

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PINLESS FRICTION STIR WELDING FOR WELD THE THIN PLATE SPCC

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Maintenance) with Honours.

by

MUHAMAD AIZAT BIN MOHD ABD WAHAB B071510162 931104016337

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Pinless Friction Stir Welding for Weld the Thin Plate SPCC

Sesi Pengajian: 2018/19 Semester 1

Saya MUHAMAD AIZAT BIN MOHD ABD WAHAB mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

••		
	SULIT*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam
	TERHAD*	AKTA RAHSIA RASMI 1972. Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
\boxtimes	TIDAK TERHAD	oren organisasi/oadan ar mana penyenarkan agarankan.

Yang l	benar,
--------	--------

Disahkan oleh penyelia:

MUHAMAD AIZAT BIN MOHD ABD WAHAB

.....

Alamat Tetap:

No. 215 Felda Pasak, 81960 Kota Tinggi, Johor.

TS. SHIKH ISMAIL FAIRUS **BIN SHIKH ZAKARIA**

Cop Rasmi Penyelia

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitle "Pinless Friction Stir Welding for Weld the Thin Plate SPCC" is the results of my own research except as cited in references.

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Maintenance) With Honours. The member of the supervisory is follow:

> Signature: Supervisor : TS. SHIKH ISMAIL FAIRUS BIN SHIKH ZAKARIA

ABSTRAK

Geseran Kacau Kimpalan Tanpa Pin (GKKTP) menyediakan pelbagai kelebihan pada reka bentuk alat dibandingkan dengan geseran kacau kimpalan tradisional dimana ianya boleh mengelakkan alat menjadi haus dan tiada lubang kunci pada fabrikasi. Sebagai salah satu kimpalan keadaan pepejal yang baru, GKKTP boleh digunakan untuk menggabungkan kepingan nipis SPCC (1 mm tebal). Kajian ini bertujuan untuk menyiasat kesan parameter yang berbeza (putaran kelajuan alat dan kelajuan kimpalan) dengan menjalankan satu ujian kekuatan tegangan dan kekerasan selepas menyiapkan kimpalan bersama. Sejarah haba pada plat SPCC dibawah parameter yang berbeza dan sifat kimpalan telah disiasat. Dalam kajian ini, geseran kacau kimpalan tanpa pin (GKKTP) telah dilaksanakan menggunakan mesin CNC pengilangan menegak dengan dua kelajuan putaran berbeza (900 dan 1050 rpm) dan dua kelajuan kimpalan yang berbeza (45 dan 75 mm/min). Alat yang diperbuat daripada keluli (H13) telah digunakan untuk membuat konfigurasi sendi butt. Pemerhatian ujikaji menunjukkan bahawa sifatsifat mekanik GKKTP (kekuatan tegangan dan kekerasan) berkurangan dengan peningkatan kelajuan putaran dan mengurangkan kelajuan kimpalan. Walau bagaimanapun, kelajuan putaran dan kelajuan kimpalan memainkan peranan lebih penting dalam proses yang dapat juga dibuktikan dengan data haba diuji dan direkodkan dengan meletakkan K-jenis termokouple. Penyiasatan penggunaan current motor gelendong telah dijalankan untuk mengukur permintaan current semasa proses kimpalan.

ABSTRACT

Pinless friction stir welding (PFSW) provides various advantages on tool design compare to the traditional FSW where it can avoid the wear of the tool and no retained keyholes of fabrication. As a new solid-state welding, pinless friction stir welding (PFSW) can be used to join thin (1 mm thick) SPCC sheet. The aim of this study was to investigate the effect of different parameters (tool rotational speed and welding speed) by conducting a tensile strength test and hardness test after completing the weld joint. The heat history of the SPCC plate under different parameters and the weld properties have been investigated. In this study, PFSW was performed using a CNC vertical milling machine with two different rotational speed (900 and 1050 rpm) and two different welding speed (45 and 75 mm/min). A tool made from steel (H13) was used to make a butt joint configuration. The experimental observations showed that the mechanical properties of PFSW (tensile strength and hardness) decrease with the increasing of rotational speed and the decreasing of the welding speed. However, the rotational speed and welding speed played a more important role in the process which could also be proved by the thermal data tested and recorded by placing K-type thermocouples. The investigation of spindle motor current consumption has been carried out in order to measure the current demand during the welding process.

