

Faculty of Mechanical and Manufacturing Engineering

Technology

PARAMETER OPTIMIZATION OF SURFACE ROUGHNESS FOR AISI 1018 FOR LOW CARBON STEEL IN WET TURNING PROCESS

Siti Azillah Binti Ibrahim

Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours

2018

🔘 Universiti Teknikal Malaysia Melaka

PARAMETER OPTIMIZATION OF SURFACE ROUGHNESS FOR AISI 1018 FOR LOW CARBON STEEL IN WET TURNING PROCESS

SITI AZILLAH BINTI IBRAHIM

A thesis submitted in fulfilment of the requirement for the degree of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitled "Parameter Optimization Of Surface Roughness For AISI 1018 For Low Carbon Steel In Wet Turning Process" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: Siti Azillah binti Ibrahim
Date	:

APPROVAL

I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality as a partial fulfillment for the degree of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours.

Signature	:
Supervisor Name	: Mohd Hairizal bin Osman
Date	·

ABSTRAK

Dalam projek ini, pelarikan bahan AISI 1018 keluli berkarbon rendah juga dipanggil keluli lembut menggunakan mesin CNC larik dengan menggunakan alat keluli laju tinggi dengan jenis yang berbeza parameter dikaji. Kaedah Taguchi digunakan untuk mengoptimumkan parameter bagi kekasaran permukaan dalam operasi pelarikan di mana bendalir pemotong juga yang dikenali sebagai bahan pendingin digunakan di dalam proses ini. Beberapa eksperimen akan dijalankan menggunakan L9 tata susunan ortogon pada mesin pelarikan CNC. Keputusan langkah akan dikumpul dan dianalisis dengan bantuan perisian MINITAB 18. Analisis varians (ANOVA) digunakan untuk menentukan faktor - faktor kawalan yang paling utama yang menjejaskan kekasaran permukaan.

ABSTRACT

In this project, turning of AISI 1018 low carbon steel also known as mild steel using CNC machine of turning operation with tool use is high speed steel in different parameters are reported. Taguchi method is used for optimizing the parameter of surface roughness in wet turning operation. Wet turning is a turning operation where the cutting fluid that be called coolant is being used in this process. A number of experiments will be conducted using L9 Orthogonal array on CNC turning machine. The measured results will be collected and analysed with the help of the commercial software package MINITAB 18. Analysis of Variance (ANOVA) is used to determine the most significant control factors affecting the surface roughness.

DEDICATION

As a token of appreciation, I dedicate this thesis to both of my parents, Mr. Ibrahim bin Ahmad and Mrs. Sharifah binti Yahaya.

ACKNOWLEDGEMENTS

First and foremost, I would like to thanks to Allah S.W.T for His blessing to enable me to complete this thesis in time. Special appreciation to my supervisor, Mr. Mohd Hairizal bin Osman for guiding and giving advice to me throughout the thesis works.

I also would like to express my gratitude to Mr. Mohamad Ridzuan bin Mohamad Kamal, Mr. Muhammad Syafik bin Jumali, Mr Mohd Razali bin Md Yunos and all the assistant engineers especially to Mr. Azizul Ikhwan bin Mohd, Mr. Basri bin Bidin, Mr. Norhisyam bin Abdul Malik, Mr Mohd Azimin bin Ibrahim and Madam Zalipah binti Suliman who help me in completing this thesis successfully. Then, I would like to express my sincere thanks to my beloved family and friends for their help and moral support that give me strength. Last but not least, not forgotten to those who directly or indirectly contributed in this project, thank you.

TABLE OF CONTENTS

DECLARATION	i
APPROVAL	ii
ABSTRAK	iii
ABSTRACT	iv
DEDICATION	v
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES	XV

CHAPTER

1.	INT	RODUCTION	1
	1.0	Introduction	1
	1.1	Project Background	1
	1.2	Problem Statement	3
	1.3	Objectives	4
	1.4	Project Scope	4
	1.5	Project Requirement	5
2.	LIT	ERATURE REVIEW	6
	2.0	Introduction	6
	2.1	Turning	6
	2.2	Wet turning	8
	2.3	CNC Turning Machine	9
	2.4	Laser Cutting Machine	10
	2.5	Surface Roughness	12

