

Faculty of Mechanical and Manufacturing Engineering Technology

EFFECT OF STITCHING ON KENAF WOVEN FABRIC EMBEDDED THERMOPLASTIC BINDER SYSTEM IN INTRAPLY COMPOSITE

Ang Siew Khim

Bachelor's Degree of Mechanical and Manufacturing Engineering Technology (Process and Technology) with Honours.

2018

🔘 Universiti Teknikal Malaysia Melaka

EFFECT OF STITCHING ON KENAF WOVEN FABRIC EMBEDDED THERMOPLASTIC BINDER SYSTEM IN INTRAPLY COMPOSITE

ANG SIEW KHIM

A thesis submitted in fulfilment of the requirement for the degree of Bachelor's Degree of Mechanical and Manufacturing Engineering Technology

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared that this report entitled "Effect of stitching on woven kenaf fabric embedded thermoplastic binder system in intraply composite" is the results of my own research except as cited in references.

Signature	:
Name	: ANG SIEW KHIM
Date	: 15 January 2019

APPROVAL

I hereby declare that I have read this thesis and in my own opinion this thesis is sufficient in terms of scope and quality for the award of bachelor's degree of Mechanical and Manufacturing Engineering Technology (Process and Technology).

Signature:Supervisor Name:ASSOC. PROF IR. TS. DR. MOHD YUHAZRI BIN YAAKOBDate: 15 January 2019.

C Universiti Teknikal Malaysia Melaka

DEDICATION

Dedicated to my beloved father, Ang Chee Yen, my appreciation grandmother, Low Lee Lee my loving mother, Lee Pei Hua, my adored sister, Ang Siew Yun, my helpful and caring senior, Amirhafizan. my teammates, Michelle Lye Chuok Fang, Duncan Ling Ruey Shan, Finiks Anak Kanis and my special friends, Lau Sin Hong and Chiam Shiun Sheng, giving me moral support, cooperation, encouragement and understandings. I love you all forever. Thank you.

ABSTRACT

A capable composite material depends strongly on its mechanical and physical properties. Due to the constant development of composite material nowadays, a new approach by introducing the types of stitch on the weave kenaf fabric is proposed in this research. This study is necessary due to lack of information with no scientific or study in stitching on kenaf fabric. This research aims to fabricate the kenaf fibre reinforced thermoplastic composite at different stitch parameter by using hot press machine. Secondly, to study the effect of mechanical and physical properties of the composite in intraply composite system. Thirdly, this research focus to investigate the failure type and fracture mode behaviours after mechanical and physical tests. All the fabrications and testing methods are according to ASTM standards. Thus, this research is proposed by investigating the best stitching design that will contribute to the high performance in physical and mechanical properties of the intraply composite system. The best stitching designs with reference of the specific strength is Tilt 60/60. The higher the alignment of angle, the better the strength of the intraply composite. This is further developed to Paintball safety jacket for good impact purpose. Last, usage of natural fibre reduced weight and more recyclable.

