

Faculty of Mechanical and Manufacturing Engineering Technology

SENSITIVITY STUDY ON FRONT SUSPENSION HARDPOINT OF FORMULA SAE RACE CAR TOWARDS VEHICLE DYNAMICS CHARACTERISTICS

Parthiban A/L Bala Subramaniam

Bachelor of Mechanical Engineering Technology (Automotive Technology) with Honours

2018

SENSITIVITY STUDY ON FRONT SUSPENSION HARDPOINT OF FORMULA SAE RACE CAR TOWARDS VEHICLE DYNAMICS CHARACTERISTICS

PARTHIBAN A/L BALA SUBRAMANIAM

A thesis submitted in fulfilment of the requirements for the Bachelor of Mechanical Engineering Technology (automotive technology) with honours

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Sensitivity Study on Front Suspension Hardpoint of Formula Sae Race Car Towards Vehicle Dynamics Characteristics

Sesi Pengajian: 2019

Saya **PARTHIBAN A/L BALA SUBRAMANIAM** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

iii

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

I	$\mathbf{}$	/	2
	/	٩	
	Υ.		2

TIDAK TERHAD

Yang benar,

Disahkan oleh penyelia:

PARTHIBAN A/L BALA	
SUBRAMANIAM	MOHD HAFIZI BIN ABDUL RAHMAN
Alamat Tetap:	Cop Rasmi Penyelia
D-12-02, IMPIAN BAIDURI	
JALAN 224/51A	
46100, PETALING JAYA	
SELANGOR	
Tarikh:	Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report Entitled Sensitivity Study on Front Suspension Hardpoint of Formula Sae Race Car Towards Vehicle Dynamics Characteristics is the results of my own research except as cited in references.

> Signature: Author : PARTHIBAN A/L BALA SUBRAMANIAM

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive Technology) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	MOHD HAFIZI BIN ABDUL RAHMAN

ABSTRAK

Matlamat projek ini adalah untuk menentukan sensitiviti 'hardpoint' sistem penggantungan depan kereta perlumbaan Formula SAE ke arah Ciri-ciri Dinamik Kenderaan. Analisis dalam projek telah disimulasikan secara virtual mengunakan perisian CAE MSC ADAMS. Masalah yang dihadapi projek ini adalah sumber seperti masa, wang tenaga untuk mensimulasikan dan menganalisis sifat dinamik kenderaan secara fizikal. Analisis yang dijalankan adalah Kinematics & Compliance dan "FULL VEHICLE". Tujuan projek ini dijalankan adalah untuk mengurangkan masa dan tenaga yang akan dibelanjakan untuk mengenal pasti prestasi dinamik kenderaan kereta perlumbaan dengan simulasi fizikal. Objektif projek ini adalah untuk melaksanakan analisis dinamik kenderaan untuk penggantungan depan dan kenderaan Kendaraan Formula SAE Formula Penuh dan untuk melaksanakan Design of Experiment (DOE) hardpoint penggantungan depan untuk analisis kepekaan hardpoint. Simulasi dan analisis akan dijalankan menggunakan MSC ADAMS / CAR dan selanjutnya diproses dan dilihat dalam ADAMS / POSTPROCESSOR. DOE akan dijalankan pada ADAMS / INSIGHT. Hasil simulasi untuk Kinematik dan Pematuhan dan Kendaraan penuh disusun menjadi jadual dan diplotkan kepada graf untuk melihat dengan jelas prestasi dan juga untuk menganalisis secara sistematik. Projek ini merupakan usaha awal untuk penyertaan UTeM dalam perlumbaan Formula SAE. Hasil projek ini akan menjadi rujukan untuk penalaan dan penetapan kereta perlumbaan Formula SAE UTeM berdasarkan susun atur landasan (track layout).

