

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF FIRE SYSTEM PREVENTER BY USING ARDUINO AS MICROCONTROLLER

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Elecrical Engineering Technology (Industrial Automation and Robotic) with Honours.

by

FITRI HAKIM BIN ISMAIL B071510731 940518-10-5529

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY 2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Development of Fire System Preventer by using Arduino as Microcontroller

Sesi Pengajian: 2019

Saya **FITRI HAKIM BIN ISMAIL** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

SULIT* Mengandungi maklumat yang berdarjah keselamatan atau AKTA RAHSIA RASMI 1972.

TERHAD* Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK TERHAD

Yang benar,

Alamat Tetap:

Disahkan oleh penyelia:

Fitri Hakim Bin Ismail

Arma Cop I

No. 12, Jln Kesuma 7/14, Bandar Tasik Kesuma, 43700, Beranang, Selangor.

Arman Hadi Bin Azahar Cop Rasmi Penyelia

Tarikh:Tarikh:*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini
perlu dikelaskan sebagai SULIT atau TERHAD.

i

DECLARATION

I hereby, declared this report entitled Development of Fire System Preventer by using Arduino as Microcontroller is the results of my own research except as cited in references.

Signature:Author:Fitri Hakim Bin IsmailDate:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation And Robotic) with Honours. The member of the supervisory is as follow:

Signature: _______ Supervisor : Arman Hadi Bin Azahar

ABSTRAK

Tujuan utama penghasilan projek ini adalah untuk mengelakkan berlakunya kebakaran di rumah yang melibatkan kebocoran gas LPG dan juga untuk mengurangkan kadar manusia yang lemas akibat asap yang terperap di dalam rumah hasil daripada kebakaran. Dengan terhasilnya projek ini, ianya dapat mengurangkan kadar kebakaran hasil daripada kebocoran gas LPG di rumah dan dapat mengurangkan risiko kematian kerana lemas di dalam asap yang terperap di dalam rumah. Projek ini menggunakan komponen MQ-2 sensor untuk mengesan kehadiran gas LPG dan asap yang terhasil. Apabila sensor mengesan kehadiran kedua jenis bahan tersebut, kipas DC dan servo motor akan berfungsi untuk mengeluarkan gas LPG dan asap tersebut supaya tidak terperap di dalam rumah yang boleh merbahayakan orang yang ada di dalam rumah. Dengan menggunakan analisis dan data yang diambil dari system, keberkesanan dan prestasi produk ini akan dinilai dan akan dipelihara untuk penambahbaikan.

ABSTRACT

The main purpose of this project is to prevent the occurrence of fires in the house involving the LPG gas leaks and also to reduce the drowning rate of human caused by smoke in the house which is produced by fire. By completing this project, it can reduce the rate of fire from LPG leaks at house and can reduce the risk of death due to drowning in smoke that is stuck in the house. This project use the MQ-2 sensor to detect the presence of LPG and smoke. When the sensor is detecting the presence of both substances, the DC fan and the servo motor will operate to remove the LPG and smoke that is trapped inside the house that can harm to human inside the house. Thus, by using the analysis and data that is taken from the system, the effectiveness and the performance of the product will then evaluate and kept for further improvement.

DEDICATION

To my beloved parents Ismail bin Mahmod Zuriati binti Ismail

Siblings

Farhana binti Ismail Farah Husna binti Ismail Fakhrul Haziq bin Ismail Filzah Huda binti Ismail

Supervisor Arman Hadi bin Azahar

Co-Supervisor Madiha binti Zahari

Thank you very much for the support, love, encouragement, help and blessing.

vi

ACKNOWLEDGEMENT

First of all, I would like to praise Allah SWT cause give me a strength to complete this project. He gave me a good health, and mental to settle down this project.

I would like to thank and give my appreciation to my supervisor, Mr. Arman Hadi Bin Azahar and co-supervisor, Pn. Madiha Binti Zahari for their guidance and share their knowledge and opinion to make this project. They also give me the inspiration, spirit, time and also willingly become my advisor.

Other than that, my thanks and appreciation to my panel which is Pn Rosilawati Binti Mohd Nor as my panel one and Dr. Sahazati Binti Md Rozali as my panel two because they give an idea and opinion to improve my project and help me to gain extra knowledge.

Furthermore, I would like to give my appreciation and feel so thankful to my family especially my mother because give me an inspiration and support till my project is finished.

Lastly, I would like to thank to all of my friend, my lab partner, UTeM lab assistance and others because continuously help me during making the project.