ABSTRAK

Bahan komposit yang kukuh akan bergantung kepada sifat mekanikal dan fizikalnya. Oleh kerana perkembangan berterusan bahan komposit kini, pendekatan baru dengan memperkenalkan jenis jahitan pada fabrik kenaf ditenun dalam penyelidikan ini. Kajian ini diperlukan kerana kekurangan maklumat berdasarkan sains atau kajian dalam jahitan kain kenaf. Penyelidikan ini bertujuan untuk menyiasat dengan menyusun komposit termoplastik bertetulang gentian kenaf pada parameter stitch yang berbeza dengan menggunakan mesin penekan panas. Kedua, untuk mengkaji kesan sifat mekanikal dan fizikal komposit dalam sistem komposit intraply dengan ketiga-tiga fokus kajian ini untuk menyiasat jenis kegagalan dan tingkah laku mod patah selepas ujian mekanikal dan fizikal. Semua fabrikasi dan kaedah ujian mengikut piawaian ASTM. Oleh itu, kajian ini dicadangkan untuk menyiasat reka bentuk jahitan terbaik yang akan menyumbang kepada prestasi tinggi dalam sifat fizikal dan mekanikal sistem komposit intraply. Daripada mencari reka bentuk jahitan terbaik, penyelidikan ini juga berharap untuk mencadangkan rekabentuk yang terbaik untuk menenun kain kenaf sebagai sistem komposit intraply ke bidang automotif dan aeroangkasa terutamanya disebabkan isu-isu semasa atau penyelidikan berkaitan dengan pengurangan berat pada pengangkutan awam berat pada masa kini. Berdsarkan Analisa berkaitan dengan spesifikasi kekuatan, jahitan bentuk Tilt 60/60 adalah terbaik dan akan mencipta kepada jaket keselamatan Paintball. Dengan pengunnaan fiber akan lebih ringan dan senang untuk kitar semula.

ACKNOWLEDGEMENT

Firstly, I would like to express my greatest appreciation and gratitude to my supervisor Prof. Madya Ir. Dr. Mohd Yuhazri Bin Yaakob who has given me this golden opportunity to do the final year project on the topic about the effect of stitching on woven kenaf fabric embedded with thermoplastic binder system in intraply composite by investigating the best stitching designs based on physical and mechanical testing. I would like to thank and appreciate his patience guidance and encouragement in carrying out this project. He helped me a lot to solve my doubts when conducting this project. I sincerely thank his sacrificing time and effort in willingly to check my report and sharing his knowledge and experience which helped us a lot in this final year project.

Furthermore, I would also like to acknowledge with much appreciation to my friends who have been support and helped me along this final year project. I am able to complete this report with the standard format via discussing among each other. My writing skills has been improved due to their positive feedbacks and comments on my work.

Besides, I would like to thank my supportive family and friends who have been always giving me moral and economy support throughout the whole research of my final year project.

Finally, to Universiti Teknikal Malaysia Melaka, thank and appreciate for giving the chance on implementation of the final year project with assistance by lab engineers, as this create a wonderful memory for my university life.

TABLE OF CONTENTS

DE AB AC TA LIS LIS	CLARATION DICATION STRACT STRAK KNOWLDEGMENT BLE OF CONTENTS ST OF TABLES ST OF FIGURES ST OF ABBREVIATIONS ST OF SYMBOLS	i ii iv vii ix xv xvi
	IAPTER	
1.	INTRODUCTION	1
	1.1 Background of Research	1
	1.2 Problem Statement	4
	1.3 Objectives	6
	1.4 Scopes1.5 Rational of Research	6 7
	1.6 Summary of Methodology	8
	1.7 Thesis Arrangement	9
2.	LITERATURE REVIEW	10
	2.1 Introduction to Composite	10
	2.1.1 Intraply composite	14
	2.2 Kenaf	16
	2.2.1 Kenaf composite	17
	2.2.2 Thermoplastic-matrix in kenaf composites	18
	2.3 Binder System	21
	2.4 Stitching	25
	2.4.1 Type of stitching	28
	2.4.2 Structure of stitching2.4.3 Process of stitching	31 32
	2.4.5 Process of stitching 2.5 Woven Fabric	32
	2.6 Testing on Intraply Composite	38
	2.6.1 Synthetic intraply	42
	2.6.2 Natural intraply	43
	2.7 Summary and Research Gap	45
3.	METHODOLOGY	47
	Overview	48
	3.1 Raw Material Preparation	49
	3.1.1 Polypropylene as matrix system	49
	3.1.2 Kenaf fibre as reinforcement material	50
	3.1.3 Stitching material	51
	3.2 Development of Woven Roving Kenaf	52
	3.3 Design of Stitching Material	53
	3.4 Development of Stitching Design on Kenaf Woven Roving	53
	3.5 Fabrication of Intraply Composites3.6 Mechanical Testing	54 55
	3.6.1 Tensile test	56

