

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IMPROVEMENT AND ANALYSIS OF COOLING SYSTEM FOR MOTORCYCLE JACKET BY USING PHASE CHANGE MATERIAL

This report is submitted in accordance with the requirement of the Universiti

Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering

Technology (Automotive) with Honours.

by

MOHD KAMARUL NAZREEN BIN MOHD KAMAL HASLIN B071510832 920318016283

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Improvement and Analysis of Cooling	g System for Motorcycle Jacket by Using		
Phase Change Material			
Sesi Pengajian: 2018 Saya Mohd Kamarul Nazreen Bin Mohd Kamal Haslin mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut: 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. 4. **Sila tandakan (X) Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972. Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan. TIDAK TERHAD			
Yang benar,	Disahkan oleh penyelia:		
Mohd Kamarul Nazreen Bin Mohd Kamal Haslin Muhammed Noor Bin Hashim Alamat Tetap: Cop Rasmi Penyelia No 11 Jln BJ 19 Taman Bertam Jaya 75250 Melaka Malaysia Tarikh: Tarikh:			
*Jika Laporan PSM ini SULIT atau TERH	IAD, sila lampirkan surat daripada pihak		
berkuasa/organisasi berkenaan dengan menyata	akan sekali sebab dan tempoh laporan PSM ini		

DECLARATION

I hereby, declared this report entitled Improvement and Analysis of Cooling System for Motorcycle Jacket by Using Phase Change Material is the results of my own research except as cited in references.

Signature:	
Author:	Mohd Kamarul Nazreen Bin Mohd
	Kamal Haslin
Date:	

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	Muhammed Noor Bin Hashim

ABSTRAK

Projek ini adalah tentang peningkatan dan analisis penyejukan untuk jaket motosikal untuk mengurangkan suhu di dalam jaket motosikal dan memberikan perjalanan yang selesa untuk penunggang kerana kini pemanasan global menjadi isu serius di Malaysia. Jenis jaket motosikal yang digunakan ialah jaket kulit. Percubaan pertama akan menguji sejauh mana tinggi suhu dalam jaket motosikal sebelum dan selepas menggunakan bahan perubahan fasa. Bahan perubahan fasa jenis akan digunakan ialah lilin parafin. Dengan menggunakan lilin parafin, ia akan menurunkan suhu untuk bahagian tubuh penunggang di dalam jaket motosikal. Fabrikasi juga termasuk dalam eksperimen ini tentang bagaimana dan di mana lilin parafin akan diletakkan dan kawasan tubuh manusia yang tepat akan diuji. Hasilnya membuktikan bahawa lilin parafin adalah bahan yang dapat menurunkan suhu suhu di dalam jaket menunggang.

.

ABSTRACT

This project is about improve and analysis of cooling for motorcycle jacket to decrease the temperature inside the motorcycle jacket and give comfortable ride for rider because nowadays the global warming become serious issue in Malaysia. The type of motorcycle jacket to be use is the leather jacket. First experiment will test on how high temperature inside motorcycle jacket before is and after using phase change material. The type phase change material will be used is paraffin wax. By using the paraffin wax, it will lower down the temperature for rider body parts inside the motorcycle jacket. Fabrication is also included on this experiment on how and where the paraffin wax will be put, and the exact area of human body will be testing. The results show proven that paraffin wax is a material can lower down temperature the temperature inside the riding jacket.

DEDICATION

To my beloved parents Mohd Kamal Haslin Bin Abdul Karim and Siti Rosemala Binti Yunos for giving me the support and strength of my journey at UTeM. I am eternally grateful at them and will repay them back with my success.

ACKNOWLEDGEMENTS

I would like to thank you to my supervisor, En. Muhammed Noor Bin Hashim for helping me to complete this final year project and thanks to both panels, En. Mohammad Rafi Bin Omar and En. Muhammad Zaidan Bin Abdul Manaf who's give me a good comment and advise during my presentation. I would like to take this opportunity to express my appreciation to my family and friends for their patients, understanding and for their undivided support that they had me throughout the completion of my project. Lastly, I would like to thank all those helping and supporting me during my final year project (FYP).

