

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF A LOW COST FLOW METER USING ULTRASONIC SENSOR CONCEPT

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Automation and Robotic) with Honours.

by

MUHAMMAD LUTFI BIN OTHMAN B071510753 940828-08-5447

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF A LOW COST FLOW METER USING ULTRASONIC SENSOR CONCEPT

Sesi Pengajian: 2019

Saya MUHAMMAD LUTFI BIN OTHMAN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4.

. **(Sila tandakan (.	X)
	SULIT*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.
	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh

ΤΕΡΠΥΡ*	Mengandungi maklumat TERHAD yang telah diter	itukan oleh
I ENHAD.	organisasi/badan di mana penyelidikan dijalankan.	

$\overline{}$	TIDAK
	TERHAD

Yang benar,

Disahkan oleh penyelia:

.....

MUHAMMAD LUTFI BIN OTHMAN

Alamat Tetap: No 5495, Jalan Awan 7, Taman Awan Mas, 31950, Kampar, Perak

.....

AHMAD MUZAFFAR BIN ABD **KADIR** Cop Rasmi Penyelia

Tarikh:

Tarikh:

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF A LOW COST FLOW METER USING ULTRASONIC SENSOR CONCEPT is the results of my own research except as cited in references.

Signature: Author : MUHAMMAD LUTFI BIN OTHMAN Date:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

APPROVAL

This report is submitted to the Faculty Electrics and Electronics Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Automation and Robotic) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	AHMAD MUZAFFAR BIN ABD KADIR

ABSTRAK

"Ultrasonic Flow Meter" ialah sebuah alat yang sering digunakan khususnya di peringkat industri untuk mengukur nilai cecair yang melalui saluran paip. Sepasang "Ultrasonic Sensor" yang satunya sebagai "transmitter" dan satu lagi sebangai "receiver" berfungsi dengan tindak balas melalui frekuensi atau tempoh masa terhadap kelajuan cecair di dalam saluran paip tersebut. "Development a Low Cost Flow Meter Using Ultrasonic Sensor Concept" di cipta untuk mengurangkan kos bagi mereka yang ingin memilikinya kerana harganya dipasaran agak tinggi. Alat ini direka secara mudah alih menggunakan sepasang sensor yang di sambung pada paip berserta litar yang disambung kepada Arduino UNO sebagai cip pintar. Alat ini mampu untuk membaca nilai frekuensi cecair yang melalui saluran paip. Melalui system kiraan Matematik, nilai dalam bentuk "Flow rate" mampu di hasilkan.

ABSTRACT

"Ultrasonic Flow Meter" is a commonly equipment used especially at industry to measure the value of flow rate liquids through the pipeline. Another pair of Ultrasonic Sensors as a "transmitter" and another "receiver" works with the reaction through the frequency or duration of the liquid velocity within the pipeline. "Development a Low Cost Flow Meter Using Ultrasonic Sensor Concept" is designed to reduce costs for those who want to have it because the price is relatively high. The flow meter is designed on a portable using a pair of connectors connected to the pipe with a circuit connected to Arduino UNO as a Microcontroller. This devices is able to read the value of the liquid frequency through the pipeline. Through the Mathematical calculation system, values in the form of "Flow rate" can be generated.

DEDICATION

I acknowledge my sincere dedication, honors and gratitude to both of my parents for their love, encouragement, supports and sacrifices throughout whole of my life. Without their sacrifices and encouragement, I cannot possibly reach this stage. Special gratitude also dedication to all my sister which always support and advise me in whatever I do in my life. Very special thanks to all of lecturers who has though and guided me throughout my studies. Not be forgotten, all of my friends who always been with me and help me to complete every task along the studies and throughout this joyful journey. There is no words can express my sincere appreciation to all of you.

ACKNOWLEDGEMENTS

First and foremost, I would like address my highest gratitude and appreciation to the supervisor, Mr. Ahmad Muzaffar Bin Abd Kadir for his encouragement, knowledgeable ideas and opinions, time consideration, spirit and being the guidance through the time of completing my Bachelor Degree Project (BDP). This BDP might be impossible to be completed without all of their help. My thanks and appreciation also dedicate to both of my panel, Mdm. Rozilawati Binti Mohd Nor as panel 1 and Dr Sahazati Binti Md. Rozali as panel 2 that willing to observe my BDP, giving the positive comment which helps me to gain knowledge and improve the project in this period of time.