		3.6.2 Impact test	57
		3.6.3 Hemisphere pressure clamped test (3D stamping test)	58
	3.7		59
4.	RE	SULTS AND DISCUSSIONS	60
	Ove	erview	60
	4.1	Original Plain Weave Sample Overview – O1	61
		4.1.1 Tensile Analysis of Original plain weave - O1	62
		4.1.2 Impact Analysis of Original Plain Weave – O1	64
		4.1.3 Hemisphere Pressure Clamped Analysis of Original Plain Weave - O1	65
	4.2	Vertical Stitch Sample Overview - V	67
		4.2.1 Tensile Analysis of Vertical Stitch- V	69
		4.2.2 Impact Analysis of Vertical Stitch -V	71
		4.2.3 Hemisphere Pressure Clamped Analysis of V	72
	4.3	Tilt 60° Stitch Sample Overview – T60	74
		4.3.1 Tensile Analysis of Tilt 60°- T60	75
		4.3.2 Impact Analysis of Tilt 60° stitch – T60	77
		4.3.3 Hemisphere Pressure Clamped Analysis of T60	78
	4.4	Tilt 30° Stitch Sample Overview – T30	80
		4.4.1 Tensile Analysis of Tilt 30 stitch – T30	81
		4.4.2 Impact Analysis of Tilt 30 stitch – T30	82
		4.4.3 Hemisphere Pressure Clamped Analysis of Tilt 30 stitch – T30	85
	4.5	Horizontal Stitch Sample Overview – H	86
		4.5.1 Tensile Analysis of Horizontal stitch – H	87
		4.5.2 Impact Analysis of Horizontal stitch - H	90 01
	16	4.5.3 Hemisphere Pressure Clamped Analysis of Horizontal stitch - H	91 02
	4.0	Box Stitch Sample Overview – BB	93 94
		4.6.1 Tensile Analysis of Box stitch – BB4.6.2 Impact Analysis of Box Stitch - BB	94 96
		4.6.3 Hemisphere Pressure Clamped Analysis of Box stitch – BB	90 98
	17	Tilt 30 % 30 ° Sample Overview – T30/30	98 99
	4./	4.7.1 Tensile Analysis of Tilt $30/30^{\circ}$ - T $30/30$	100
		4.7.2 Impact Analysis of Tilt 30 /30° - T30/30	100
		4.7.3 Hemisphere Pressure Clamped Analysis of Tilt 30 /30° - T30/30	102
	48	Tilt 45 %90° Sample Overview- T45/90	104
	1.0	4.8.1 Tensile Analysis of Tilt 45 %90° - T45/90	105
		4.8.2 Impact Analysis of Tilt 45 % 0° Stitch – T45/90	100
		4.8.3 Hemisphere Pressure Clamped Analysis of T45/90	110
	4.9	Tilt 60 %60 ° Sample Overview – T60/60	111
	,	4.9.1 Tensile Analysis of Tilt 60 %60 ° Stitch – T60/60	112
		4.9.2 Impact Analysis of Tilt 60 °/60 ° Stitch – T60/60	114
		4.9.3 Hemisphere Pressure Clamped Analysis of T60/60	115
	4.1	0 Comparison Analysis	117
		4.10.1 Comparison Analysis of Tensile Strength	117
		4.10.2 Comparison Analysis of Specific Strength	122
		4.10.3 Comparison Analysis of Impact Toughness	126
		4.10.4 Comparison Analysis of Hemisphere Pressure Clamped Test	132
	4.1	1 Discussions on Minor Problem Faced in Research	142
	4.1	2 Summary of Testing Analysis	144
		4.12.1 Tensile Test	145
		4.12.2 Impact Test	145
		4.12.3 Hemisphere Clamped Pressure Test	146
		4.12.4 Overall View of Single and Double Stitch Increase in Percentage	147