	2 - 1		1 4
	2.5.1		14
	2.5.2	Surface Roughness Measuring Instrument	15
2.6	Machi	ining Parameter	16
	2.6.1	Cutting Speed	16
	2.6.2	Depth of Cut	17
	2.6.3	Feed Rate	17
2.7	Cuttin	g Tool Material	17
	2.7.1	Boron Manganese Steel	19
	2.7.2	Hot Stamping	20
2.8	AISI 1	1018 Low Carbon Steel	21
2.9	Tague	hi Method	21
2.10	ANOV	VA	27
ME	THOD	OLOGY	28
3.0	Introd	uction	28
3.1	Flow	Chart Research	28
3.2	Gantt	Chart	31
3.3	AISI 1	1018 Low Carbon Steel	33
3.4	Cuttin	g Tool Material	33
3.5	Machining Parameter		34
	3.5.1	CNC Laser Machine Parameters	34
	3.5.2	CNC Turning Machine Parameter	35
3.6	Tague	hi Method	35
3.7	Data (Collection	37
3.8	Machi	ine Equipment	37
	3.8.1	Mitutoyo Horizontal Optical Comparator	37
	3.8.2	CNC Laser Cutting Machine	39
	3.8.3	Bandsaw Machine	40
	3.8.4	Conventional Lathe Machine	42
	3.8.5	CNC Lathe Machine	43

3.

		3.8.6 Zoom Stereomicroscope3.8.7 Surface Roughness tester Mitutoyo SJ-410			46
					47
		3.8.8	Rockwell H	Hardness Testing Mitutoyo HR-400	48
	3.9 Experimental Set Up		50		
		3.9.1	Dimension	ing and Cutting Process	51
			3.9.1.1	Work Piece	51
			3.9.1.2	Insert	52
		3.9.2	Facing and	Turning Process	52
		3.9.3	Cutting Pro	DCess	53
			3.9.3.1	CNC Laser Cutting Machine	53
		3.9.4	Turning Pr	ocess	56
	3.10	Experi	mental Anal	lysis	64
		3.10.1	Surface Ro	ughness tester Mitutoyo SJ-410	64
4. R	RES	SULT AND DISCUSSION			66
	4.0	Introdu	iction		66
	4.0 4.1	Introdu Result	action		66 66
		Result	uction e Roughness	s Analysis	
	4.1	Result	e Roughnes	s Analysis loise Ratio and Mean Result	66
	4.1	Result Surface	e Roughnes	loise Ratio and Mean Result	66 77
	4.1	Result Surface	e Roughness Signal to N of Surface	loise Ratio and Mean Result	66 77
	4.1	Result Surface 4.2.1	e Roughness Signal to N of Surface Main Effec	loise Ratio and Mean Result Roughness	66 77 77
	4.1	Result Surface 4.2.1 4.2.2	e Roughness Signal to N of Surface Main Effec Analysis of	loise Ratio and Mean Result Roughness ets Plot for SN ratios and Means	66 77 77 78
	4.1	Result Surface 4.2.1 4.2.2 4.2.3 4.2.4	e Roughness Signal to N of Surface Main Effec Analysis of	Noise Ratio and Mean Result Roughness ets Plot for SN ratios and Means f Variance (ANOVA) nalysis Prediction	66 77 77 78 81
	4.1 4.2	Result Surface 4.2.1 4.2.2 4.2.3 4.2.4 Confir	e Roughness Signal to N of Surface Main Effec Analysis of Taguchi Ar	Noise Ratio and Mean Result Roughness ets Plot for SN ratios and Means f Variance (ANOVA) nalysis Prediction	66 77 77 78 81 83
	4.14.24.3	Result Surface 4.2.1 4.2.2 4.2.3 4.2.4 Confir	e Roughness Signal to N of Surface Main Effec Analysis of Taguchi Ar mation Test	Noise Ratio and Mean Result Roughness ets Plot for SN ratios and Means f Variance (ANOVA) nalysis Prediction	66 77 77 78 81 83 84
5.	4.14.24.34.4	Result Surface 4.2.1 4.2.2 4.2.3 4.2.4 Confir	e Roughness Signal to N of Surface Main Effec Analysis of Taguchi Ar mation Test al Hardness	Noise Ratio and Mean Result Roughness ets Plot for SN ratios and Means f Variance (ANOVA) nalysis Prediction	66 77 77 78 81 83 84
5.	4.14.24.34.4	Result Surface 4.2.1 4.2.2 4.2.3 4.2.4 Confir Materi	e Roughness Signal to N of Surface Main Effec Analysis of Taguchi Ar mation Test al Hardness	Noise Ratio and Mean Result Roughness ets Plot for SN ratios and Means f Variance (ANOVA) nalysis Prediction	66 77 77 78 81 83 84 87
5.	 4.1 4.2 4.3 4.4 	Result Surface 4.2.1 4.2.2 4.2.3 4.2.4 Confir Materi CUSSIC Introdu	e Roughness Signal to N of Surface Main Effec Analysis of Taguchi Ar mation Test al Hardness DN action	Noise Ratio and Mean Result Roughness ets Plot for SN ratios and Means f Variance (ANOVA) nalysis Prediction	 66 77 77 78 81 83 84 87 89

