

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF INHALER MONITORING SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunication) with Honours.

by

MOHAMAD SHAHRIL IZWAN BIN MOHAMAD B071511061 941115146689

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF INHALER MONITORING SYSTEM

Sesi Pengajian: 2019

Saya **MOHAMAD SHAHRIL IZWAN BIN MOHAMAD** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD*

TERHAD

Yang benar,

Disahkan oleh penyelia:

Cop Rasmi Penyelia

AHMAD FAUZAN BIN KADMIN

MOHAMAD SHAHRIL IZWAN BIN

MOHAMAD

Alamat Tetap:

Blok E-3-3 PPR Batu Muda

Jalan 1/12 Kampung Batu Muda

51100 Wilayah Persekutuan Kuala

Lumpur

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF INHALER MONITORING SYSTEM is the results of my own research except as cited in references.

Signature:	
Author :	MOHAMAD SHAHRIL IZWAN BIN
	MOHAMAD

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	AHMAD FAUZAN BIN KADMIN

Signature:	
Co-supervisor:	NADZRIE BIN MOHAMOOD

v

ABSTRAK

According to the World Health Organization (WHO) report, 300 million people have suffered from asthma throughout the world and the number will amplify to 400 million by 2025. It is determined that the primary reasons of the problem are inappropriate use of inhalers correctly and environmental affair such air pollution and smoking. Hence creating the idea of Development of Inhaler Physiological Monitoring System.

The Inhaler Physiological Monitoring System works when it is turn on by the user. Then the three sensors which are dust, temperature and humidity sensor will take the reading of the patient physiological surrounding every 30 seconds and send the data collected to the node MCU. The data then will process by the node MCU and if the data exceed a certain limit set in the coding the LED will blinking to indicate the area is not suitable for the user. Simultaneously for every 30 seconds, the data will be uploaded to the Internet of Thing cloud which is the Thingspeak application to be recorded.

The development of inhaler physiological system device proved to be useful with the combination of Internet of Thing (IoT) technology. The data that been uploaded can be analyses and at the same time can be use by medical personal or even patient family to monitor the asthma patient therefore the patient. Overall, with the development of inhaler physiological system can make the asthma patient live healthier life and free from asthma disease in the future.

ABSTRACT

Menurut laporan Pertubuhan Kesehatan Sedunia (WHO), 300 juta orang telah menderita asma di seluruh dunia dan jumlahnya akan meningkat menjadi 400 juta pada tahun 2025. Antara punca utama masalah adalah cara penggunaan inhaler yang salah dan masalah alam sekita seperti pencemaran udara dan merokok. Dari permasalahan itu, timbulnya idea untuk menghasilkan 'Development of Inhaler Physiological Monitoring System'.

Projek 'Development of Inhaler Physiological Monitoring System' berfungsi apabila ia dihidupkan oleh pesakit asma. Kemudian tiga alat pengesan iaitu alat pengesan debu, alat pengesan suhu dan kelembapan akan mengambil bacaan fisiologi sekitar pesakit setiap 30 saat dan menghantar data yang dikumpulkan ke 'node MCU'. Data tersebut akan diproses oleh 'node MCU'dan jika data yang diambil melebihi had tertentu, LED akan berkedip untuk menunjukkan kawasan tersebut tidak sesuai bagi pesakit asma. Pada masa yang sama, data akan dimuat naik ke 'Internet of Thing cloud' yang merupakan aplikasi 'Thingspeak' untuk direkod.

Projek 'Development of Inhaler Physiological Monitoring System' terbukti berguna dengan gabungan teknologi Internet Thing (IoT) dimana data yang telah dimuat naik boleh dianalisis dan pada masa yang sama boleh digunakan oleh ahli perubatan atau keluarga pesakit untuk memantau persekitaran pesakit asma. Secara keseluruhannya, projek 'Development of Inhaler Physiological Monitoring System' dapat membantu pesakit asma hidup lebih sihat dan bebas dari penyakit asma di masa depan.

DEDICATION

I dedicate this to my beloved mother and late father, Siti Saodah binti Nawir and Mohamad bin Mohamad Nasir.

viii

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to all those who provided me the possibility to complete this report. A special gratitude I give to my final year project supervisor, Mr Ts. Ahmad Fauzan bin Kadmin, whose contribution in stimulating suggestions and encouragement, helped me to coordinate my project especially in writing this report.

Furthermore, I would also like to acknowledge with much appreciation to my friends, Muhammad Fahmi Izzat who help me to assemble the parts and gave suggestion about the designing and constructing my projects. Finally, many thanks go to my family whose have invested their full effort in supporting me in achieving the goal. I must appreciate the guidance given by other supervisor as well as the panels especially in my project presentation that has improved my presentation skills thanks to their comment and advices.