5.	CON	NCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH	150
	5.1	Conclusion	150
	5.2	Recommendations	153
	5.3	Sustainability Element	154
	5.4 Commercial Value and Potential		156
REFE	REFERENCES		157
APPE	CNDIC	CES	169

LIST OF TABLES

TABLE 2.5	TITLE Laminate versus lamina which focused by past researchers	PAGE 15
2.8	Directional properties of thermoplastic composite	19
2.9	Type of thermoplastic with reinforcement	20
2.11	Full names of thermoplastic polymer to indicate in Figure 2.8	23
2.12	Typical Unfilled Thermoplastic resin properties	24
2.20	Sample of stitched preform	34
2.22	Summary of weaves with specific reinforcement and matrix	38
3.3	Summary properties of polypropylene	50
3.4	Summary of chemical composition of kenaf plant	50
3.7	Summary of cotton fibre properties	52
4.1	Categories of stitch designs with labelled name	61
4.4	Properties of Original - O1	62
4.10	Compressive test results of O1	66
4.15	Properties of vertical-V	68
4.21	Compressive test results of V	72
4.27	Properties of Tilt 60-T60	74
4.33	Compressive test results of T60	78
4.38	Properties of Tilt 30-T30	80
4.44	Compressive test results of T30	84
4.49	Properties of Horizontal-H	87
4.56	Compressive test results of H	91

4.61	Properties of Box-BB	94
4.67	Compressive test results of BB	98
4.72	Properties of Tilt 30/30-T30/30	100
4.78	Compressive test results of T30/30	104
4.83	Properties of Tilt 45/90-T45/90	106
4.89	Compressive test results of T45/90	110
4.94	Properties of Tilt 60/60-T60/60	112
4.100	Compressive test results of T60/60	116
4 1 0 0	Comparison of tensile strength according stitch designs in percentage	117
4.103	form	
4.106	Comparison of specific strength according stitch designs in	125
4.100	percentage form	
4.109	Comparison of impact toughness according stitch designs in	131
4.109	percentage form	
4.111	Comparison percentage of maximum force among all stitch designs	136
4.112	Table of comparison relating to deformation and angle deviation	137

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Classification of composite material based on matrix (Yang et al., 2012)	11
2.2	Classification of composite based on reinforcement materials (Yang et al.,	12
	2012)	12
2.3	Weight savings using thermoplastic vs steel (Dupont, 2018)	13
2.4	Fibre-reinforced, resin-matrix layered composites (Louis, 2009)	14
2.5	Laminate versus lamina which focused by past researchers	15
2.6	Kenaf Fibre Structure (Kenco industries, 2014)	16
2.7	Relationship between Young's modulus, the tensile strength, and the	10
	kenaf fibre content of kenaf/PLLA composite (Akil et al., 2011)	18
2.8	Directional properties of thermoplastic composite (Joseph, 2011)	19
2.9	Type of thermoplastic with reinforcement	20
2.10	Properties of thermoplastic resins (a) density, (b) tensile strength, (c)	22
	process temperature, (d) tensile strength (Van and Kiekens, 2001).	23
2.11	Full names of thermoplastic polymer to indicate in Figure 2.8	22
	(Thiruchitrambalam et al., 2012)	23
2.12	Typical Unfilled Thermoplastic Resin Properties (Maddah, 2016)	24
2.13	Principle of warp-knitting: interaction of the knitting needles and guides.	26
	(Lomov, 2011)	26
2.14	Stitching process noticed by electronic controlled machine (Stutznacker,	27
	1988)	27
2.15	Type of weave designs (Sew, 2014)	28