TABLE OF CONTENTS

		PAGE		
DEC	CLARATION	ii		
APP	ROVAL	iii		
ABS	TRAK	iv		
ABS	TRACT	v		
DED	DICATION	vi		
ACK	NOWLEDGEMENT	vii		
TAB	BLE OF CONTENTS	viii		
LIST	Г OF TABLES	xi		
LIST	Γ OF FIGURES	xii		
LIST	Г OF SYMBOLS	XV		
LIST	Γ OF ABBREVIATIONS	xvi		
LIST	Γ OF PUBLICATIONS	xviii		
СП	ΑΡΤΕΡ 1 ΙΝΤΡΟΠΙζΤΙΟΝ	1		
11	Introduction	1		
1.1	Project Background	1		
1.2	Problem Statement	8		
1.5	Objective	10		
1.5	Workscope	10		
1.6	5 Thesis Outline			
СНА	APTER 2 LITERATURE REVIEW	12		
2.1	Introduction	12		
2.2	Fire	12		
2.3	Risk of Fire in Residential Building	14		
2.4	Cause of Fire in Malacca	17		
	2.4.1 Electricity Problem	19		
	2.4.2 Liquefied Petroleum Gas (LPG)	21		
	2.4.3 Smoke From Fire	24		
2.5	Past and Present Technology	26		
2.6	The Concentration Of Gas By Using MQ-2 Gas Sensor	28		
2.7	Part Per Million (PPM) For Flammable Substance Gas	30		

2.8	Hazardous Of Smoke To Human			
2.9	Massachusetts Institute Of Technology (MIT)			
СНА	APTER 3 METHODOLOGY	36		
3.1	Introduction	36		
3.2	Flow Chart of Project Methodology	36		
3.3	Project Methodology	41		
	3.3.1 Stage I: Preliminary Result	42		
	3.3.2 Stage II: Analysis and Record The Information	43		
	3.3.3 Stage III: Making a Decision	44		
	3.3.4 Stage IV: Combination of Part	46		
3.4	List of Component	46		
	3.4.1 Bill of Material (BOM)	46		
	3.4.2 Arduino Uno Microcontroller	47		
	3.4.3 HC-05 Bluetooth Module	48		
	3.4.4 MQ-2 Gas Sensor	48		
	3.4.5 Cooler Master Rifle Bearing 80mm Silent Cooling Fan	49		
	3.4.6 TowerPro MG995 Servo Motor	50		
	3.4.7 Liquid Crystal Display (LCD)	50		
СНА	APTER 4 RESULT AND DISCUSSION	52		
4.1	Introduction	52		
4.2	Component Test Result	52		
	4.2.1 MQ-2	52		
	4.2.2 Servo Motor	54		
	4.2.3 DC Fan	56		
	4.2.4 LCD 58			
4.3	Project Test	59		
4.4	Concentration Of MQ-2 Gas Sensor	62		
	4.4.1 Day Mode	63		
	4.4.2 Night Mode	64		
4.5	Connection Test	66		
4.6	Massachusetts Institute Of Technology (MIT)	66		
СНА	APTER 5 CONCLUSION AND RECOMMENDATION	70		
5.1	Introduction	70		

ix

5.2	Conclusion	70
5.3	Recommendation	71

REFERENCES 72

APPENDIX	74	
Appendix 1:	Gantt Chart Of Fire Control System	75
Appendix 2:	Total Number of Call of House Fire And Its Cause In 2012	76
Appendix 3:	Total Number of Call of House Fire and Its Cause In 2013	78
Appendix 4:	Total Number Of Call Of House Fire And Its Cause In 2014	80
Appendix 5:	Total Number Of Call Of House Fire And Its Cause In 2015	82
Appendix 6:	Total Number Of Call House Fire And Its Cause 2016	84
Appendix 7:	Total Number Of Call House Fire And Its Cause In 2017	86
Appendix 8:	Preliminary Coding Program for Microcontroller	88

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1:	Bukit Katil Fire Station statistic about victim of house fire fro	om 3
2012 10 2017		3
Table 1.2:	Bukit Katil Fire Station statistic about cause of house fire in 2	2017 4
Table 1.3:	Bukit Katil Fire Station statistic for house fire caused by elec	tricity
and gas leakage in t	he house from 2012 to 2017	7
Table 2.1:	The class of fire	13
Table 2.2:	Number of victim cause by fire accident in China 2011 (Xin	&
Huang, 2013)		15
Table 2.3:	Physic-Chemical property data for Butane, Propane and LPG	23
Table 2.4:	Properties of smoke gas produced by fire	24
Table 2.5:	Control Parameter of LPG in ppm	30
Table 2.6:	Properties Of Propane, Butane and LPG	31
Table 2.7:	Health Effect based on the ppm value of smoke	32
Table 3.1:	Bill of Materials	46
Table 4.2:	Connection test	66