TABLE OF CONTENTS

TABI	LE OF CONTENTS	PAGE x
LIST	OF TABLES	XV
	OF FIGURES	
L151	OF FIGURES	xvi
LIST	OF APPENDICES	xix
LIST	OF ABBREVATIONS, SYMBOLS AND NOMENCLATURES	XX
CHA	PTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Project Objective	5
1.4	Scope of Project	5
1.5	Thesis Organization	6
CHA	PTER 2 LITERATURE REVIEW	7
2.1	Development of Inhaler	7
	2.1.1 The Future of Inhalers	7
	2.1.2 The Digital Asthma Patient	8
	2.1.3 Smartinhaler Tracker Metered-Dose Inhaler Electronic Monitor	9

2.1.4	Inhalation Adherence Monitoring Using Smart Electronic Add-on	
	Device	11
2.1.5	Convolution Neural Networks for Acoustic Detection of Inhaler	
	Actuations	12
2.1.6	Inhaler Competence in Asthma	14
2.1.7	Predicting Asthma Exacerbations Employing Remotely Monitored	
	Adherence	15
2.1.8	An Acoustic Method to Automatically Detect Pressurized Metered Do	se
	Inhaler Actuations	16
2.1.9	Using Electronic Monitoring Devices to Measure Inhaler Adherence	18
2.1.10	mHealth System for Monitoring Medication Adherence	19
2.1.11	Respiratory Monitoring System for Asthma Patients based on Internet	of
	Thing (IoT)	22
2.1.12	Patient Preference and Inhaler Technique in Asthma	23
2.1.13	Environmental Determinants of Allergy and Asthma in Early Life	24
Hardw	are	26
2.2.1	Arduino Uno	26
2.2.2	Node MCU	29
Softwa	re	30
2.3.1	Arduino Integrated Development Environment (IDE)	30
2.3.2	Internet of Things	31

xi

2.2

2.3

СНАР	TER 3	METHODOLOGY	33
3.1	Produc	et Characteristics	34
	3.1.1	Metered-Dose Inhalers (MDIs)	34
	3.1.2	Arduino Uno	35
	3.1.3	Node MCU	36
	3.1.4	Optical Dust Sensor	38
	3.1.5	Temperature and Humidity Sensor	39
	3.1.6	Buzzer	40
	3.1.7	Micro Switch	41
	3.1.8	Inter-integrated Circuit (I2C) 16x 2 Arduino Liquid Crystal Display	
		(LCD) Display Modules	42
	3.1.9	Light Emitting Diode (LED)	43
	3.1.10	Product Diagram	44
3.2	Method	dological Procedures	45
	3.2.1	Flowchart for the Inhaler Physiological Monitoring System for Node	
		MCU Part	45
	3.2.2	Flowchart for the Inhaler Physiological Monitoring System for Arduin	10
		Part 46	
	3.2.3	Flowchart for Using the IDE as Node MCU and Arduino Programmer	47
	3.2.4	Hardware Implementation	48
	3.2.5	Software Implementation	50
		xii	

Measu	rement of the Inhaler Physiological Monitoring System Data	53
3.3.1	Data Analysis	53
3.3.2	Mean, Median and Mode	53
3.3.3	Line Graph	54
The D	eployment of Inhaler Physiological Monitoring System	54
PTER 4	RESULT AND DISCUSSION	56
Protot	ype Design	56
Result	:	58
.3 Analysis		
4.3.1	Analysis for Temperature, Humidity and Air Quality Reading at Hom	ie
	For 1 Hour	59
4.3.2	Graph of Temperature Reading at Home	63
4.3.3	Graph of Humidity Reading at Home	64
4.3.4	Graph of Air Quality Index Reading at Home	65
4.3.5	Analysis for Temperature, Humidity and Air Quality Reading at Cam	pus
	For 1 Hour	65
4.3.6	Graph of Temperature Reading at Campus	72
4.3.7	Graph of Humidity Reading at Campus	73
4.3.8	Graph of Air Quality Index Reading at Campus	74
	 3.3.1 3.3.2 3.3.3 The D PTER 4 Protot Result Analy 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 	 3.3.2 Mean, Median and Mode 3.3.3 Line Graph The Deployment of Inhaler Physiological Monitoring System PTER 4 RESULT AND DISCUSSION Prototype Design Result Analysis 4.3.1 Analysis for Temperature, Humidity and Air Quality Reading at Home 4.3.2 Graph of Temperature Reading at Home 4.3.3 Graph of Air Quality Index Reading at Home 4.3.4 Graph of Air Quality Index Reading at Home 4.3.5 Analysis for Temperature, Humidity and Air Quality Reading at Campor For 1 Hour 4.3.6 Graph of Temperature Reading at Campus 4.3.7 Graph of Humidity Reading at Campus