2.16	Type of stitch (Grobner, 1972)	29
2.17	Schematic diagrams of (a) lock stitches, (b) modified lock stitches and (c)	30
	chain stitches (Mouritz et al., 1997)	30
2.18	Types of orientation (a) 0/90 (top), left-face side, right-back side and (b)	32
	±45°NCFs (bottom), left-face side, right-backside (Koissin et al., 2009)	
2.19	Modified lock-stitch (Pang et al., 1997)	34
2.20	Sample of stitched preform (Wei and Zhang, 2008)	34
2.21	Jute Fabric patterns (Artidteang et al., 2016)	37
2.22	Summary of weaves with specific reinforcement and matrix	38
2.23	Uniaxial tensile tests of the high-altitude airship envelope material (Shi et	38
	al., 2018)	38
2.24	Complete specimens for biaxial strength test. (Shi et al., 2018)	39
2.25	The deformed hemisphere under unbalanced clamping pressure with	41
	single-ply forming (Rashidi and Milani, 2018)	41
2.26	Deformation of representative volume element under transverse shear of	43
	synthetic intraply (Vaughan and Mccarthy, 2011)	43
2.27	Warp 20/2 pearl cotton and the weft 18/2 merino (Denise, 2017)	44
3.1	Flow chart of methodology	48
3.2	Polypropylene pallets	50
3.4	Pure kenaf fibre	51
3.6	Pure cotton in yarn form	51
3.8	Pure kenaf plain weave design	52
3.9	Types of stitching design (a) Vertical-V, (b) Horizontal-H, (c) Tilt30°-T3,	
	(d) Tilt60°-T6, (e) Box-BB, (f) Tilt 45°/90°-T49, (g) Tilt 30°/30°-T33, (h)	53
	Tilt 60°/60°-T66	
3.10	Singer 8280 Advance Electronic Sewing Machine (Singer Malaysia,	54
	2018)	JТ

3.11	GoTech Testing Machine	54
3.12	Instron universal testing machine (UTM)	56
3.13	Geometry of tensile specimen testing (ASTM D3039, 2017)	56
3.14	Geometry for impact Charpy test (ASTM D6110, 2017)	57
3.15	Impact test machine	57
3.16	3D stamping test (Rashidi and Milani, 2018)	58
3.17	Illustration of 3D stamping test. (Rashidi and Milani, 2018)	58
4.2	Original plain weave of O1	61
4.3	Intraply composite of O1	61
4.5	Specimens of O1 (a) before (b) after tensile test	62
4.6	Graph of Tensile strength for original/O1	63
4.7	Existence of cohesive failure of kenaf fibres and un-fully bonded fibre	64
	with PP	04
4.8	Specimens of O1 (a) before (b) after for impact test	64
4.9	Graph of impact toughness of O1	65
4.11	Deformation of fabric in O1	67
4.12	Deformation of fabric in O1 under light view	67
4.13	Stitch on kenaf woven fabric of V	68
4.14	Intraply composite of V	68
4.16	Specimens of V (a) before (b) after tensile test	69
4.17	Graph of tensile strength of Vertical/V	69
4.18	Fracture analysis of vertical stitch	70
4.19	Specimens of V (a) before (b) after the impact test	71
4.20	Graph of impact toughness of V	71
4.22	Deformation of fabric of V design	73
4.23	Fracture of fabric design of V	73
4.24	Deformation of 10° of fabric V design	73