DEDICATION

To my beloved father (Mohd Abd Wahab Bin Hussin), mother (Kalthom Binti Kassim) and siblings. A special thanks to all of my lecturers and friends that had given me multiple guidelines and support in completing my studies in UTeM.

ACKNOWLEDGEMENT

All praises to Allah for His blessings and guidance. Thanks for giving me the strength to complete this 'Bachelor Degree Project' with the help and support, encouragement and inspirations by various parties. All the knowledges and informations that they gave was really beneficial.

I would like to express their appreciation and thanks to my supervisor, Ts. Shikh Ismail Fairus Bin Shikh Zakaria that willingly took me as a student under your wings and provided me with guidance until completion of this 'Bachelor Degree Project'. With the advice and guidance given from you would be in my mind forever as my inspiration to achieve my dreams and goals. I would also like to express my deep and sincere gratitude to Dr. Mohammad Kamil Bin Sued for his wide knowledge and his logical way of thinking have been of great value to me. Additionally, I would convey my special thanks to all technicians at the Faculty of Mechanical and Manufacturing Engineering Technology and Faculty of Manufacturing Engineering (UTeM) for cooperating and guided me on handling some expensive machines during the experimental work. From that matter, I can also sharpen my hands-on skill thus making it a meaningful experience to apply in the future.

Not forgetting, I am forever grateful to my beloved family and also all my friend for their sharing information, moral support and spirit in completing this degree.

TABLE OF CONTENTS

			PAGE
ABST	ſRAK		i
ABST	FRACT		ii
DEDI	ICATION		iii
ACK	NOWLEDG	EMENT	iv
TABI	LE OF CON	TENTS	V
LIST	OF TABLE	S	X
LIST	OF FIGURI	ES	xii
LIST	OF APPEN	DICES	xivv
LIST	OF SYMBC	DLS	XV
LIST	OF ABBRE	VIATIONS	xvii
CHA	PTER 1	INTRODUCTION	1
1.0	Background	l of Study	1
1.1	Problem sta	tement	3
1.2	Objective		4
1.3	Scopes		4
CHA	PTER 2	LITERATURE REVIEW	6
2.0	Friction Sti	r Welding	6

v

	2.0.1	Application in FSW	7
		2.0.1.1 Aerospace	8
		2.0.1.2 Automotive	9
		2.0.1.3 Marine	10
2.1	Conve	entional welding versus friction stir welding (FSW)	11
	2.1.1	Welding Parameters and Setup	13
	2.1.2	Weld Quality	14
	2.1.3	Safety and Health	15
2.2	CFSV	V versus BFSW	15
	2.2.1	Welding Approach	15
	2.2.2	Welding Parameters	18
	2.2.3	Weld Quality	18
2.3	FSW	Tooling	19
	2.3.1	Clamping Of Substrate	19
	2.3.2	Tool Design	21
		2.3.2.1 Tool Material	22
		2.3.2.2 Design of Shoulder Shape	24
2.4	Param	neter of Pinless Friction Stir Welding (PFSW)	27
	2.4.1	Spindle and Travel Speed	27
	2.4.2	Torque and Feed Rate	29
	2.4.3	Machine Variability	30

2.5	Mater	rial Welded By Pinless Friction Stir Welding (PFSW)	30
	2.5.1	Thick Plate	30
		2.5.1.1 Process Parameters	31
		2.5.1.2 Weld Quality	32
	2.5.2	Thin Plate	32
		2.5.2.1 Process Parameters	33
		2.5.2.2 Weld Quality	34
2.6	Micro	ostructural and Mechanical Properties	34
	2.6.1	Tensile Properties	36
	2.6.2	Micro Hardness Distributions	37
	2.6.3	Microstructure Evolution	38
	2.6.4	Dissimilar Material	39
2.7	Defec	et in FSW	39
2.8	Moto	r Current Measurement	42
2.9	Sumn	nary	43
СНА	PTER	3 METHODOLOGY	44
3.0	Inrod	uction	44
3.1	Flow	chart	45
3.2	Mater	rial Preparation	46
	3.2.1	Material Cutting	47