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1: house fire from 2012	Bukit Katil Fire Station statistic about total number of call fo 2 to 2017	or a 2
Figure 1.2: circuit	Example of broken component circuit breaker and cause a sh	iort 5
Figure 1.3:	The example of Liquefied Petroleum Gas (LPG)	6
Figure 1.4: natural gas in Jordar	Accident statistics related to the use and storage of LPG and n in 2007 (Fraiwan et al., 2011)	7
Figure 2.1:	Number of fire accident report in China (Xin & Huang, 2013	5) 14
Figure 2.2:	Different stage in fire risk management procedure	16
Figure 2.3:	The fire triangle (Sattar, 2012)	17
Figure 2.4:	Example of illegal wiring	20
Figure 2.5:	Example of old circuit breaker and need to change	21
Figure 2.6:	The uses of LPG	22
Figure 2.7:	Example of fire alarm	27
Figure 2.8:	Example of smoke detector inside the building	27
Figure 2.9:	The sensitivity of MQ-2 based on several type of gas	29
Figure 2.10:	Example of MIT GUI layout	34
Figure 2.11:	Example of code block to put the program inside GUI layout	35
Figure 3.1:	Project Flow Chart xii	38

Figure 3.2:	The block diagram for Fire System Preventer	40
Figure 3.3:	Process Flowchart of the project	41
Figure 3.4:	Development of Fire System Preventer chart	42
Figure 3.5:	Arduino Uno Microcontroller	47
Figure 3.6:	HC-05 Bluetooth Module	48
Figure 3.7:	MQ-2 Gas Sensor	48
Figure 3.8:	Cooler Master Rifle Bearing 80mm Silent Cooling Fan	49
Figure 3.9:	TowerPro MG995 Servo Motor	50
Figure 3.10:	Liquid Crystal Display (LCD)	50
Figure 4.1:	Connection for MQ-2 gas sensor and Arduino	53
Figure 4.2:	Code for MQ-2 gas sensor test	54
Figure 4.3:	Connection for Servo Motor and Arduino	55
Figure 4.4:	Code for Servo Motor test	56
Figure 4.5: Arduino	Connection for DC fan and Relay Module Single Channel with	57
Figure 4.6:	Code for DC fan with Relay Module Single Channel test	57
Figure 4.7:	Connection for Liquid Crystal Display (LCD) and Arduino	58
Figure 4.8:	Code for Liquid Crystal Display test	59
Figure 4.9:	The LCD display when the system is operate	60
Figure 4.10: and smoke	The green LED light up to show there have no presence of LPG	61

xiii

Figure 4.11:	The red LED is light up and the buzzer is sound when the sensor	is
detecting the present	ce of LPG	62
Figure 4.12:	Concentration of LPG and smoke in serial print result (Day Mode	e)63
Figure 4.13:	Graph of increasing and decreasing of ppm value in day mode	64
Figure 4.14: Mode)	Concentration of LPG and smoke in serial print result 1 (Night	64
Figure 4.15: Mode)	Concentration of LPG and smoke in serial print result 2 (Night	65
Figure 4.16:	Graph of increasing and decreasing of ppm value in night mode	65
Figure 4.17:	GUI layout design	67
Figure 4.18:	Code block for MIT GUI layout	68
Figure 4.19:	QR code for Fire System Preventer MIT	68

LIST OF SYMBOLS

٥C	-	Degree Celcius
cm/sec	-	Velocity
Kg/l	-	Heating Value
%	-	Percentage
٥F	-	Degree Fahrenheit
MHz	-	Mega Hertz (Frequency)
V	-	Volt (Voltage)
kΩ	-	kilo ohm (Resistance)
mm	-	milimeter (length)
rpm	-	round per minutes
g	-	gram
А	-	Ampere (Current)
S	-	Second
0	-	Degree
ms	-	millisecond
GND	-	Ground

xv

LIST OF ABBREVIATIONS

LPG	Liquefied Petroleum Gas	
IBS	Intelligent Building System	
CO	Carbon Monoxide	
СОНЬ	Carboxyhaemoglobin	
LCD	Liquid Crystal Display	
RMB	Ren Min Bi (Official Currency of China)	
C4H10	Butane	
С3Н8	Propane	
atm	Atmospheric Pressure	
C8H8O	Acrolein	
HCN	Hydrogen Cyanide	
MQ-2	Gas Sensor	
НС-05	Bluetooth Module	
H2	Hydrogen	
Rs	Sensor Resistance	
ррт	Part per Million	
AC to DC	Alternate Current to Direct Current	
USB	Universal Serial Bus	
EDR	Enhanced Data Rate	
CSR	Cambridge Silicon Radio	
CMOS	Complementary Metal Oxide	

