

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF REAR WHEEL SYSTEM FOR AN AGRICULTURAL VEHICLE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

MUHAMMAD NADZIR BIN REZDUAN B071510745 940602065603

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Design and Analysis of Rear Wheel System for an Agricultural Vehicle

Sesi Pengajian: 2018/2019

Saya **MUHAMMAD NADZIR BIN REZDUAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

_		

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD*

TERHAD

Yang benar,

Disahkan oleh penyelia:

.....

MUHAMMAD NADZIR BIN REZDUAN ADNAN BIN KATIJAN

Alamat Tetap:

Cop Rasmi Penyelia

N0 207 TAMAN PERMATANG

SHAHBANDAR JENGKA

26400 BANDAR JENGKA

PAHANG DARUL MAKMUR

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

iii

DECLARATION

I hereby, declared this report entitled Design and Analysis of Rear Wheel System for an Agricultural Vehicle is the results of my own research except as cited in references.

Signature:	
Author :	MUHAMMAD NADZIR BIN
	REZDUAN

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	ADNAN BIN KATIJAN

ABSTRAK

Projek ini menyediakan reka bentuk, fabrikasi dan analisa sistem pertanian roda belakang. Penambahbaikan pada sistem roda belakang jentera pertaian ini membolehkan kenderaan pertanian ini beralih untuk bergerak dengan lebih stabil dan mengurangkan kecenderungan untuk terlebih belokkan atau terbalik semasa gerakan yang agresif atau melalui lereng. Kestabilan kenderaan pertanian adalah perkara utama kerana prestasinya boleh dikendalikan pada permukaan yang tidak rata dan dengan beban. Dalam kerja ini, penambahbaikan kenderaan pertanian telah direka dengan menggunakan CATIA V5. Struktur sistem belakang jenteraan ini dianalisis dan diubah untuk kestabilan yang lebih baik. Analisis elemen tekanan dilakukan dengan menggunakan HYPERMESH untuk menganalisis struktur sistem komponen belakang kenderaan pertanian ini. Pengubahsuaian komponen sistem jentera pertanian ini dilakukan dengan memilih komponen-komponen terlebih dahulu. Komponen yang terpilih termasuk aci, barbola, gegancu, besi bersudut dan tayar yang mengikuti reka bentuk yang telah dirancang dan dianalisis. Sebagai kesimpulannya, penambahbaikan ini juga menambah cengkaman pada tayar, justure kenderaan pertanian ini boleh dikendalikan pada pelbagai jenis permukaan.

vi

ABSTRACT

This project provides design, fabrication and analysis of the rear wheel agricultural system. The improvement on the rear wheel system allows this agricultural vehicle to turn for maneuvering with more stable and decrease the tendency to turn over or roll over during an aggressive maneuvering or through the slopes. The stability of the agricultural vehicle is a main priority due to its performance can conduct on the uneven surface and with loaded. In this work, the improvement of the agricultural vehicle was designed using CATIA V5. The structure of the rear agricultural system was analyzed and changed for better stability. The stress element analysis was done using the HYPERMESH to analyze the structural of the rear component system of the agricultural vehicle. The fabrication process was start with selecting materials in advance. The selected material consists of shaft, bearing, sprocket, chain, solid angle steel and tires for the rear agricultural system components was done by following the design that been purposed and analyzed. As conclusion, the improvement also increases the tires traction, by this the agricultural vehicle can perform well at variance terrain.

vii

DEDICATION

I am dedicating this thesis to beloved people who have meant and continue to mean so much to me especially to my father Mr Rezduan bin Yusof, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my mother Madam Sharifah Jamilah binti Syed Othman, who taught me that even the largest task can be accomplished if it is done one step at a time. Furthermore, I would like to dedicate to Mr Adnan bin Katijan who is guidance my thesis and to the other lecturer who taught me in UTeM, thank you for everything. To all my team mate and class mate, thank you for sharing and spread knowledge through my journey education in UTeM. May Allah SWT. bestow your sustenance upon all the sincerity given in completing this project.