TABLE OF CONTENTS

		PAGE
ABS	ГКАК	i
ABS	ГКАСТ	ii
DED	ICATION	iii
ACK	NOWLEDGEMENTS	iv
TAB	LE OF CONTENTS	v
LIST	OF TABLES	xi
LIST	OF FIGURES	xii
LIST	OF APPENDICES	XV
LIST	OF ABBREVIATION, SYMBOLS AND NOMENCLATURE	xvi
СНА	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Project Background	1
1.3	Problem Statement	3
1.4	Objective	3
1.5	Work Scope	4
1.5	5.1 Mechanical Design	4
1.5	5.2 Electronic Design	4

1.	5.3 Software Design	4
1.6	Conclusion	4
CHA	PTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Previous Related Research	5
2.3	From Internet and Difference Source Research	19
2.3	3.1 Type of Flow Meter Sensor	19
2.3	3.2 Differential Pressure Flow Meter	19
	2.3.2.1 Working Principle	19
	2.3.2.2 Advantages and Disadvantages	19
2.3	3.3 Variable Area Flow Meters	20
	2.3.3.1 Working Principle	20
	2.3.3.2 Advantages and Disadvantages	20
2.3	3.4 Positive Displacement Flow meter	21
	2.3.4.1 Working Principle	21
	2.3.4.2 Advantages and Disadvantages	21
2.3	3.5 Turbine Flow meter	22
	2.3.5.1 Working Principle	22
	2.3.5.2 Advantages and Disadvantages	22
2.3	3.6 Vortex Flow Meter	22

vi

	2.3.6.1 Working Principle	22
	2.3.6.2 Advantages and Disadvantages	23
2.3.	.7 Electromagnetic Flow Meter	23
	2.3.7.1 Working Principle	23
	2.3.7.2 Advantages and Disadvantages	24
2.3.	.8 Ultrasonic Flow Meter	24
	2.3.8.1 Working Principle	24
	2.3.8.2 Advantages and Disadvantages	25
2.3.	.9 Type of Time to Digital Converter	26
	2.3.9.1 TDC-GP22	26
	2.3.9.2 MAX35101	27
	2.3.9.3 TDC-1000	28
2.4	Conclusion	28
CHAR		20
СНАР	TER 3 METHODOLOGY	29
3.1	Introduction	29
3.2	First Milestone	30
3.2.	.1 Project Objective	30
3.2.	.2 Literature Review	30
3.3	Second Milestone	30
3.4	Third Milestone	33

vii

3.4	4.1 Electron	lic Design	34
	3.4.1.2 Stud	ly on the Arduino UNO	34
	3.4.1.3 Stud	ly on Ultrasonic Sensor	34
	3.4.1.4 Stud	y on DC Water Pump	35
3.4	4.2	Software Design	36
	3.4.2.1 Stud	y on Arduino IDE Software	36
	3.4.2.2 Stud	y on Edraw Max Software	36
	3.4.2.3 Stud	y on Proteus Software	37
	3.4.2.4 Stud	y on LabVIEW	38
3.4	4.3	Mechanical Design	38
	2 1 2 1 Stud	v on Butterfly Control Valve	38
	5.4.5.1 Stud		
	3.4.3.2 Stud	ly on PVC Pipe	39
3.5	3.4.3.1 Stud 3.4.3.2 Stud Hardware D	ly on PVC Pipe Design	39 39
3.5 3.6	3.4.3.2 Stud 3.4.3.2 Stud Hardware D Software De	ly on PVC Pipe Design esign	39 39 43
3.5 3.6 3.6	3.4.3.2 Stud Hardware D Software De	ly on PVC Pipe Design esign Program Code	 39 39 43 43 43
3.5 3.6 3.6 3.6	 3.4.3.1 Stud 3.4.3.2 Stud Hardware D Software De 5.1 5.2 	ly on PVC Pipe Design esign Program Code Process Flow Diagram (PFD)	 39 39 43 43 45
3.5 3.6 3.6 3.6 3.6 3.6	 3.4.3.1 Stud 3.4.3.2 Stud Hardware D Software De 5.1 5.2 5.3 	ly on PVC Pipe Design esign Program Code Process Flow Diagram (PFD) LabView Design	 39 39 43 43 45 46