ABSTRACT

The aim of this project is to determine the sensitivity of front suspension hardpoints of Formula SAE race car towards the Vehicle Dynamics Characteristics. The analysis in this project was simulated virtually via the means of a CAE software MSC ADAMS. The problem that this project overcomes is the resources such as time, energy money to physically simulate and analyze the vehicle dynamics characteristics. The analysis carried were Kinematics & Compliance and Full Vehicle. The reason for this project being conducted is to reduce the time and energy that will be spent to identify the vehicle dynamics performance of the race car with physical simulations. The objectives of this project are to perform the vehicle dynamics analysis for front suspension and Full Vehicle of Formula SAE race car and to perform Design of Experiment (DOE) of front suspension hardpoint for hardpoint sensitivity analysis. The simulations and analysis were carried using the MSC ADAMS/CAR and the further processed and viewed in ADAMS/POSTPROCESSOR. The DOE was conducted on ADAMS/INSIGHT. The results of the simulation for Kinematics and Compliance and Full vehicle are tabulated into tables and plotted into graph to clearly see the performance and also to analyze systematically. This project is a preliminary effort for the participation of UTeM in the Formula SAE race. The outcome of this project will be a reference for tuning and setting up the Formula SAE race car of UTeM for according to the race track layout.

viii

DEDICATION

To my beloved late father, Bala Subramaniam and my beloved mother, Sandi.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my gratitude to my supervisor, MR Mohd Hafizi Bin Abdul Rahman from the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) for allowing me to carry out this project under his supervision. Without his guidance and help this project wouldn't have been a reality. I would also like to thank my fellow peers and friends for always motivating and providing support whenever needed which certainly helped in completing this project. Lastly, thank you to everyone who had been to the crucial parts of realization of this project. Not forgetting, my humble apology as it is beyond my reach personally mentioned those who involved directly or indirectly one to one.

TABLE OF CONTENT

DECLARATION	V
APPROVAL	VI
ABSTRAK	VII
ABSTRACT	VIII
DEDICATION	IX
ACKNOWLEDGEMENTS	X
TABLE OF CONTENT	XI
LIST OF FIGURES	XV
LIST OF TABLES	XIX
LIST OF ABBREVIATION	XX
CHAPTER 1 INTRODUCTION	1
1.1 Project Background	1
1.2 Problem statement	5
1.3 Objectives	6
CHAPTER 2 LITERATURE REVIEW	7
2.1 INTRODUCTION	7
2.2 Formula SAE Rules	7
2.3 Modifications and Repairs	7
2.4 Suspension	8

	2.4.1	Depende	ent Suspension	9
	2.4.2	Semi Rigid Crank Axles		11
	2.4.3	Independ	dent Suspension System	12
		2.4.3.1	Trailing Arm Suspension	12
		2.4.3.2	Short-long Arm (SLA) Front Suspension	13
		2.4.3.3	MacPherson Strut	15
2.5	Suspensi	on Param	eters	17
	2.5.1	Wheelba	ase	17
	2.5.2	Track		19
	2.5.3	Roll cen	tre and Roll axis	20
	2.5.4	Body Ro	oll Axis	21
	2.5.5	Camber		23
	2.5.6	Fundame	entals of Camber Kinematics	23
	2.5.7	Castor		26
	2.5.8	Toe		27
	2.5.9	Kingpin	Inclination	28
	2.5.10	Steering	Offset	29
	2.5.11	Instantar	neous Centre	30
	2.5.12	Push Ro	d and Pull Rod	31
	2.5.13	Bell Cra	nk	32
СН	APTER 3	METHO	DDOLOGY	33
3.1	INTROD	UCTION	Ĩ	33
3.2	Process F	flow		33
3.3	Process E	Explanatio	on	36
	3.3.1	Literatur	re review	36

xii

	3.3.2	Study on The Existing Open Wheel and Formula SAE Race O	Car Front
	Suspe	nsion Setup Geometry	36
	3.3.3	Finalize on Front Suspension Geometry	38
	3.3.4	Front suspension hardpoint model setup in ADAMS	39
	3.3.5	Vehicle Dynamics Analysis	41
		3.3.5.1 Kinematics & Compliance Analysis	41
	3.3.6	Full Vehicle Analysis	42
		3.3.6.1 Ramp Steer	43
		3.3.6.2 Step Steer	43
3.4	Design o	of Experiment	45
	3.4.1	Types of Design of Experiment	46
		3.4.1.1 One Factor Design	46
		3.4.1.2 Full factorial design	48
СН	APTER 4	RESULTS & DISCUSSION	49
4.1	Introduc	tion	49
4.2	Front sus	spension geometry	49
4.3	Dimensi	on of vehicle	51
4.4	Vehicle	Dynamics Analysis	52
	4.4.1	Results of Kinematics & Compliance (K&C) analysis	53
		4.4.1.1 K&C graphs for Parallel Wheel Travel	54
		4.4.1.2 K&C Graphs for Opposed Wheel Travel	56
	4.4.2	Results of Full vehicle Transient analysis	59
		4.4.2.1 Ramp steer	59
		4.4.2.2 Step Steer	60
4.5	Design o	of Experiment (DOE)	63
	4.5.1	Results of sensitivity analysis (DOE)	64