6.	CO	NCLUSION AND RECOMMENDATIONS FOR	92
	FUI		
	6.0	Introduction	92
	6.1	Summary of Research	92
	6.2	Significance of Research	93
	6.3	Problems Faced	93
	6.4	Suggestion for Future Work	94
RE	FERE	NCES	95
API	PPENDICES		102

LIST OF TABLES

TABLE	
-------	--

TITLE

PAGE

2.1	Popular parameter of surface roughness	14
2.2	Chemical Composition of Boron Manganese Steel	20
2.3	Chemical composition of AISI 1018 low carbon steel	21
3.1	Laser Cutting Parameter	34
3.2	The selection parameter machining	35
3.3	The selection parameter	36
3.4	The orthogonal array design	36
3.5	Specification of the Mitutoyo Horizontal Optical	38
	Comparator	
3.6	Specification of the CNC Laser Machine FO MII 3015NT	39
3.7	Specification of the Bandsaw Machine	41
3.8	Specification of the Conventional Lathe Machine	42
3.9	Specification of the CTX 310 Ecoline	43
3.10	Specification of the Nikon SMZ 745T	46
3.11	Specification of the Mitutoyo SJ-410	47
3.12	Specification of the Rockwell Hardness Testing	49
	Mitutoyo HR-400	
3.13	List of Work Piece	60
3.14	Diameter (Dia.) of Work piece Before and After	63
	Machining	
4.1	Figure Material 1, 2 and 3	67
4.2	Mean R _a Parameter 1	67
4.3	Figure Material 7, 9 and 12	68

4.4	Mean R _a Parameter 2	68
4.5	Figure Material 13, 15 and 18	69
4.6	Mean R _a Parameter 3	69
4.7	Figure Material 19, 21 and 24	70
4.8	Mean R _a Parameter 4	70
4.9	Figure Material 25, 27 and 30	71
4.10	Mean R _a Parameter 5	71
4.11	Figure Material 31, 33 and 36	72
4.12	Mean R _a Parameter 6	72
4.13	Figure Material 37, 39 and 42	73
4.14	Mean R _a Parameter 7	73
4.15	Figure Material 43, 45 and 48	74
4.16	Mean R _a Parameter 8	74
4.17	Figure Material 49, 51 and 54	75
4.18	Mean R _a Parameter 9	75
4.19	Average Surface Roughness for each parameter	76
4.20	Signal to Noise Ratios and Mean Result of Surface	78
	Roughness	
4.21	Response table for means	80
4.22	Response table for signal to noise ratios	81
4.23	ANOVA Result of Analysis	82
4.24	Surface Roughness for Material 55, 57 and 60	85
4.25	Mean Prediction and Confirmation Test Result	85
4.26	Percentage error	86
4.27	Figure Material 55, 57 and 60	87
4.28	Hardness	88

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	3 Axis Turning CNC Machine	10
2.2	Laser cutting works	11
2.3	CNC Laser Cutting Machine	12
2.4	Build up edge (BUE)	13
2.5	Surface Roughness Measuring Instrument Mitutoyo SJ-410	15
2.6	Machining parameter for turning machine	16
2.7	Selecting the proper Orthogonal Array by Minitab Software	23
2.8	Select the appropriate design based on the variables and level	23
2.9	Select the appropriate design based on the variables and level	23
2.10	Enter the factor or variables names and levels	24
2.11	The selecting proper Orthogonal Array design and key in data	24
2.12	The example design of experiment to Analyze Taguchi design	24
2.13	In the Analyze Taguchi Design determine response columns	25
2.14	The example of analysis	25
2.15	The example of design matrix	25
3.1	Project Flow Chart	29