ACKNOWLEDGEMENTS

Alhamdulillah, I thank to Allah (SWT) for letting to me live to see this thesis through. I would like to express my deepest appreciation to all those who provided me the possibility to complete this report. A special gratitude I give to our final year project supervisor, Mr Adnan bin Katijan whose contribution in stimulating suggestions and encouragement, helped me to coordinate my project especially in writing this report. Furthermore, I would also like to acknowledge with much appreciation the crucial role of the staff of Mr Mohd Syakir bin Mohtarudin who gave the permission to use all required equipment and the necessary materials to complete the task "Design and Analysis of Rear Wheel System for an Agricultural Vehicle". A special thanks goes to my team mate, Syazwan, who help me to assemble the parts and gave suggestion about the task "Design and Analysis of Rear Wheel System for an Agricultural Vehicle". Last but not least, many thanks go to my whole family for their undying support, their unwavering belief that I can achieve so much. I have to appreciate the guidance given by other supervisor as well as the panels especially in our project presentation that has improved our presentation skills thanks to their comment and advices.

ix

TABLE OF CONTENTS

		PAGE
TABI	LE OF CONTENTS	Х
LIST	OF TABLES	xiv
LIST	OF FIGURES	xv
LIST	OF APPENDICES	xviii
LIST	OF SYMBOLS	xix
LIST	OF ABBREVIATIONS	xxi
LIST	OF PUBLICATIONS	xxii
CHAI	PTER 1 INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	2
1.3	Objective	2
1.4	Scope of work	2
1.5	Significant of study	3
CHAI	PTER 2 LITERATURE REVIEW	4
2.1	Introduction	4
2.2	Benchmark	5
2.3	Stability and Instability x	7

	2.3.1	Center of gravity	7
	2.3.2	Directional of stability	9
	2.3.3	Centrifugal force	10
2.4	System comp	ponent	11
	2.4.1	Sprocket and Chain	11
	2.4.2	Bearing	13
	2.4.3	Shaft	15
	2.4.3.1 Solid	shaft and hollow shaft	18
	2.4.4	Tires	18
2.5	Components	System Analysis	20
	2.5.1	Shaft analysis	20
	2.5.2	Optimal tread design through failure analysis	21
СПУР	TED 2	METHODOLOGY	22
UNAF	ILK J	METHODOLOGI	23
3.1	Introduction		23
3.2	Flowchart		24
3.3	Gantt chart		25
3.4	Concept Des	ign	26
	3.4.1	Design Selection	26
	3.4.2	Proposal Concept Design	28
	3.4.3	New axle components parameter	31

xi

	3.4.4	Tires location	33
	3.4.5	Bearing bracket position	33
3.5	Analysis		34
	3.5.1	Torque Analysis	35
	3.5.2	Component Analysis	37
	3.5.2.1 Spro	cket with shaft	39
	3.5.2.2 Pin l	ock shaft	40
3.6	Material Selection		41
3.7	Fabricate		46
	3.7.1 Equi	pment	49
СПУР	TED A	PESULT AND DISCUSSION	52
4.1	Introduction		52
4.1			
4.2	Result of Co	nceptual Design	52
	4.2.1	Bearing bracket	54
	4.2.2	Bearing mount	54
	4.2.3	Shaft	55
	4.2.4	Sprocket and key	56
	4.2.5	Wheel hub	56
4.3	Result of An	nalysis	57
	4.3.1	Shaft with Sprocket Element Stresses	57
		X11	

	4.3.2	Shaft with Sprocket Displacement (Mag)	59
	4.3.3	Shaft pin lock Element Stresses	60
	4.3.4	Shaft pin lock Displacement Mag	61
4.4	Result of Fat	prication	62
	4.4.1	Previous Agricultural vehicle	63
	4.4.2	New Agricultural Vehicle	63
СНАР	TER 5	CONCLUSION AND FUTURE WORK	66
5.1	Introduction		66
5.2	Summary of the Research		66
5.3	Achievement of Research Objective		66
5.4	Suggestion for Future Work		67
5.5	Project Potential		67
REFERENCES 63			68

APPENDIX

70

xiii

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1	Properties of common metal and alloys	17
Table 2	Type of components	31
Table 3	Parts parameter	32
Table 4	Mechanical Properties of AISI 1018	38
Table 5	Mechanical Properties of AISI 1045	39
Table 6	VonMises Analysis	42
Table 7	Parts selecting	43
Table 8	Fabrication process	47
Table 9	Equipment	50

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2-1	Literature Review K-chart.	4
Figure 2-2	Mercedes-BENZ G63 AMG 6x6	5
Figure 2-3	Argocat 8x8 Conquest XTi	6
Figure 2-4	Center gravity position of tractor	8
Figure 2-5	Stability baseline	9
Figure 2-6	Relative motion between sprocket and roller chain	12
Figure 2-7	Integrated corn planting transmission system	13
Figure 2-8	Tires classified	19
Figure 2-9	Failure shaft	21
Figure 2-10	Indoor driving test	22
Figure 3-1	Flowchart	24
Figure 3-2	Gantt chart	25
Figure 3-3	Agricultural vehicle before modified	26
Figure 3-4	Design 1	27
Figure 3-5	Design 2	27
Figure 3-6	Design 3	28

