

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

STUDY ON MECHANICAL PROPERTIES AND MICROSTRUCTURE BEHAVIOR OF ALUMINIUM ALLOY 6061

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours.

by

TAI XIN YEE

B071510243 950506-12-6014

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: STUDY ON MECHANICAL PROPERTIES AND MICROSTRUCTURE BEHAVIOR OF ALUMINIUM ALLOY 6061

Sesi Pengajian: 2018

Saya **TAI XIN YEE** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
	SULIT*	kepentingan M	alaysia seba	gaiman	a yang term	aktub dalam A	KTA
		RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat 7	TERHA	D yang te	lah ditentukan	oleh
		organisasi/bada	an di mana p	enyelid	likan dijalaı	nkan.	
\boxtimes	TIDAK						
	TERHAD						
Yang benar,		Disa	lhkan o	leh penyelia	a:		
TAI XIN YEE		PRC	PROFESOR MADYA DR. UMAR AL-				
		AM	AMANI BIN HAJI AZLAN				
Alama	it Tetap:		Сор	Rasmi	Penyelia		
T-62, LORONG 9,							
TAMAN TAI FAI YIN,							
90000	SANDAKAN	,					
SABA	.Н.						

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled "Study on Mechanical Properties and Microstructure Behavior of Aluminium Alloy 6061" is the results of my own research except as cited in references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

> Signature: Author: TAI XIN YEE Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours. The member of the supervisory is as follow:

> Signature: Supervisor: PROFESOR MADYA DR. UMAR AL-AMANI BIN HAJI AZLAN Date:

V

ABSTRAK

Aluminium 6061 aloi digunakan secara meluas dalam banyak aplikasi kerana ciriciri kekuatan yang baik, haba yang boleh dipemproseskan, rintangan kakisan, ringan, dan lainlain. Pelbagai aplikasi struktur dan perhimpunan dikimpal seperti bahagian automotif, komponen trak, landasan kereta api, kereta telah menggunakan bahan Aluminium Aloi 6061. Bahan ini biasanya terdedah kepada pelbagai kadar ketegangan semasa penggunaan. Dalam siasatan semasa, percubaan telah dibuat untuk mengkaji kesan kadar ketegangan yang berlainan. Dan telah dapati bahawa kemuluran bahan menurun apabila kadar ketegangan meningkat dengan kekuatan bahan meningkat. Di samping itu, rayap sentiasa berlaku semasa komponen beroperasi pada suhu tinggi atau tahap tekanan tinggi. Oleh itu, cubaan telah dibuat untuk menganalisis kelakuan aloi aluminium 6061 di bawah tekanan dan suhu yang berbeza. Dan hubungan telah ditubuhkan antara suhu dan pemanjangan bahan. Fraktografi bahan juga dianalisis dengan menggunakan SEM.

ABSTRACT

Aluminium 6061 alloy is widely used in many applications due to the characteristics of good strength, heat treatable, corrosion resistance, lighter, etc. A broad range of structural applications and welded assemblies such as automotive part, truck component, railroad cars use the material Aluminium 6061 alloy. The material is usually exposed to various strain rates during use. In the present investigation an attempt has been made to study the effect of different crosshead speed. And it has been found that as the crosshead speed increases along with the strength of the material increases but the ductility decreases. Though creep always happen during component operating at high temperature or high stress level. Therefore, an attempt has been made to analyze the behavior of Aluminium 6061 alloy under different stress and temperature. And a relation has been established between the temperature and the elongation of material. The fractography of material is also being analyzed using SEM.

DEDICATION

This thesis is dedicated to my beloved parents, supervisor and friends in helping and guiding me throughout the project.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Professor Madya Dr Umar Al-Amani Bin Haji Azlan for his guidance, patience and encouragement throughout this project. I also would like to thank to all lab assistant from Faculty of Mechanical and Manufacturing Engineering Technology and those who have contributed to the success of this project.