	4.3.9	Analysis for Temperature, Humidity and Air Quality Reading at	
		Restaurant For 1 Hour	74
	4.3.10	Graph of Temperature Reading at Restaurant	81
	4.3.11	Graph of Humidity Reading at Restaurant	82
	4.3.12	Graph of Air Quality Index Reading at Restaurant	83
4.4	Discus	sion	83
CHAF	PTER 5	CONCLUSION AND RECOMMENDATION	87
5.1	Conclu	asion	87
5.2	Future	Works and Recommendation	88

REFERENCES 90

APPENDIX 93

LIST OF TABLES

TABLETITLE	PAGE
Table 2-1: Technical specifications	28
Table 3-1: The explanation for each of the designated number on the Arduino I interface	DE 51
Table 4-1: Sample Test Result of Inhaler Physiological Monitoring System	59
Table 4-2: Temperature, Humidity and Air Quality Reading at Home For 1 Home	ur 62
Table 4-3: Temperature, Humidity and Air Quality Reading at Campus For 1 H	lour 71
Table 4-4: Temperature, Humidity and Air Quality Reading at Restaurant For 1	Hour 80

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1-1: The co	prrect step to use an inhaler	2
Figure 1-2: Existed	d monitoring meter dose inhaler product on the mar	ket 2
Figure 1-3: Differe	ence between normal and asthma patient bronchial t	ube 4
Figure 2-1: Evolut with grey colour)	tion of the design of Inhaler Based Monitoring Devi	ces. (Indicated 9
Figure 2-2: Smart	inhaler Tracker for budesonide/formoterol (Vannair	· MDI) 10
-	eft to right: A Turbohaler® device with; and withou ; and an open Turbohaler with a SmartTurbo add-on	
Figure 2-4: Microp	phone placement on the casing of the Metered Dose	Inhaler 13
Figure 2-5: INCA	device attached to a Diskus TM DPI	15
Figure 2-6: Functi	onal components of the inhaler	16
Figure 2-7: Top-do on canister	own view of the recording rig showing force-sensing	g-resistor (FSR) 17
Figure 2-8: Side v	iew of recording rig showing microphone placemen	t 17
Figure 2-9: Acous	tic signal from a pressurised Meter Dose Inhaler (pM	MDI) 18
Figure 2-10: The c	correct usage of a pressurized Metered Dose Inhalers	s (pMDI) 20
0 1	rimental setup of the pressurised Meter Dose Inhale none is firmly locked on the device.	r (pMDI). The 21

xvi

Figure 2-12: Respiratory rate monitoring System	22
Figure 2-13: Arduino Uno Board	26
Figure 2-14: Node MCU Board	29
Figure 2-15: Arduino IDE interface	31
Figure 2-16: Series of triggered actions	32
Figure 3-1: Meter-Dose Inhaler	34
Figure 3-2: Arduino Uno	35
Figure 3-3: Node MCU	36
Figure 3-4: Optical Dust Sensor	38
Figure 3-5: DHT22 Temperature and Humidity sensor	39
Figure 3-6: Active Passive Buzzer	40
Figure 3-7: Micro Switch	41
Figure 3-8: I2C LCD display	42
Figure 3-9: Light Emitting Diode (LED)	43
Figure 3-10: Product diagram for the Inhaler Physiological Monitoring System	44
Figure 3-11: Flowchart for the Inhaler Physiological Monitoring System for Node M Part	CU 45
Figure 3-12: Flowchart for the Inhaler Physiological Monitoring System for Arduino Part	46
Figure 3-13: Flowchart for Using the IDE as Arduino Programmer	47
Figure 3-14: Circuit Diagram for Inhaler Physiological Monitoring System	48

xvii

Figure 3-15: Arduino IDE interface	50
Figure 3-16: Arduino IDE interface with its explanation for each of the designated number	50
Figure 3-17: Button of verifying the coding	52
Figure 3-18:Text console containing error in	52
Figure 3-19: Message area in the Arduino IDE interface	53
Figure 3-20: Line Graph	54
Figure 4-1: Inhaler Physiological Monitoring System Prototype Design	56
Figure 4-2: Graph of Temperature Reading at Home	63
Figure 4-3: Graph of Humidity Reading at Home	64
Figure 4-4: Graph of Air Quality Index Reading at Home	65
Figure 4-5: Graph of Temperature Reading at Campus	72
Figure 4-6: Graph of Humidity Reading at Campus	73
Figure 4-7: Graph of Air Quality Index Reading at Campus	74
Figure 4-8: Graph of Temperature Reading at Restaurant	81
Figure 4-9: Graph of Humidity Reading at Restaurant	82
Figure 4-10:Graph of Air Quality Index Reading at Restaurant	83

xviii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1 Gantt Chart		93
Appendix 2 Codes for Arduino Program	ime	94
Appendix 3 Codes for Node MCU Progr	ramme	96