	3.2.2	Tool Fal	brication	48
		3.2.2.1	Heat Treatment	48
			3.2.2.1.1 Hardening (Quenching) Method	49
		3.2.2.2	Tool Material	49
		3.2.2.3	Tool Design and Manufacturing Tool	51
	3.2.3	Selectin	g of PFSW Process Parameters	52
	3.2.4	Welding	g Setup	53
3.3	Metho	d of Mea	surement	54
	3.3.1	Tempera	ature	54
	3.3.2	Motor C	Current	55
3.4	Mecha	anical Tes	sting	57
	3.4.1	Tensile	Testing	57
	3.4.2	Micro-h	ardness Testing	59
		п		(0)
CHAP	PTER 4	K	ESULT AND DISCUSSION	60
4.0	Introd	uction		60
4.1	PFSW	Visual I	nspection	60
4.2	Tensil	e Propert	ies of Joint	62
4.3	Micro	-hardness		67
4.4	Heat N	Aeasurem	nent	69
4.5	Spindl	e Motor	Current Measurement	74

СНА	PTER 5	CONCLUSION AND RECOMMENDATION	76
5.1	Conclusio	n	76
5.2	Recomme	ndation	78
REF	ERENCES		79
APPENDIX		83	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Conventional welding vs friction stir welding (FSW)	14
Table 2.2	Conventional welding vs friction stir welding in term of safety	15
	and health	
Table 2.3	Comparison between single-sided (CFSW) and double-sided	18
	shoulder (BFSW)	
Table 2.4	Comparison between CFSW and BFSW	19
Table 2.5	Summary of tool material	24
Table 2.6	Parameters of thick plate with different thickness	32
Table 2.7	Parameters of thin plate with different thickness	34
Table 3.1	Chemical composition of cold rolled steel (SPCC)	46
Table 3.2	Mechanical properties of cold rolled steel (SPCC)	47
Table 3.3	Physical properties of H13 steels	50
Table 3.4	Thermal properties of H13 steels	50
Table 3.5	Mechanical properties of H13 steels	50
Table 3.6	Set of test with welding parameters	52
Table 3.7	Specifications of CNC (Vertical Milling 3 Axis Machine)	53

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Types of Welding Joint	7
Figure 2.2	Application of FSW on rocket tank	8
Figure 2.3	Application of FSW in automotive	9
Figure 2.4	Application of FSW in Marine Freedom class Littoral Combat	t 10
	Ships (LCS-1)	
Figure 2.5	Basics method of joining the arc welding process	11
Figure 2.6	Basic principle of FSW	12
Figure 2.7	The illustration of CFSW process	16
Figure 2.8	The illustration of BFSW process	17
Figure 2.9	Setting the Al plates in a universal milling machine	20
Figure 2.10	The vertical position fixture clamping at edge and horizontal	20
	position fixture arrested the workpiece in X-axis	
Figure 2.11	Types of shoulder features	25
Figure 2.12	Types of the pinless tool with a different grooove	26
Figure 2.13	Tensile properties with different welding speed	28
Figure 2.14	Illustration various zones in the welding part	35
Figure 2.15	The cross-section of FSW	36
Figure 2.16	Tensile properties of the joints at a different welding speed	37
Figure 2.17	Hardness distribution of PFSW at different depth	38
Figure 2.18	Macrostructure identification defect in fusion welding	40

Figure 2.19	Macrostructure identification of a defect in FSW	41
Figure 2.20	Electrical consumption during FSW	42
Figure 3.1	Laser cutting machine	47
Figure 3.2	Plate of commercial cold rolled steel (SPCC)	48
Figure 3.3	(a) PFSW used in current study (b) design and dimension of	51
	PFSW tool	
Figure 3.4	Conventional lathe machine (Optiturn D420)	51
Figure 3.5	CNC Milling machine	53
Figure 3.6	Welding configuration	54
Figure 3.7	Thermocouple channel location	55
Figure 3.8	Temperature measurement setup	56
Figure 3.9	Tensile specimen according to the standard (ASTM E8)	58
Figure 3.10	Universal testing machine	58
Figure 3.11	Vickers hardness testing machine	59
Figure 4.1	Visual inspection of SPCC weld plates using the pinless tool	61
	and variable welding speed at constant rotational speed	
Figure 4.2	Zoom in the top side of butt welded plates and lateral flash in	62
	the joint	
Figure 4.3	Stress-strain curve of the base thin sheet (SPCC)	64
Figure 4.4	Stress-strain curves of PFSW using different process parameters	64
Figure 4.5	Ultimate tensile strength for a base thin sheet of SPCC and PFSW	65
	joint	
Figure 4.6	Decrease tensile strength with increased tool rotation speed at	66
	constant welding speed	