TABLE OF CONTENTS

ТАВ	BLE OF CONTENTS	PAGE ix
LIST	Γ OF TABLES	xiv
LIST	Γ OF FIGURES	xv
LIST	Γ OF APPENDICES	xviii
LIST	Γ OF SYMBOLS	xix
LIST	Γ OF ABBREVIATIONS	XX
CH/	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background	1
1.3	Statement of the Purpose	3
1.4	Project Objective	3
1.5	Scope	4
CHA	APTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Motorcycle Jacket	7
2.3	The heat of human body	9
2.4	Global Climate ix	10

2.5	Leather	11
2.5.1	Production process	13
2.5.2	Cleaning	13
2.5.3	Pickling	14
2.5.4	Finishing	15
2.6	Cooling agent system	16
2.6.1	Organic material	16
2.6.2	Inorganic material	17
2.6.3	Eutectics	17
2.7	Introduction of Paraffin wax	17
2.8	Paraffin wax	19
2.8.1	History of Paraffin wax	19
2.8.2	Application of paraffin wax	20
2.8.2.1	Applications in the paper industry.	20
2.8.2.2	2 Applications in household chemicals (polishes, creams, candles, etc)	21
2.8.2.3	3 Application in cosmetics	21
2.8.2.4	Applications in the food industry and in agriculture (cheese-coating, poultry	
	processing, fruit preservation, etc)	23
2.8.2.5	Miscellaneous applications (matches, textiles, electrical industry, pyrotechnic	S,
	pencil manufacture, precision casting, wax emulsions for building construction	
	and etc)	23

2.8.3	Properties of Paraffin wax	25
2.8.4	Characterization of Paraffin Wax	34
CHAI	PTER 3 METHODOLOGY	36
3.1	Introduction	36
3.2	Flowchart	37
3.3	Specify requirements	38
3.3.1	Product Design Specification	38
3.4	Brainstorming and evaluate	38
3.4.1	Brainstorming	38
3.4.2	Benchmarking	38
3.5	Develop and prototype solution	39
3.5.1	Sketching	39
3.6	Material Selection	40
3.7	Design concept of the leather jacket	41
3.7.1	Design specification	41
3.8	Testing the leather jacket using PCM	43
3.9	Procedure before using phase change material	44
3.9.1	Procedure before using phase change material	44
3.10	Fabrication on the leather jacket	49
3.11	Testing the leather jacket with phase change material	52

3.12	Costing	53
3.13	Project analysis	54
3.13.1	Expected result	54
3.14	Expected outcomes	55
3.15	Gantt chart	56
СНАР	TER 4 METHODOLOGY	57
4.1	Introduction	57
4.2	Specific requirement	57
4.2.1	Product design specification	57
4.3	Brainstorming and Evaluate	59
4.3.1	Benchmarking	59
4.3.1.1	HyperKewl Sport Cooling Vest	59
4.3.1.2	Leatt Coolit Evaporative Cooling Vest	60
4.3.1.3	Jacket Ventz	61
4.4	Develop and prototype	62
4.4.1	Sketching	62
4.5	Material Selection	63
4.6	Design concept prototype of the motorcycle jacket	63
4.6.1	Design Specification	64
4.7	Fabrication process	65

4.7.1	Fabrication Flow Chart	66
4.7.2	Measuring process	67
4.7.3	Cutting process	67
4.7.4	Sewing process	69
4.7.5	Fabrication Complete	70
4.8	Procedure after using phase change material	72
4.8.1	Procedure after using phase change material	72
4.9	Results	76
4.9.1	Before and after using paraffin wax in the motorcycle jacket	77
4.10	Discussion	78
CHAH	PTER 5 CONCLUSION AND RECOMMENDATION	79
5.1	Introduction	79
5.2	Conclusion	79
5.3	Recommendation	79
DEE	ODENICES.	0.0
KEFE	CRENCES	80
APPE	NDIX	86