xiii

		4.5.1.1	Parallel Wheel Travel	64
		4.5.1.2	Opposed Wheel Travel	69
		4.5.1.3	Full Vehicle	73
	4.5.2	Validati	on analysis on DOE results	75
		4.5.2.1	Camber change-parallel wheel travel	75
		4.5.2.2	Roll steer change- Opposed wheel travel	77
		4.5.2.3	Lateral acceleration – Full Vehicle	78
СН	APTER 5	5 CONSL	LUSION	81
CO	NCLUSI	ON		81
5.1	Conclusi	ion		81
5.2	Recomm	nendation		82

List of Figures

Figure 1.1 open wheel race car	3
Figure 1.2 components of suspension system	3
Figure 1.3 suspension parameters	4
Figure 1.4 formula SAE race car	4
Figure 2.1 Hotchkiss suspension	10
Figure 2.2 Four Link suspension system.(Gillespie, 1992)	10
Figure 2.3 Twist beam suspension system (Reimpell et al., 2001)	11
Figure 2.4 trailing arm suspension	13
Figure 2.5 SLA front suspension system	14
Figure 2.6 MacPherson Strut suspension system	15
Figure 2.7 Wheelbase	18
Figure 2.8 Track	19
Figure 2.9 9 Roll centre and Roll axis	20
Figure 2.10 Body roll axis	22
Figure 2.11 Camber	23

XV

Figure 2.12 Static camber and camber under roll	25
Figure 2.13 chart of camber angle Vs. wheel movement	25
Figure 2.14 Castor	26
Figure 2.15 Toe	27
Figure 2.16 Kingpin inclination	28
Figure 2.17 Steering offset	29
Figure 2.18 Instantaneous centre	30
Figure 2.19 Push rod and Pull rod	31
Figure 2.20 Bell crank	32
Figure 3.1 Flowchartof project flow	35
Figure 3.2 Suspension geometry of an open wheel race car	38
Figure 3.3 Suspension model in ADAMS	39
Figure 3.4 Double wishbone setup for K&C simulation	42
Figure 3.5 Parameters for the step steer simulation	44
Figure 3.6 Result of one factor design based on viscosity	47
Figure 3.7 Full Factorial design where X1, X2, and X3 as factors	48
Figure 4.1 Geometry of Front Suspension (Double Wishbone)	50

Figure 4.2 Graph of Toe Angle change	54
Figure 4.3 Graph of Camber Angle change	54
Figure 4.4 Graph of Roll Center Height	55
Figure 4.5 Graph of Wheel Rate	55
Figure 4.6 Graph of Ride Rate	56
Figure 4.7 Graph of Roll Steer	56
Figure 4.8 Graph of Roll Camber	57
Figure 4.9 Suspension Roll Rate at Wheel Center	57
Figure 4.10 Graph of Suspension Roll Rate at Tyre Contact Patch	58
Figure 4.11 Parameter for Ramp Steer Analysis in Adams/Car	59
Figure 4.12 graph for Ramp Steer analysis	60
Figure 4.13 Parameter setup for Step Steer in Adams/Car	61
Figure 4.14 Graph of Lateral Acceleration vs. Time in Adams/Car	61
Figure 4.15 Graph of Roll / Side Slip Angle Vs. Time in Adams/Car	62
Figure 4.16 Graph of Yaw Rate Vs Time in Adams/Car	62
Figure 4.17 Graph of hardpoint effects towards toe change	69
Figure 4.18 Graph of camber change	70