4.25	Stitch on kenaf woven fabric of T60	74
4.26	Intraply composite of T60	74
4.28	Specimens of T60 (a) before (b) after for Tensile test	75
4.29	Graph of Tensile strength for T60	75
4.30	Existence of shear break of kenaf fibres	76
4.31	Specimens of T60 (a) before (b) after for impact test	77
4.32	Graph of impact toughness of T60	77
4.34	Deformation of fabric in T60	79
4.35	Deformation of fabric of T60 under light view	79
4.36	Stitch on woven kenaf fabric of T30	80
4.37	Intraply composite of T30	80
4.39	Specimens of T30 (a) before (b) after for tensile test	81
4.40	Graph of Tensile strength for T30	81
4.41	Existence of cohesive failures and breaks of kenaf fibre and polypropylene	82
	matrix	02
4.42	Specimen of T30 (a) before (b) after for impact test	83
4.43	Graph of impact toughness T30	83
4.45	Deformation of fabric in T30	85
4.46	Deformation of fabric in T30 under light view	85
4.47	Stitch on kenaf woven fabric of H	86
4.48	Intraply composite of H	86
4.50	Specimens of H (a) before (b) after for Tensile Test	87
4.51	Graph of tensile strength for H	87
4.52	Partially penetration of polypropylene to threads and kenaf fibres	89
4.53	Partially penetration of polypropylene to threads and kenaf fibres	89
4.54	Specimen H (a) before (b) after for impact test	90
4.55	Graph of impact toughness for Horizontal	90

4.57	Deformation of fabric in H	92
4.58	Deformation of fabric in H under light view	92
4.59	Stitch on woven kenaf fabric of BB	93
4.60	Intraply composite of BB	93
4.62	Specimens of BB (a) before (b) after for Tensile test	94
4.63	Graph of tensile strength of Box/BB	94
4.64	Breaking of kenaf fibres sharply	96
4.65	Specimen of BB (a) before (b) after for impact test	97
4.66	Graph of impact toughness for Box/BB	97
4.68	Deformation of fabric in BB	98
4.69	Deformation of fabric in BB under light view	99
4.70	Stitch of woven kenaf fabric of T30/30	99
4.71	Intraply composite of T30/30	100
4.73	Specimens of T30/30 (a) before (b) after for Tensile test	100
4.74	Result of tensile strength for T30/30	101
4.75	Partially penetration of polypropylene to threads only	102
4.76	Specimen of T30/30 (a) before (b) after for impact test	103
4.77	Graph of impact toughness for Tit 30/30	103
4.79	Deformation fabric in T30/30	104
4.80	Deformation of fabric in T30/30 under light view	105
4.81	Before fabrication process T45/90	106
4.82	Intraply composite of T45/90	106
4.84	Specimens of D3 (a) before (b) after for Tensile test	107
4.85	Graph of Tensile strength for T45/90	107
4.86	Existence of fibres pulled out, cohesive and adhesive failure	108
4.87	Specimens of T45/90 (a) before (b) after for impact test	109
4.88	Graph of impact toughness for T45/90	109

4.90	Deformation of fabric in T45/90	110
4.91	Deformation of fabric in T45/90 under light view	111
4.92	Stitch on woven kenaf fabric of T60/60	111
4.93	Intraply composite of T60/60	112
4.95	Specimens of T60/60 (a) before (b) after for Tensile test	112
4.96	Graph of Tensile strength for T60/60	113
4.97	Existence of partially penetration of polypropylene	114
4.98	Specimens of T60/60 (a) before (b) after for impact test	114
4.99	Graph of impact toughness for T60/60	115
4.101	Deformation of fabric in T60/60	116
4.102	Deformation of fabric in T60/60 under light view	116
4.104	Bar chart of tensile strength with type of stitched designs.	121
4.105	Results of specific strength for all stitching designs	124
4.107	Results of energy absorbed of all stitching designs	129
4.108	Results of impact toughness of all stitching designs	130
4.110	Results of maximum load withstand of all stitching designs	134
4.113	Holes exist in weaving process	141
4.114	Deviated directions of kenaf fibre strands	142
4.115	Deviated directions of kenaf fibres strands	142
4.116	Uncomplete melted polypropylene pallets.	143
4.117	Increase in percentages after single stitch designs is applied	146
4.118	Increase in percentage when doubled stitched is applied	146
4.119	Improvement of angle increase in single stitch designs based on specific	147
	strength	14/
4.120	Improvement of angle increase in double stitch designs based on specific	147
	strength	14/