LIST OF ABBREVATIONS, SYMBOLS AND NOMENCLATURES

-	-	Negative terminal
+	-	Positive Terminal
A/D	-	Analogue to Digital
AC	-	Alternate Current
AREF	-	Analogue Reference
AVR	-	Alf and Vegard's RISC
BT	-	Bluetooth
°C	-	Celcius
CFC	-	Chlorofluorocarbon
CNNs	-	Convolution Neural Networks
COPD	-	Chronic Obstructive Pulmonary Disease
DC	-	Direct Current
DHT	-	Digital Humidity/Temperature
DIP	-	Dual-Inline-Package
EEPROM	-	Electrically Erasable programmable read-only memory
EMDs	-	Electronic Monitoring Devices
ESP	-	Espressif
FSR	-	Force Sensing Resistor
FTDI	-	Future Technology Devices International
GMM	-	Gaussian Mixture Model
GND	-	Ground

XX

GPIO	-	General-purpose input/output
I/O	-	Input or Output
ICSP	-	In-Circuit Serial Programming
IDE	-	Integrated Development Environment
INCA	-	Inhaler Compliance Assessment Study
ΙΟΤ	-	Internet of Thing
KB	-	Kilobytes
LCD	-	Liquid Crystal Display
LED	-	Light Emitting Diodes
LM	-	Linear Monolithic
mA	-	milliAmpere
MDI	-	Meter Dosed Inhaler
MHz	-	Megahertz
NNs	-	Neural Networks
OS	-	Operating System
%	-	Percentage
pMDI	-	pressurised Meter Dosed Inhaler
PWM	-	Pulse Width Modulation
RH	-	Relative Humidity
Rx	-	Receiver
SCL	-	Serial Clock
SDA	-	Serial Data
SRAM	-	Static random-access memory

xxi

STEMTera'	-	Science, Technology, Engineering and Math Era
Tx	-	Transmitter
USB	-	Universal Serial Bus
Wi-Fi	-	Wireless Fidelity
WHO	-	World Health Organization
V	-	Volt
Vo	-	Voltage Out
VCC	-	Collector Supply Voltage

xxii

CHAPTER 1

INTRODUCTION

This chapter focuses on the project introduction, background, problem statement, objective, and project scope about this entire project. The development of Inhaler Physiological Monitoring System will be explained briefly in this chapter. Besides that, the motive of this project will additionally be expresses in the problem statement. Furthermore, all the section that is associated to the theory of this project will be clarified as to indicate the perception of this project.

1.1 Background

According to the World Health Organization (WHO) report, 300 million people have suffered from asthma throughout the world and the number will amplify to 400 million by 2025. It is determined that the primary reasons of the problem are inappropriate use of inhalers correctly and environmental affair such air pollution and smoking. Generally, the children, the elderly and extremely breathless patients are the one suffered a lot and addition with the lack of quick aid, they might also undergo heavy stress. On the other hand, in the hospital, patient and nurse ratio is relatively low therefore the patients were not monitored at all time. Besides that, the adherence of patients to their medication, both in terms of following the doctor prescription and using the inhaler device correctly, is one of the most vital factors for the effective management of their condition.

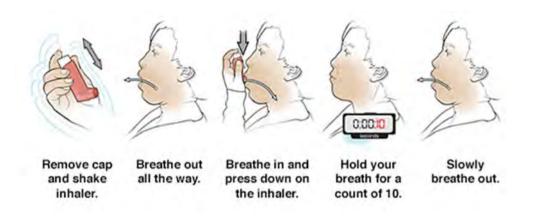


Figure 1-1: The correct step to use an inhaler

From there, the idea for development of Inhaler Physiological Monitoring System pop up so that the monitoring patient's condition without nurse help or when the patients are at home can be done. Furthermore, a recent complete assessment of current inhaler devices has underlined important monitoring aspects that are anticipated to enhance the experience of patients with disruptive respiratory diseases and assist them in managing their situation more effectively. Thus, indicating the assessment of inhaler technique as one of the most promising fields for further study.

Figure 1-2: Existed monitoring meter dose inhaler product on the market

2