TABLE OF CONTENTS

			PAGE
APP	ROVAI	_	V
ABS	TRAK		vi
ABS	TRACT		vii
DED	ICATI	ON	viii
ACK	NOWL	EDGEMENTS	ix
TAB	LE OF	CONTENTS	X
LIST	OF TA	ABLES	xiii
LIST	OF FI	GURES	xiv
LIST	OF SY	MBOLS	xvi
LIST	OF AE	BREVIATIONS	xviii
СНА	PTER 1	INTRODUCTION	1
1.1	Backg	ground Study	1
1.2	Proble	em Statement	2
1.3	Objec	ctives	3
1.4	Scope	e of Study	3
СНА	PTER 2	2 LITERATURE REVIEW	5
2.1	Introd	luction	5
2.2	Creep	Deformation	5
	2.2.1	Creep Curve	6
	2.2.2	Bailey-Norton Law	8
	2.2.3	Creep Mechanism	9
	2.2.4	Creep Testing	11
	2.2.5	Fracture Behavior Based on Creep	12
	2.2.6	Creep Fracture and Creep Damage	13
	2.2.7	Types of Creep Fracture	14
	2.2.8	Larson-Miller	16
2.3	Tensi	on	16
	2.3.1	Tensile Test	17
	2.3.2	Stress-strain Curve	17

	2.3.3 Ultimate Tensile Strength	20
	2.3.4 Modulus of Elasticity	20
	2.3.5 Percentage Elongation	21
	2.3.6 Type of Fracture	22
2.4	Aluminium 6061 Alloy Material	23
	2.4.1 General Properties of Aluminium 6061 Alloy	24
	2.4.2 Mechanical Properties of Aluminium 6061 Alloy	24
2.5	Research of Creep on Aluminium 6061-T6 Alloy	25
2.6	Research of Creep on Other Material	26
	2.6.1 9CR-1.8W-0.5Mo-VNb (ASME grade 92) Steel	27
	2.6.2 Alloy 617	28
2.7	Research on Effect of Crosshead Speed	29
	2.7.1 IF Steel	30
СНА	APTER 3 RESEARCH METHODOLOGY	32
3.1	Introduction	32
3.2	Experimental Design	32
	3.2.1 Experimental Matrix	33
3.3	Methodology Flow Chart	37
	3.3.1 Specimen Preparation	38
	3.3.2 Laser Cut Machine	39
	3.3.3 Creep Testing	40
	3.3.4 Creep Test Preparation	41
	3.3.5 Creep Test Procedure	42
	3.3.6 Tensile Test	43
	3.3.7 Tensile Test Preparation	44
	3.3.8 Tensile Test Procedure	45
	3.3.9 Scanning Electron Microscope (SEM)	47
СНА	APTER 4 RESULT AND DISCUSSION	48
4.1	Introduction	48
4.2	Effect of Temperature on the Elongation of Material	48
4.3	Effect of Crosshead Speed to Ultimate Tensile Strength	50
4.4	Effect of Crosshead Speed to Percentage Elongation	51
4.5	Effect of Crosshead Speed to E-modulus	52
	xi	

4.6	Standard Deviation of Tensile Test	
4.7	Fracture Surfaces	54
	4.7.1 Microstructure Behavior	55
CHA	PTER 5 CONCLUSION AND FUTURE WORK	57
5.1	Introduction	57
5.2	Conclusion and Future Work	57
REFI	ERENCES	59

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Temper	rature limit above which creep is a limit factor in design	6
Table 2.2: Typical	l composition of Aluminium 6061 alloy	23
Table 2.3: Typical	l mechanical properties of wrought Aluminum 6061 alloy	25
Table 2.4: Dimens	sion of specimen	25
Table 2.5: Dimens	sion of specimen	27
Table 2.6: Figure	of dimension and process parameter	29
Table 2.7: Process	s parameter of tensile test	30
Table 3.1: Process	s parameter of creep experiment	33
Table 3.2: Experin	mental design planning for creep	34
Table 3.3: Process	s parameter of tensile test	35
Table 3.4: Experir	mental design planning for tensile	36
Table 3.5: Sample	e of blank result table	42

xiii

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	Main scope of study	4
Figure 2.1:	Typical shape of creep curve	7
Figure 2.2:	Deformation mechanism map of creep	10
Figure 2.3:	Schematic of creep test	12
Figure 2.4:	Creep test machine	12
Figure 2.5:	Cavities during creep deformation	14
Figure 2.6:	Crack on grain boundaries of transgranular fracture and inte	ergranular fracture 15
Figure 2.7:	Fractography of creep fracture: (a) intergranular fracture and fracture	l (b) transgranular 15
Figure 2.8:	Stress-strain graph for brittle material	18
Figure 2.9:	Stress-strain graph for ductile material	19
Figure 2.10	: (a) Ductile fracture (b) Brittle fracture	23
Figure 2. 1	1: Specimen dimension for tensile (All the specimen dimensi mm).	ons are given in 30
Figure 3. 1	Process Flow Chart	37
Figure 3. 2	Key dimension of specimen for creep test	38
Figure 3. 2	Key dimension of specimen for tensile test	38
Figure 3. 4	Laser cutting Machine Amada FO3015 M2 NT	39
Figure 3.5:	Creep Machine SM1006	40
Figure 3.6:	VDAS hardware and software	41