ASHRAE	American Society of Heating, Refrigerating and Air- Conditioning Engineer
ACGIH	American Conference of Governmental Industrial Hygienists Inc
OSHA	Occupational Safety and Health Administration
MIT	Massachusetts Institute of University
GUI	Graphical User Interface

xvii

LIST OF PUBLICATIONS

xviii

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, the introduction about this project is discussed. The introduction describes about the background of the project, the problem statement that is identified, the objective of the project, the work scope of the project and the thesis outline of each chapter of the project given which is development of fire system controller by using Arduino.

1.2 Project Background

Nowadays, there are many buildings that is constructed such as office, shop lot, house and other. House is one of the important things for human because it is a place for human to sleep, eat, and do some activity with the family. When there are human in a building, the percentage of the building to have fire accident are happened especially at house. It is because house is a place that have electricity system, flammable conductor and others. Fire is caused by a mix of three elements which is oxygen, heat and flammable substance (Sattar, 2012). It needs 16% oxygen, heat source such as spark of electric, spark of friction and flame, and flammable substance in liquid, gas or solid form to make fire. In the house, these three elements are used for a daily used. Therefore, it is not possible why the fire can occur in the house. It is very dangerous especially when there are human inside the house as it can injured the human and also cause a death. This is because the fire can produce smoke. One of the smoke contents is carbon monoxide which is harmful toxic for a human body. When human inhale the

1

smoke, the human blood will become carboxyhaemoglobin. It can cause the death because it is one of the toxic gas that mix with the human blood (Alarie, 2002). According to the statistic(Alarie, 2002) Station Bukit Katil Malacca, there are about 11829 call for fire at the house in Malacca in 2012 to 2017. Figure 1.1 below shows the total number of call that the fire station at Malacca got for a house fire incident.

Figure 1.1: Bukit Katil Fire Station statistic about total number of call for a house fire from 2012 to 2017

For six years of statistic from year 2012 to 2017 call for house fire to the fire station in Malacca, about 384 victims involve in the house fire. According to that value, about 236 is safe without any injured, 127 are injured and 21 victims are dead. The statistic state from year 2012 to 2017 have dead victim for a house fire. Most of the victim die because they inhale the smoke from the fire. It is because oxygen had been used for flammable substance, so the volume of oxygen is decreased when fire occur. Thus, the victim is lack of oxygen and inhale the carbon monoxide gas that is produced by fire. Besides, the most injured victim is the victim's physical that burned by fire,

victim is plunged by broken ceiling inside the house, or other broken inside the house.

Table 1.1 below shows the graph for victims of house fire from 2012 to 2017.

Table 1.1: Bukit Katil Fire Station statistic about victim of house fire from 2012 to2017

Based on the statistic from Bukit Katil Fire Station, there have 13 reason of house fire which is from electricity, cigarette, fire spark, firecracker, mosquito repellent, candle or colok, liquefied petroleum gas leakage, spontaneous reaction, good intention burning, bad intention burning, not knowing the cause, chemical reaction, fire match and other cause. Based on the statistic in table 1.2 below, the electricity problem and liquefied petroleum gas leakage record the most potential reason of fire accident to occur in Malacca. It is about 120 times house fired from electricity problem and 42 times house fired from leakage of liquefied petroleum gas. These two causes are one of the incidents that is hard to prevent because it is happen without human realization. Table 1.2 below shows the statistic from reason of house fire.

 Table 1.2: Bukit Katil Fire Station statistic about cause of house fire in 2017

As everyone know, the house is not complete without electricity system. Electricity also can make a house on fire. This is because electricity is one of the heat conductors and if there is an electricity problem where it can cause a fire. Electricity problem is divided into three parts which are improper wiring circuit for the house, illegal installation connection of wiring and lastly the broken component and cannot function such as broken circuit breaker. These problems will cause a short circuit for the house and can produce a fire. Figure 1.2 below shows the fire happen by the short circuit.

Figure 1.2: Example of broken component circuit breaker and cause a short circuit

Other than electricity, liquefied petroleum gas or known as LPG also is one of important things in the house. This type of gas is used in the kitchen for cooking activity. LPG is one of the most flammable substance. Therefore, when this type of gas is leak, it is dangerous and can cause a fire with only a small spark from electricity.