the shape in axial and circumferential dimensions of the gap will change. The diminishing dimension of the gaps results in a variable contact length between two cylinders or uneven loading or localized plastic deformation. Moreover, data on a buckling test of axially compressed cylinder is abundant and it is the absence of information.

The shells are very sensitive to the buckling where the shell reaction changes in boundary condition. Difference between theory and experiment is expected in the case of cylindrical shells unless the boundary and loading situations are accurately modelled and the initial geometric imperfections are precisely taken into account in any theoretical model (Ullah and Ahmad, 2007).

According to Narayana et al., 2015, many researchers across the world and the complete understanding of the mechanical behaviour of these cylindrical shells exposed to different combinations of these fundamental loads is still an active area of current research examined the complex behaviour of these imperfect composite cylindrical shells subjected to axial compressive bending and torsion loads.

3