xiv

Figure 3. 7: Universal Testing Machine – Instron 5969 Dual Column Tabletop Model	44
Figure 3. 8: Bluehill Universal software	44
Figure 3. 9: Specimen for tensile test	45
Figure 3. 10: Axial clip on extensometer on specimen	46
Figure 3. 11: Zeiss Evo 18	47
Figure 4.2: Average of Ultimate Tensile Strength	50
Figure 4.3: Average of Percentage Elongation	51
Figure 4.4: Average of E-modulus	52
Figure 4.5: Standard deviation of tensile test data	53
Figure 4.6: Fracture specimen	54
Figure 4.7: Fractography of SEM on normal cutting process	55
Figure 4.8: Fractography of SEM at speed 1 mm/min	56
Figure 4.9: Fractography of SEM at speed 25 mm/min	56

LIST OF SYMBOLS

C	-	Celsius		
T _M	-	Absolute Melting Temperature		
K	-	Absolute temperature in kelvins		
mm/min	-	Millimetre per minute		
kg	-	Kilogram		
Т	-	Temperature		
$\boldsymbol{\varepsilon}_0$	-	Instantaneous elasto-plastic deformation upon loading, not associated with creep		
t	-	Time		
Ep	-	Stress-dependent parameters associated with the magnitude and duration of primary creep		
$\boldsymbol{\varepsilon}_T$		magnitude and duration of primary creep		
ϵ^{c}	-	Equivalent creep strain		
Α	-	A constant, depends on problem		
n	-	Creep stress index, $1 \le n \le 10$		
m	-	Time index, $0 \le m \le 1$		
k	-	Creep strain index		
С	-	Material specific constant (often approximated as 20)		
σ	-	Stress		
F	-	Internal force		
A_0	-	Cross sectional area of body		
ΔL	-	Elongation of length		
L_0	-	Original gauge length		
l	-	Length after elongate		

xvi

C Universiti Teknikal Malaysia Melaka

P _{max}	-	Maximum load
K	-	Slimness ratio
F	-	Fahrenheit
in	-	inches
psi	-	Pound-force per square inch
MPa	-	Megapascal
NaOH	-	Sodium hydroxide
<i>H</i> ₂ <i>0</i>	-	Water

xvii

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

- SEM Scanning Electron Microscope
- **TEM** Transmission Electron Microscopy
- **OM** Optical Microscopy
- **OIM** Orientation Imaging Microscopy
- LMP Larson-Miller parameter
- **UTS** Ultimate Tensile Strength
- EDM Electrical Discharge Machining
- **DXF** Drawing Interchange Format/ Drawing Exchange Format
- **VDAS** Versatile Data Acquisition System
- MVC Microvoid coalescence

xviii

CHAPTER 1

INTRODUCTION

1.1 Background Study

In this era of modern industry, aluminium is a type of non-ferrous metal with light weight and low strength in comparison to the steel. In order to strengthen the material, aluminium is combined with other metal-type element and later, it is known as aluminium alloy. According to Davis (2013), aluminium alloys are economical in many applications such as automotive industry, aerospace industry, in construction of machines, appliances, and structures as cooking utensils, covers for housings for electronic equipment, pressure vessels for cryogenic applications and in countless other areas. Aluminium alloys also are widely used in aircraft because of their high strength-to-weight ratio. On the other hand, pure aluminium is too soft for aircraft as it does not have a good tensile strength which is required by them. Thus, Aluminium 6061 alloy has been widely used due to its better characteristic such as a good strength, lighter, formability, weldability, heat treatable and corrosion resistance. Additionally, Aluminium 6061 alloy is also being used for a broad range of structural applications and welded assemblies in many fields including the truck components, railroad cars, pipelines, marine application, automotive part, etc.

Creep is a deformation of material which stress is applied on it under constant temperature or constant load. Creep can be progress in high temperature (thermal creep), or at room temperature for certain material. Tension is another type of material's deformation which stress is applied on it with load increasing until failure of material occur. A failure mode may not be formed if the material relieves the tensile stress that may cause cracking. The fracture behavior of material can be investigated if fracture is formed. Therefore, the study applied in this work takes different temperature around specimen and load into consideration to analyze the creep deformation of Aluminium 6061 alloy. While different crosshead speed is also taken as consideration to analyze the properties of Aluminium 6061 alloy in the study. Furthermore, the microstructure and composition of material will be studied in order to investigate the relationship between different process parameter.