LIST OF ABBREVIATIONS

ABBREVIATIONS TITLE

ASTM	-	American standard testing method
SEM	-	Scanning electron microscopy
NCF	-	Non-crimp fabric
2D	-	Two dimensional
DCUY	-	Double covered un-commingled yarn
UTM	-	Universal testing machine
РР	-	Polypropylene

LIST OF SYMBOLS

SYMBOL		TITLE
٥	-	Degree
%	-	Percent
MPa	-	Mega pascal
GPa	-	Giga pascal
°C	-	Degree Celsius
mm	-	Millimetre
kg/m ²	-	Kilogram per square meter
kg/m ³	-	Kilogram per cube meter
mm/min	-	Millimetre per minutes
kN	-	Kilo Newton
kV	-	Kilo volt
:	-	Ratio
J	-	Joule
RM	-	Ringgit Malaysia
vol	-	Volume
g/m^2	-	Gram per square meter
g/mm ²	-	Gram per square millimetre
±	-	Plus minus (tolerances)
μm	-	Micrometre
J/cm ²	-	Joule per square centimetre

N/mm^2	-	Newton per square millimetre
Hz	-	Hertz
W	-	Watt
avg	-	Average

xvii

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

This chapter mostly explained and clarified about the historical background of stitching, woven fabric and intraply composite material. The idea generation for this research problem occurred based on fundamental theories taken from books, journals, magazines, product catalogues and online resources. Hence, various issues are mentioned and listed so that improvements can be done in this research.

1.1 Background of Research

Composite material is a combination of two or more materials that will result in performance of the mechanical behaviour at the end of the stage. Composite material itself consist of a matrix and a reinforcement that can improve performance of the specific composites. By implementing composites in daily life in different application can strengthen one material strength, stiffness and ability. Yang *et al.* (2012) published a paper in which they mentioned about composite material are being adapted mostly in renewable industry field, automotive and aerospace. Composite material also ease manufacturers with best quality and better life spend which enhanced together with lesser weight and maintenance fees that creates a lesser bad effect to the environmental. Beier *et al.* (2009) expressed in their study about carbon fibre that managing types of stitching as it embedded together with low melting point thermoplastic as binder can improve mechanical strength, cost reduction and excelled of the out-of-plane of the composite material when it is applied on the aerospace industry nowadays. Effects of stitching, weave type, binder system in one composite material

might give an impact to the mechanical behaviour. Carvelli *et al.* (2010) have proposed a study about the structures and directions of stitch did show an effect to the fatigue performance during the testing by using tensile cyclic load. Hence, to accelerate the performance of the interlaminar structure, several textiles technologies should be applied namely stitching, weaving, knitting or braiding as this can manufacture the best structure of composite materials before testing was carried out.

Thiruchitrambalam *et al.* (2012) had performed a review by referring from previous papers abstracted from other researchers that preparation of fibre-reinforced composite by using maleated polypropylene, poly-lactic acid and polyethylene are the categories from thermoplastics as matrix system which will result an enhancement in mechanical properties with high modulus and tensile strength when the percentage of the fibre increases. Furthermore, Chen *et al.* (2007) had also fabricated non-woven composites with using natural fibres like kenaf, bagasse and ramie when it is reinforced together with polypropylene as matrix, they finally revealed that the bonding of natural fibres and its's matrix show a tight relationship which it will affect another at the end of the composite's mechanical properties.

Diversely, numerous researches have attempted to explain by using thermosets as binder system while applying in the natural-fibre reinforced composites. When thermosets included epoxy resins, polyester resins or vinyl ester resins are reinforced with natural fibres it concludes an excellent result in the mechanical properties. Akil *et al.* (2011) had concluded that enhancement of composites with both fibres either with thermosets or thermoplastics did show a varied influence for the mechanical properties to the composite materials. Percentages of the fibre did show a strong relationship to the mechanical behaviour of the composite no matter it embedded with which polymer categories. Romayne and Ahmad