viii

CHAI	PTER 4	RESULT AND DISCUSSION	50
4.1	Introduction		50
4.2	Analysis and	Result	50
4.2	.1	Analysis Between of Two Ultrasonic Sensor Applying to Pipe	50
4.2	.2	Analysis Result of the Flow Rate Gauge versus Valve	
Openi	ng.		51
4.2	.3	Analysis Result of the valve opening (%) versus Frequency	
(Hz)			52
4.2	.4	Analysis Result of Measure Value of Voltage Through the Flow	
Rate o	of Water		53
4.3	Discussion E	Based on Result	54
4.4	Limitation		54
4.5	Total Cost		54
4.6	Conclusion		55
CHAI	PTER 5	CONCLUSION	56
5.1	Introduction		56
5.2	Conclusion		56
5.3	Recommend	ation	57

ix

APPENDIX

60

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Error for Straight Length Pipe	17
Table 4.1:	The Valve Opening (%) versus Value of Flow Rate	51
Table 4.2:	Valve Opening versus Frequency	52
Table 4.3:	Flow rate versus Voltage	53
Table 4.4:	List of Components and Prices	55

LIST OF FIGURES

FIGURE	TITLE PA	GE
Figure 1.1:	Example of Ultrasonic Flow meter	2
Figure 2.1:	The Configuration Of Clamp-On Ultrasonic Flow Meter	6
Figure 2.2:	Installation of Transducer for Thin Pipe	9
Figure 2.3:	Result of Measuring From the Ultrasonic Flow Meter	10
Figure 2.4:	Samples Versus Flow Rate (g/s)	10
Figure 2.5:	The Body Design and Method of Flow meter	11
Figure 2.6:	The Conventional Threshold Method	12
Figure 2.7:	Time (us) versus Voltage (V)	12
Figure 2.8:	The New Echo Signal Filter Method	13
Figure 2.9:	The Ultrasonic Flow Measurement by Transit Time Differentia	al 14
Figure 2.10:	The Principle of Transit Time Method	16
Figure 2.11:	Installation of Ultrasonic Flow meter sensors at Straight Pipe	16
Figure 2.12:	Transit Time Differential Method of Ultrasonic Sensor	25
Figure 2.13:	TDC-GP22 circuit diagram	26
Figure 2.14:	MAX35101 circuit diagram	27
Figure 2.15:	TDC-1000 circuit diagram	28
Figure 3.1:	The Methodology Flowchart xii	29

Figure 3.2:	The Flow Chart of Project Methodology	32
Figure 3.3:	Gantt Chart	33
Figure 3.4:	The Arduino UNO Board	34
Figure 3.5:	Ultrasonic Sensor	35
Figure 3.6:	DC 12V Water Pump	35
Figure 3.7:	The Arduino IDE Software Vesion 1.8.5	36
Figure 3.8:	The Edraw Max Software (2012)	37
Figure 3.9:	The Proteus Software Logo	37
Figure 3.10:	The LabVIEW Software Logo	38
Figure 3.11:	Butterfly Control Valve	39
Figure 3.12:	PVC pipe	39
Figure 3.13:	Pair of Ultrasonic Sensor in Pipe Line	40
Figure 3.14:	The Connection of Flow Meter and Lcd Screen to Arduino Uno	40
Figure 3.15:	Ultrasonic Circuit Diagram with LCD Screen	41
Figure 3.16:	Block Diagram of a Flow Meter Using Ultrasonic Sensors	41
Figure 3.17:	Piping System Plant for Testing Flow Measurement	42
Figure 3.18:	The Program Code of Flow Meter Gauge	43
Figure 3.19:	Program Code for Measure Frequency	44
Figure 3.20:	The Process Flow Diagram (PFD) of the Plant	45
Figure 3.21:	Flow chart of LabVIEW Interface to Arduino	47
Figure 3.22:	Block Diagram of Data Acquisition using LabVIEW	48