1.2 Problem Statement

Mechanical failure often occurs in certain component during process operating high stress level, high speed of loading and even at high temperature. Torsion and creep are the mechanical failures that often are a concern of engineer and metallurgist when evaluating part that is operating at high stress or high temperature. In this work, Aluminium 6061 alloy which is widely used is tested with creep by using different loads and temperature to determine the fracture behavior, while tension test is also tested on the same material by using different crosshead speed. Thus, it is believed that the microstructure and composition of material could solve the problem of mechanical failure.

1.3 Objectives

The objective of this project is shown in the following points:

- i. To analyze the behavior of Aluminium 6061 alloy under different stress and temperature via creep deformation
- ii. To investigate the effect of Aluminium 6061 alloy with different crosshead speed via tension test
- iii. To analyze the microstructure of Aluminium 6061 alloy after creep deformation or tension test

1.4 Scope of Study

In this study, creep deformation and tension test employed to generate the fracture behavior on aluminium alloy. The study can be divided into three main scopes which are the process of specimen, testing process and performance. In the scope of specimen's process, the material for the specimen is Aluminium 6061 alloy sheet with thickness of 1.0mm. Laser cut machine was used to cut alloy sheet by following the dimension of specimen which inserted into the program. After the specimen preparation, the specimens experienced creep test in order to determine the effect of stress and temperature and tensile test to determine the effect of crosshead speed on aluminium alloy. In creep test, the numerous parameters of temperature around specimen of 18, 23 and 28°C were applied to probe the effect of different temperature to the alloy. While the load apply in the process were 0.5, 1.0, 1.5 and 2.0 kg which load represent the stress that applied to the specimen. Meanwhile, the numerous parameters of crosshead speed in tensile test were 1, 2, 3, 4, 5, 10, 15, 20 and 25 mm/min. Lastly, the study of microstructure and fracture surface also developed as well by exploring the porosity and drain growth. The machine that was used to develop this study is Scanning Electron Microscope (SEM). The observed microstructure obtained from the microscope to analyze the fracture behavior of the specimen.

Figure 1.1: Main scope of study

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

On this chapter, literature review will be discussed in term of the overview of a creep deformation and fracture behavior. The aim of literature review is to establish a theoretical framework with substantive findings and methodological contribution to this project which include all the current knowledges. Based on literature review, the general knowledge regarding the tool to be used, the process to be applied and the findings from previous works will be documented in this chapter.

2.2 Creep Deformation

Creep is slow, continuous deformations that depend not only on stress, but also on temperature and time. With increasing temperature, loads give no permanent deformation at room temperature (approximately 23°C) will cause creep of the material. According to Spigarelli (1999), creep can be observed in all metals, with the operating temperature exceeds 0.3 - 0.5TM, where TM is the absolute melting temperature. The lower limit temperature which creep phenomena can be obliterated is show at the table below. According to Ashby *et al.* (2012), for the melting or softening point of aluminium alloys is 750 – 933K. Therefore, Aluminium 6061 alloy is subject to creep. Creep is consulted under constant stress or even constant load by tension, compression or even torsion test.

Materials	Limit of temperature
Aluminium	T > 0.54 TM
Titanium	T > 0.30 TM
Low alloyed steel	Т > 0.36Тм
Austenitic stainless steels	Т > 0.49Тм
Superalloys	Т > 0.56Тщ

Table 2.1: Temperature limit above which creep is a limit factor in design

2.2.1 Creep Curve

Creep curve can be obtained during a constant load test. The strain increases monotonically with time up to rupture (ε_R) after a momentary deformation upon loading (ε_0) . The generic form of overall deformation after loading can be written as:

$$\varepsilon = \varepsilon_{o} + \varepsilon (\sigma, T, t) \qquad (1)$$

The ϵ (σ , T, t) component of total strain consist of three regions:

- i. Primary Stage
- ii. Secondary Stage
- iii. Tertiary Stage

The primary stage is also called the transient curve. The strain rate ($\varepsilon_{\&} = \partial_{\varepsilon}/\partial_{t}$) decrease with time; as the strain increases, deformation also become more difficult. In this stage, material is experiencing strain hardening. The secondary stage or steady state of the creep curve has a strain rate which is constant($\varepsilon_{\&} = \varepsilon_{\&ss}$). The existence of constant strain-rate regime is generally explained in terms of a balance between strain hardening and structure recovery (a softening process determined by high temperature). At tertiary stage,