3.2	Process Flow Chart	30
3.3	AISI 1018 Low Carbon Steel	33
3.4	Hot stamping Boron Chassis Car (Proton Iriz)	34
3.5	Mitutoyo Horizontal Optical Comparator	38
3.6	CNC Laser Machine	40
3.7	Bandsaw Machine	41
3.8	Conventional Lathe Machine	43
3.9	CNC Turning Machine CTX 310 Ecoline	45
3.10	Zoom Stereomicroscope with model of Nikon SMZ 745T	47
3.11	Surface Roughness Measuring Instrument Mitutoyo SJ-410	48
3.12	Rockwell Hardness Testing Mitutoyo HR-400, ball and diamond	49
	indenter	
3.13	Flowchart of Experimental process for the project	50
3.14	Process of Cutting AISI 1018 Low Carbon steel	51
3.15	Process of Cutting AISI 1018 Low Carbon steel	51
3.16	Process of Cutting Boron Material	52
3.17	Work piece after process	53
3.18	Work piece before and after process	53
4.1	Main Effects Plot for Means	79
4.2	Main Effects Plot for SN Ratios	80
4.3	Prediction value by Taguchi Analysis in Minitab 18 Software	83

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES

AISI	-	American Iron and Steel Institute	
ANOVA	-	Analysis of Variance	
BUE	-	Build Up Edge	
CNC	-	Computer Numeric Control	
CO ₂	-	Carbon Dioxide	
DOE	-	Design Of Experiment	
EPA	-	Environmental Protection Agency	
Fe	-	Iron	
FIB	-	Focused Ion Beam	
FTK	-	Fakulti Teknologi Kejuruteran	
GPa	-	Gigapascal	
Н	-	Helium	
HSS	-	High Speed Steel	
in	-	Inches	
ISO	-	International Organization of Standardization	
kg	-	Kilogram	
ksi	-	Kilopounds per square inch	
LST	-	Laser Surface Technology	
mm	-	Millimeter	
Mn	-	Manganese	
MPa	-	Megapascal	
Ν	-	Nitrogen	
NC	-	Numerical Control	
O ₂	-	Oxygen	

C Universiti Teknikal Malaysia Melaka

Р	-	Phosphorus
psi	-	Pounds per square inch
Ra	-	Average Roughness
RMS	-	Root Mean Square
RPM	-	Revolution Per Minute
S	-	Sulfur
S/N	-	Signal to Noise
μm	-	Micro meter
μin	-	Microinches
°C	-	Celsius

CHAPTER 1

INTRODUCTION

1.0 Introduction

Chapter one is about explanation for the introduction consists of the project background, problem statement, objectives and follow by the project scope. The entire sub-topic relates with each other to ensure the readers of this report can understand on how the project process flow. This project will described about the optimization parameter of surface roughness for AISI 1018 for low carbon steel in wet turning process. Several tests will be conducted with different parameters on AISI 1018 for low carbon steel. Boron steel will be used as material for turning cutting tool and Taguchi method will be used to analyse this project. By doing the analysis, the best parameter (cutting speed, feed rate and depth of cut) for the turning process that produce the best surface roughness can be determine.

1.1 Project Background

In the manufacturing technology industry, there are many challenges were faced because the new technology build in this modern age. The challenges that faced by the industry can be said major in controlling the surface roughness. The part quality that has been machined and the demand for the productivity are examples of the main challenges happen in the industry. Modern cutting tools such as turning tool allow cutting process at high speed and increased the volume of product produce. In this project will be focus on the optimization parameter for turning process with coolant for surface roughness based on Taguchi method.

The cutting tool that use in this project is Boron Manganese steel which fabricated using CNC Laser Cutting machine. The gases involved in generating the CNC Laser Cutting machine are carbon dioxide, nitrogen and helium. The gas involved to assist cutting is oxygen. After insert has done fabricated, it can be tested turning process on work piece. Turning can be defined as a cutting process that rotated the work piece at its axis as single point cutting tools that fed into the work piece which shearing the unneeded material, come out with desired part. There are many factors that can be influence the quality of the turning process. For this project, cutting speed, feed rate and depth of cut has been choose as the parameter that need to be observe.