Figure 3.23:	Front Panel of Data Acquisition using LabVIEW	48
Figure 4.1:	Dimension of Between Two Sensor	50
Figure 4.2:	Graph of Valve Opening versus Flow rate (l/m)	51
Figure 4.3:	Graph of Valve Opening Versus Frequency	52
Figure 4.4:	Graph of Flow rate versus Voltage (V)	53

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Appendix 1 Program Code

LIST OF ABBREVIATION, SYMBOLS AND NOMENCLATURE

- UFM Ultrasonic Flow Meter
- USB Universal Serial Bus
- IDE Integrated Development Environment
- LCD Liquid Crystal Display
- DC Direct Current
- PVC Premature Ventricular Contraction
- TDC Time to Digital Converter
- LIFA LabVIEW Interface to Arduino

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter 1, it will representing the introduction about this project. This chapter will cover about the project background, problem statement, objectives, work scope on conclusion of Development of a Low cost Flow meter Using Ultrasonic Sensor Concept.

1.2 Project Background

Flow measurement is important to numerous different industries for example oil, power, water and waste treatment. These industries need that they know precisely how much fluid is passing through a point at any given point. Flow meters assist to determine value of fluid flow through to determine how much cash should be billed or how much product is being produced. The flow meter is the device used to measure linear flow, non-linear, mass or liquid volumetric or gas.

Most of flow meters operate by forcing flow through a known confined space and to specify the liquid flow rate by measuring different properties. Samples of measured properties include pressure, thermal, magnetic and etc. As example for different types of flow meters include Coriollis, Differential Pressure, Magnetic, Positive Displacement, Variable area and Ultrasonic flow meter.

Over of past year ago, Ultrasonic Flow meter extensively used both application in industrial and medical. There are surely flow meter method similar vortex flow meter, magnetic flow meter and Coriollis flow meter. Nevertheless, the non-invasive and high accuracy of characteristic give the ultrasonic flow meter more popular and suitable based on according annual flow meter sales in over of past year ago. Figure 1.1 shows example the ultrasonic flow meter using in industrial.

Figure 1.1: Example of Ultrasonic Flow meter

Ultrasonic flow meter using transit time differential method utilizes the fact that the propagation velocity of sound wave within a fluid is directly influenced by the velocity of that fluid. Ultrasonic flow measurement utilizing the transit time effect is based on this simple physical fact.

Besides that, the process of transmitted ultrasonic signal that require a measurement of time taken from a single sensor by transit time differential flow meters method. A second sensor will receive signal of ultrasonic through a pipe. Upstream and downstream measurements are compared. The transit time will be the same in both directions with no temporary flow if the flow sound will move faster towards the flow and slow down the flow. Since the ultrasonic signal must cross the pipe to the transducer receiver, the liquid should not contain the foam or solid concentration to be considered.

Generally the high frequency sound will be weakened and excessively frail, making it impossible to cross the pipe.

Although the cost of ultrasonic flow meter is expensive or high cost, it remains an option of many industry to use it. So, this project focus to develop a low cost flow meter using ultrasonic sensor concept.

1.3 Problem Statement

Nowadays, we can see that there are so many small industries and community have been deceived by the dealer or seller in the affairs of the sale and purchase of liquid goods such as palm oil, petrol oil and so on. This is because no products are used for reference like flow meter sensor to buyers (small industries and community). In the market, the price of flow meter is relatively expensive for small industries and community to get it. So, this project a low cost flow meter using ultrasonic sensor develop to solve small industries and community problem. Besides that, it can use to measure a liquid flow through the pipe line and easy to know value of liquid when put in closed tank.

1.4 Objective

The main objective of this project is:-

- To develop a low cost flow meter using ultrasonic sensor concept
- To measure the flow of liquid through the pipe line
- To compare value of flow rate with another flow meter