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Melting p	point, Boiling point and Density of	n-Paraffins (George A. Olah,
Table 3.1: Costing T	Γable	53
Table 3.2: Expected	Result	54
Table 4.1: Product o	lesign specification	58

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: K- (Chart	6
Figure 2.2: Exa	mple of leather jacket (From hillsideusa)	7
Figure 2.3: Leat	ther (from Leah, 2017)	11
Figure 2.4: Clea	aning process of leather	13
Figure 2.5: Pick	cling process of leather (from Zerif Lite, 2014)	14
Figure 2.6: Fini	shing process of leather (from Alyssa, 2010)	15
Figure 2.7: Sam	ple of paraffin wax	19
Figure 2.8: The	hydrocarbon C ₃₁ H ₆₄ is typical component of paraffin wax	27
Figure 2.9: Stru	ctural Isomers of C ₅ H ₁₂ and melting point (George A. Olah, 20	03) 28
Figure 2.10: Mein °C (Becker 1	elting Points and Boiling Points of unbranched hydrocarbon ter 997)	nperature 28
Figure 2.11: De Polymer Colloid	nsity of normal hydrocarbons, density in g/cm3 (The Key Cent dsis, 2010)	tre for 30
_	xagonal Crystal Structure (Above), Orthorhombic Crystal Struce All Around Us, 2007).	cture 33
Figure 2.13: Vis	scosity vs. Number of Carbons (Vulk and Sarica 2003)	34
Figure 3.1: Flow	v chart	37

Figure 3.2: Sketching	40
Figure 3.3: Motorcycle jacket	41
Figure 3.4: Leather jacket original form	42
Figure 3.5: Inside leather jacket	43
Figure 3.6: Yarn	49
Figure 3.7: Fabric	50
Figure 3.8: pure aluminium silver zip lock resalable bag 8 x 11 cm no base	50
Figure 3.9: Scissor	51
Figure 3.10: Thermocouple and data logger	52
Figure 3.11: Gantt chart	56
Figure 4.1: HyperKewl Sport Cooling Vest	59
Figure 4.2: Leatt Coolit Evaporative Cooling Vest	60
Figure 4.3: Jacket Ventz	61
Figure 4.4: Prototype Sketch	62
Figure 4.5: Prototype of motorcycle jacket	63
Figure 4.6: Finalize prototype of motorcycle jacket	65
Figure 4.7: Fabrication Process	66
Figure 4.8: Measuring process	67
Figure 4.9: Fabric for cutting	68
Figure 4.10: Cutting process	68
Figure 4.11: First row of sewing process xvi	69

Figure 4.12: Completion of sewing process	70
Figure 4.13: New design product	71
Figure 4.14: Result for before and after using paraffin wax	77

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1: Table before using phase change material		86
Appendix 2: Table after using phase change material		87

LIST OF SYMBOLS

F - Force

g - Gravity = 9.81 m/s

I - Moment of inertia

Wt% - Weight percentage

°C - Celsius

KJ/g - Kilojoule/gram

g/cm³ - Gram/centimetre

 $J g^{-1} k^{-1}$ - Joules per gram kelvin

KJ/kg*K - Kilo joule/kilogram*kelvin

T - Torque

V - Velocity

w - Angular velocity

x - Displacement

LIST OF ABBREVIATIONS

NMP N-methyl-2-pyrrolidone

DMA Dimethylacetamide

Km Kilometre

Min Minute

K Kelvin

Kg Kilogram

kJ Kilo Joule

Cm Centimetre

°C Celsius

Wt Weight percentage

G Gram

MAIDS The Motorcycle Accident In-Depth study

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter will discuss about the background of the product and material. This chapter is including the problem statement of the project. Then, the chapter also have objectives to solve the problem and lastly in this chapter are work scope of the project is about to design and study of the product.