The turning process will be done by three axis CNC turning machine. CNC machining involves using a machine controlled by a computer which has been programmed to machine the material. Using this machine, it will be more precise and easier to set the value of the selected parameter. During the machining process, the cutting fluid is use for turning process and it is called as wet turning. The interest in wet turning machining is often related to the better surface roughness, reduces vibration and control temperature of material during machining.

In this project, CNC machine is used to cut along the work piece which has been decide to use AISI 1018 low carbon steel which also known as mild steel, parallel to its axis to reduce its diameter. This is called as parallel turning. AISI 1018 low carbon steel is

easy to be obtain as it is free machining grade that available around the world as the grade is easily available. It is also can be considered as cheap material. This project involved 54 pieces of AISI 1018 low carbon steel with diameter of 20mm and length of 100mm but only 27 pieces that will be taken to study the surface roughness. The type of cutting tool material use is Boron Manganese steel. This Boron Manganese steel was taken from waste of Proton Iriz's car chassis that has been hot stamped. Boron increases the strength of heat-treated steels in the quenched and tempered condition. It is also a poor electrical conductor at room temperature meanwhile Manganese (Mn) known as high impact strength and resistance to abrasion. Adsorption of manganese ion give the steel become resistance to corrosion.

Taguchi method design of experiment is used to determine and optimize the cutting parameter for surface finish of AISI 1018 low carbon steel. Taguchi method will be used to analyse this project and based on the analysis the best parameter for turning process with coolant that produce for surface roughness can be determine. The experiment layout will be design by Minitab 18 Software which is used to analyse and arranging the data of the experiment method with L₉ of Orthogonal Array. ANOVA is used to analysis the experimental data that has been obtain. The surface roughness of the work piece will be tested using Surface Roughness Measuring Instrument.

1.2 Problem Statement

Nowadays, the industry is facing a problem in optimize the parameter of turning process for AISI 1018 low carbon steel. In addition, 1018 low carbon steel is a free

machining grade and mostly being used around the world. Due to that, variety parameter of CNC turning machine needed to be tested while machining the low carbon steel with turning process to ensure it achieve the optimum parameter. Surface roughness is high demanding in industry as the smooth surface roughness give several advantages. The advantages that industry try to achieve is better resistance corrosion, fatigue strength and creep life. All this criteria can be obtain from smooth surface roughness. This smooth surface roughness can be very much due to vibration and temperature increases. There will be presence of coolant during the turning process.

1.3 Objectives

The objectives for this project are:

- 1. To perform Taguchi method as design of experiment for this project.
- 2. To analyse the significant factor affecting surface roughness in wet turning process.
- To optimize the cutting parameter of Computer Numerical Control (CNC) turning machine for turning process.

1.4 Project Scope

In this project, there are several scopes to be considered in order to achieve the objectives. The following important element that must be followed:

- a) The cutting tool material for turning process is Boron Manganese steel were fabricated using CNC laser cutting machine.
- b) AISI 1018 low carbon steel with diameter of 20mm and length of 100mm was used as

work piece and machined by using Computer Numerical Control (CNC) turning machine. The length that machined is 30mm with diameter reduced to 5 times of turning process.

- c) Parameter for CNC turning machine that will be use are cutting speed, feed rate and depth of cut.
- d) Surface roughness measuring instrument will be used to measure the surface roughness of the material after machined and Minitab 18 software for the analysis process.
- e) During the turning process, coolant is use as the project is on wet turning.

1.5 Project Requirement

The requirement of this project are:

- a) The turning process cannot be done with conventional machine because it will be hard to maintain the values of parameter.
- b) There must be coolant during the turning process.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

In chapter two, there will be explanation or the discussion of the research background about related to the project. This chapter contain of turning process, cutting tools for turning process, AISI 1018 low carbon steel, surface roughness and statistical analysis.

2.1 Turning

Turning is one of the most normal operations of metal cutting and more fundamental compare to other operation of machining such as milling, grooving or drilling. It is most often implement in material removal. Turning can be defined as a cutting process that rotated the work piece at its axis as single point cutting tools that fed into the work piece which shearing the unneeded material, come out with desired part (P.P. Sirpurkar, S.R.Bobde, V.V. Patil, V.N. Kale, 2012). Turning need several important main thing in order to ensure the process is functioning such as turning machine, fixture, work piece and cutting tool. Work piece is a material with un-formed that been hold by fixture and attached to turning machine which it rotate with high speed. In order to get a beautiful surface roughness and efficient process at turning machining, it is important to modify the