Figure 4.19 Graph of effects of hardpoints towards suspencion roll rate at TCP	71
Figure 4.20 Graph of hardpoints effects towards suspension roll rate.	72
Figure 4.21 Bar Graph of the effectiveness of hardpoints towards lateral	
acceleration	73
Figure 4.22 Graph of hardpoint effects towards Yaw Rate	74
Figure 4.23 Hardpoint of Upper Control Arm Outer	76
Figure 4.24 Graph of camber change during parallel wheel travel	76
Figure 4.25 Difference in Camber change between Original hardpoint and shift	ted
hardpoint	76
Figure 4.26 Graph of roll steer change during opposed wheel travel	77
Figure 4.27 Graph of Lateral Acceleration during Step Steer simulation.	79

xviii

List of Tables

Table 3.1 Ha	rdpoint	Coordinates	of Susper	sion Parts	of Formula	SAE Race Car

	40
Table 4.1 Table of Vehicle Dimension and specifications	51
Table 4.2 Load cases applied in the analysis	52
Table 4.3 Results of K&C analysis	53
Table 4.4 Results of Full Vehicle Transient Analysis- Step Steer	62
Table 4.5 Hardpoints of suspension parts that were run to determine its sensiti	ivity.
	63
Table 4.6 Hardpoint of Tie Rod Inner	77
Table 4.7 Difference in lateral acceleration performance	79
Table 4.8 Original and shifted hardpoint coordinate in cartesian plane	80

List of abbreviation

SAE	-	Society of Automotive Engineers
UCA	-	Upper Control Arm
LCA	-	Lower Control Arm
BC	-	Bell Crank
PROD	-	Push Rod
OB	-	Outboard
IB	-	Inboard
TR	-	Tie Rod
K&C	-	Kinematics and Compliance
DOE	-	Design of Experiment
RWD	-	Rear Wheel Drive
FWD	-	Front Wheel Drive
AWD	-	All Wheel Drive
CAE	-	Computer Aided Engineering

CAD	-	Computer Aided Design
CG	-	Centre of Gravity
WC	-	Wheel Centre
ТСР	-	Tyre Contact Patch
Deg	-	Degree
m	-	Meter
mm	-	millimetre
Hz	-	Hertz
FEA	-	Finite Element Analysis

CHAPTER 1

INTRODUCTION

1.1 Project Background

Formula SAE by SAE international is competition of student design. Its main purpose is to allow students from various institute to fabricate an open wheel race car on the asphalt. Institutes from various countries take part in this competition. As a stepping stone in enabling Universiti Teknikal Malaysia Melaka (UTeM) to participate in Formula SAE in the near future, this project is being carried out.

As there are many aspects and elements in constructing a race car for Formula SAE, the project needs to be broken down into smaller topics. The title that this project and report will discuss on will be the front suspension. There are many rules and regulations in the Formula SAE, however in terms of suspension there aren't many rules or regulations to adhere to.

The main aim of this project is to develop a front suspension system for a Formula SAE car that has excellent vehicle dynamics performance according to the formula SAE terms. The vehicle dynamics properties of the race car will provide great cornering ability, steering ability, handling performance hence shorter lap time which will eventually win races.

In the automotive sector, power is nothing without control. This means having a high output engine with a bad suspension will only be a waste as all that power will not be utilized. In order to put all the power made by the engine, the suspension system and handling of the race car should be at top notch.

In order to develop the front suspension system of a race car with all the characteristics stated above, several steps were taken which are;

- 1. Research on suspension system available within the automotive industry especially for open wheel race car.
- 2. Study on the function and characteristics of each front suspension geometry and components of an open wheel race car.
- 3. Study on the suspension parameters that are crucial for race cars.
- 4. Research on vehicle dynamics analysis.
- 5. Designing and analysis of the front suspension geometry.

As the important parameters and elements that play key role in the race car are identified, the scope now will be smaller and become more focused. When these elements are taken care of, it eventually makes the race car better in terms of handling as desired.

Figure 1.1 open wheel race car

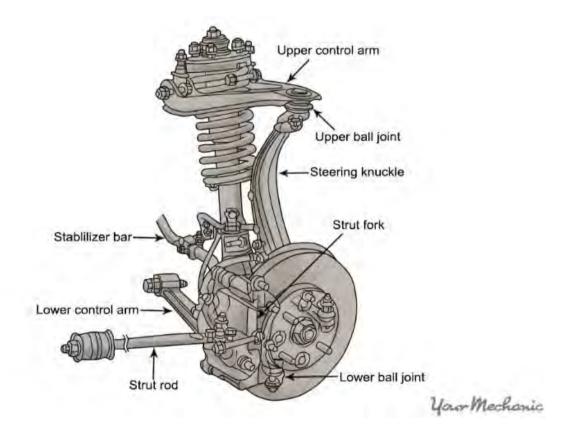


Figure 1.2 components of suspension system