XV

Figure 3-7	Proposal Concept Design 30	
Figure 3-8	Components parameter	32
Figure 3-9	New tires position	33
Figure 3-10	Bearing position	34
Figure 3-11	Powertrain torque calculation	35
Figure 3-12	Sprocket with shaft	40
Figure 3-13	Pin lock shaft	41
Figure 4-1	Full Assembly Design	53
Figure 4-2	Complete design	54
Figure 4-3	Frame with bearing bracket	54
Figure 4-4	Bearing mount	55
Figure 4-5	Shaft	55
Figure 4-6	Sprocket and key	56
Figure 4-7	Wheel hub	57
Figure 4-8	Shaft with Sprocket Element Stresses	58
Figure 4-9	Shaft with Sprocket Displacement [Mag]	59
Figure 4-10	Pin lock Element Stresses	60
Figure 4-11	Pin lock Displacement [Mag]	62
Figure 4-12	Previous Agricultural Vehicle	63
Figure 4-13	New Agricultural Vehicle	64
Figure 4-14	Chain with sprocket assemble xvi	64

xvii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
Appendix 1	MZ360 engine specification	70	
Appendix 2	Kubota gear ratio		

xviii

LIST OF SYMBOLS

D, d	-	Diameter
F	-	Force
g	-	Gravity = 9.81 m/s
I	-	Moment of inertia
1	-	Length
m	-	Mass
Ν	-	Rotational velocity
Р	-	Pressure
Q	-	Volumetric flow-rate
r	-	Radius
Т	-	Torque
Re	-	Reynold number
\mathbf{V}	-	Velocity
W	-	Angular velocity
X	-	Displacement
Z	-	Height
q	-	Angle
Te	-	Engine torque
Tc	-	Clutch torque
Td	-	Torque differential
T_{g}	-	Gearbox torque output

xix

$\mathbf{T}_{\mathbf{rw}}$	-	Torque right wheel
Tlw	-	Torque left wheel
i ₀	-	Final drive ratio
İx	-	Gearbox ratio engaged
Fd	-	Final drive
Nm	-	Newton meter

LIST OF ABBREVIATIONS

PCA Principal Component Analysis

xxi

C Universiti Teknikal Malaysia Melaka

LIST OF PUBLICATIONS

xxii

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Research Background

This project in overall describes how the agricultural vehicle be modified according to the scope that is set by the researcher. In PSM 1 progress, there was three chapter covered. Chapter one is about the introduction of the project. Chapter two is a literature review. This chapter is concern about the past study and analysis of system component that could be used in this project. For chapter three, is about the ideas that be a guideline for the methodology of the project.

Palm oil creation has blasted in the course of the most recent decade, bringing about an extension of the worldwide oil palm planting zone from 10 to 17 Million hectares in the vicinity of 2000 and 2012. Recently, a tremendous improvement from Malaysia and Indonesia in oil palm companies (Pirker, Mosnier et al. 2016). Palm oil production has boomed over the last decades driven by increasing use as frying oil, as an ingredient in processed food and non-edible products (detergents and cosmetics), and more recently in biodiesel productions (Pirker, Mosnier et al. 2016).

The farm machinery is a major investment in the farming system. Tractors are a fundamental source of power in farming, where they are used in most of the farm operations all over the season (Al-Suhaibani and Wahby 2017). Kubota and tractor are mostly vehicles that are used for bringing out the bunches of palm from oil palm plantation. This type of vehicle needs to through various terrain which is involved with paved roads.

However, the multi-purpose agricultural vehicle has been introduced to an improved total of bunches of palm oil bringing out from the plantation. This vehicle can through small streets where a large agricultural vehicle such as lorries, Kubota, and tractors cannot through it. It operated with two rear wheels for the driven and one front wheel for maneuverer. By integrating the new drivetrain vehicle system, this vehicle can reach the small route and easy to handle.

1.2 Problem Statement

The multi-purpose agricultural vehicle has been extensively used and has certainly assisted smallholder and consortium plantation. But its use is also limited if the vehicle is forced to carry heavy loads and through the rugged and severe road surfaces with 3-wheel drive makes the vehicle easily overturned.

1.3 Objective

- 1. Design rear wheel system of an agricultural vehicle.
- 2. Analysis component of rear wheel system of an agricultural vehicle.
- 3. Fabricate rear wheel of system agricultural vehicle.

1.4 Scope of work

- 1. Fabricate the additional rear wheels of an agricultural vehicle.
- 2. Fabricate the set of sprocket and chain to the axle of an agricultural vehicle.
- 3. Perform the structure analysis.