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ABSTRACT 

This research propose to investigate the study of the buckling behavior of axially 

compresses cylinder with having sinusoidal uneven length. Ten mild steel cylinders 

were manufactured with a constant imperfect wavelength, 2A = 0.56 mm of the height 

of cylinders. All of the samples were manufactured with Imm mild steel plate and the 

radius is 50 mm. The cylindrical samples were all tested under axial compression by 

using the Instron Machine. The collapse loads of all samples were validated by 

comparing the experimental results and the numerical results. In this project, all of the 

results show Young's Modulus, Lower Yield Stress, Upper Yield Stress and Ultimate 

Tensile strength. These results can be validated by compared to the graphs and deformed 

shapes. From the results, it can be concluded that the collapsed load decrease as the 

number of waves increases. 
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ABSTRAK 

Kajian ini mencadangkan untuk menyiasat kajian tingkah laku gelangsar silinder paksi 

secara paksi dengan mempunyai panjang sinusoidal yang tidak rata. Sebanyak sepuluh 

silinder keluli ringan dihasilkan dengan panjang gelombang yang tidak sempurna, iaitu 

2A = 0.56 mm. Semua sampel dibuat dengan plat keluli ringan dengan ketebalan 

sebanyak 1 mm dan radius keluli tersebut ialah 50 mm. Sampel silinder semuanya diuji 

di bawab mampatan paksi dengan menggunakan Mesin lnstron. Beban runtuh untuk 

semua sampel telah disahkan dengan membandingkan hasil percubaan dan hasil berangka 

analisis komputer. Dalam projek ini, semua keputusan menunjukkan Modulus Young, 

Tekanan Senyawa Rendab, Tegasan Permintaan Atas dan Kekuatan Tegangan Tepat. 

Keputusan ini dapat disahkan dengan membandingkan graf rnelalui hasil percubaan 

daripada Mesin Instron dan analisis komputer. Dari hasilnya, dapat disimpulkan babwa 

be ban runtuh menurun seiring dengan peningkatan jumlab gelombang. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Cylindrical shells are widely used in many divisions of engineering for example, 

pipelines, cooling towers, nuclear containment vessels, metal silos and tanks for storage 

of bulk solids and liquids, and pressure vessels. Axial compression such as global 

bending, external or internal pressure and wind loading are some of the utmost common 

loading forms in applied design structures. The loading conditions for these shells are 

pretty varied dependent on the specific purpose of the shell. 

The circular cylinder is overall in column design, such as in shape tubing, piping 

and in offshore platforms Thin-walled cylinders of various constructions. Stiffened and 

unstiffened metallic and coated composite thin (large diameter to thickness ratios) shells 

are used commonly in underwater, surface, air, and space vehicles as well as in the 

construction of pressure vessels, storage bins, and liquid storage tanks (Sirnitses, 1986). 

However, according Rotter 2003, the cylindrical shells under axial compression has been 

known to be generally sensitive to imperfection in the shell. 

In addition, according to Blachut, 2015, whenever the cylindrical segments are 

connected together and to arrange as prime load bearing structure in axial compression, 

the interaction between the two neighbouring cylindrical segments becomes critical. 
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A cylindrical shell in the meridional direction under compression can fail by 

overall buckling (global/Euler), local buckling or the material strength being reached. 

Various failure mechanisms of composite cylindrical shells, as affected by initial 

geometric imperfections, boundary conditions, lamina stacking sequence, anisotropic 

coupling effects and load eccentricity, were identified by in terms of laminate 

configurations and shell proportions (Priyadarsini et al., 20110). 

According to lfayefunmi and Fadzullah 2017, the buckling behaviour of cylinders 

under axial compression depends on its geometry parameter such as the radius-to

thickness ratio (thinness ratio) but for thin cylinders with high radius-to-thickness ratio, 

their failure is usually noticed by elastic buckling. The failure by the plastic collapse was 

influenced by a lower radius-to-thickness ratio for thicker cylinders. The imperfection 

such as a non-uniform length, a noon-uniform loading, inaccurate modelled boundary 

conditions, the influence of pre-buckling deformation and material discontinuity or crack 

are sample of the imperfection that linked to the actual buckling load of axially 

compressed cylinder. 

Furthermore, according to Karyadi, 1991 , pure bending will influence of the 

length variation in the linear buckling behaviour of isotropic cylindrical shells subjected 

to pure bending and the results of this study show that the maximum critical bending 

stress is essentially equal to the critical uniform axial compressive stress. Narayana et al. , 

2015, conclude that a better explanation for the nonlinear phenomenon as this approach 

can effectively capture the influence of imperfections on post-buckling behaviour of 

imperfect cylindrical shells. 
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According to Blachut, 2010, once the axial compression is applied, the shape in 

axial and circumferential dimensions of the gap will change. The diminishing dimension 

of the gaps results in a variable contact length between two cylinders or uneven loading 

or localized plastic deformation. Moreover, data on a buckling test of axially compressed 

cylinder is abundant and it is the absence of information. 

The shells are very sensitive to the buckling where the shell reaction changes in 

boundary condition. Difference between theory and experiment is expected in the case of 

cylindrical shells unless the boundary and loading situations are accurately modelled and 

the initial geometric imperfections are precisely taken into account in any theoretical 

model (Ullah and Ahmad, 2007). 

According to Narayana et al. , 2015, many researchers across the world and the 

complete understanding of the mechanical behaviour of these cylindrical shells exposed 

to different combinations of these fundamental loads is still an active area of current 

research examined the complex behaviour of these imperfect composite cylindrical shells 

subjected to axial compressive bending and torsion loads. 
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