1.2 Background

Paraffin wax, colourless or white, somewhat translucent, hard wax consisting of a mixture of solid straight-chain hydrocarbons ranging in melting point from about 48°C to 66°C (120° to 150°F) (Encyclopaedia Britannica Online et al., 2008). The solubility of a paraffin wax (melting point 42–43°C) in various base oils was studied at wax concentrations up to 50 wt% (Malik et al., 1993). There are two distinct regimes of the solubility behaviours which the first is relation between cloud point and wax concentration was hyperbolic and the second one is the relation was linear. Solvent extraction technique has been used to separate paraffin wax grades with different characteristics from El-Ameria light, middle and heavy slack waxes. The wax de oiling has been done by solvent extraction at different extraction temperatures and different solvent feed ratios (S/F by weight). The extraction solvents used are furfural, N-methyl-2-pyrrolidone (NMP) and N, N, dimethylacetamide (DMA) (Magdy et al., 2011). The phase change materials (PCMs) have the appropriate properties for controlling heat strain.

One of the well-known PCMs is paraffin (Saied et al., 2016). Phase change material such as paraffin wax has very low thermal conductivity which leads to many defects upon its practical utilization in thermal energy storage system (Gulfam et al., 2016). The amount of energy to change the phase of any compound is little yet effective. The paraffin wax is melting by absorbing heat from the body.

This chapter introduces the subject matter and problems being studied and indicates its importance and validity. Introduction is the first part of a thesis and allows the readers to get the general idea of what the thesis is about. It also acquaints the readers with the thesis topic, explaining the basic points of the research and pointing the direction of the research. Introduction sets out the hypotheses to be tested and research objectives to be attained. It is important to remember that the research objectives stated in the thesis should match the findings of the study. Failing to do so could result a recommendation by the examiners to conduct additional studies so that the stated objectives are met.

The purpose of motorcycle clothing is to protect the motorcyclist not only against weather conditions but also against an unforeseen contact with other objects (Magdalena 2016). Motorcyclist's body clothing is related with overheating especially in summer.

The six fundamental parameters in the classic heat balance model of human thermal comfort, metabolic rate is probably the most important and yet it is the most crudely assessed in both research and practice. Most studies in thermal comfort domain to date have relied on simple activity diaries to estimate metabolic rate (Maohui et al., 2018). In underground confined spaces with a crowded population, the thermal environment will be hot-humid and occurred with high CO₂ concentration (Maohui et al., 2018). Thermal comfort studies on relies on simple activity to estimate metabolic rate.

Climate change is the biggest threat to nature and humanity in the 21st century. Climate change means annual temperature of the earth has swung up and down by several degrees Celsius over the past million years. Temperature records in the past 30 to 50 years have shown warming trends in most places including Malaysia (Haliza, 2009).

1.3 Statement of the Purpose

Limited studies have been reported on the solubility behaviour of waxes in undefined mixtures in petroleum fractions, in crude oil and in kerosene. The maximum wax concentration in this study was limited by the solubility equilibrium temperature of the sample, which was equal to the melting point of the wax (Malik et al., 1992).

Heat is considered as one of the harmful agents in many workplaces. The heat exposure will initially create the heat strain but in long-term exposures, it will cause some problems such as muscle cramps, heat stroke, heat syncope, heat exhaustion, less productivity, more accident rate and less safety level in workplaces (Saeid et al., 2016).

Climate change is considered to be one of the biggest threats facing nature and humanity today. It is an undeniable, pervasive, and insidious planetary crisis that affects every aspect of our lives and future (Haliza, 2009).

1.4 Project Objective

The objective of this project is consisting of:

- 1. To fabricate leather jacket with paraffin wax built inside it.
- 2. To analysis the heat surrounding leather jacket while wearing it and evaluation of its effectiveness under hot weather conditions.

3

1.5 Scope

The scope of this project consists of:

- 1. Fabricate motorcycle jacket merging with phase change material.
- 2. Analysis the data accumulated during the field test.
- 3. Field test on wearing leather jacket using phase change material.