- Figure 4.7 Micro-hardness values of a PFSW joint obtained constantly with 68 tool rotation speed at a different welding speed
- Figure 4.8 Surface groove defect caused by unstable temperature along the 70 welding line
- Figure 4.9 Temperature distribution during the plunging tool using different 72 welding speed at constant rotational speed
- Figure 4.10 Highest temperature distribution for variable welding speed at 73 constant rotational speed
- Figure 4.11 Spindle motor current measurement during the plunging tool 74 at a different rotational speed

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Pinless tool drawing (ISO)	83
Appendix 2	The grant chart for PSM 1	84
Appendix 3	The grant chart for PSM 2	84
Appendix 4	Hardness test on welding specimen	85
Appendix 5	Others weld result	85

LIST OF SYMBOLS

- P Power
- Ω Spindle Speed
- M Torque

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

Three dimensional
Advancing Side
American Society for Testing and Materials
Bobbin Friction Stir Welding
Base Material
Conventional Friction Stir Welding
Friction Stir Welding
Gas Metal Arc Welding
Heat Affected Zone
Hardness (Vickers)
International Organization for Standardization
Japanese Industrial Standard
Nugget Zone
Pinless Friction Stir Welding
Retreating Side
Thermos-Mechanically Affected Zone
Tailor Welded Blank
The Welding Instituted

xvi

CHAPTER 1

INTRODUCTION

1.0 Background of Study

Welding is a permanent process to join two or more parts at their touching surfaces by a suitable application of pressure and heat. Metal and alloy parts are primarily material utilized in the welding process. During the welding process, the parts of the material to be joined are melted at the joining edge interface. Typically, a filler metal is added to fill a space of molten material that become harden to bolster the joint.

Welding processes are classified into two major groups that are liquid-state welding and solid-state welding. Liquid-state welding known as fusion welding require base metal to melt by means of heat. In their operation, another metal such as filler metal is added to fill the space with molten to ease the process and give a strength to the joint. Types of welding process in fusion welding are arc welding, resistance welding, oxyfuel welding, and laser beam welding. Otherwise, solid-state welding is a process of joining parts by applying mechanical force until materials deform to a plastic state. During the operation, the material needs to be joined take place by application of pressure only or a combination of pressure and heat and no additional filler metal used in this process. Types of welding process in the solid-state are diffusion welding, ultrasonic welding, and friction welding.

Friction stir welding (FSW) also known as solid-state welding which is taking place below the melting temperature of the parent materials in order to connect them. It's an alternate welding technology, a technique to fusion welding because the fundamental concept used is very simple (M. K Sued et al. 2014). Without producing harmful gas emissions, radiation and consumes considerably less energy, FSW can be categorized as a green technology compared with conventional welding. FSW has many technical advantages which systematically developed in joining soft materials, such as aluminium and magnesium alloys that are very difficult to be welded using conventional fusion welding due to the presence of many defects. FSW also avoidance of radiation and dangerous fumes to the surrounding and consume less energy and leads to a decrease in material waste compared to the fusion welding processes. This weld is made in the solid phase, which does not require melting such as fusion welding. FSW has now established as the welding technique of first choice for certain applications in the aerospace, marine, transport industries, and infrastructure because of good energy efficiency, environment friendliness and making the friction stir welding as a green technology (Thomas et al. 2010). Since its invention, the process has received worldwide attention and today companies in Japan and USA are using of this kind of technology in production, particularly for joining the material in shipbuilding, rail, automotive and building industries (Rams, Pietras, & Mroczka, 2014).

Pinless friction stir welding (PFSW) is a new solid-state welding technique derived from conventional FSW, where the research this technique still scarce (Zhenlei Liu et al. 2016). There is a possibility to produce a good weld with a pinless tool is unpredictable. However, it has potential benefits such as simpler tool geometry, versatility since such a tool isn't concentrated to a particular sheet thickness and a preferable aesthetic appearance with a shallow and no preserved keyhole. The material flow under pinless tools is unvarying and homogeneous. With frictional heat and suitable

material flow, it can accelerate the dissemination to make sound joints (Binbin Kuang et al. 2015).

1.1 Problem statement

Friction stir welding has some benefits like low distortion and shrinkage even in long welds, no filler metal needed and also can weld a very small thickness of material in one pass. Besides that, it is an environment friendliness in the process, consumes less energy and least amount of material waste.

The use of pin in FSW affecting an aesthetically undesirable keyhole that's result from the poor material flow considerably influence the weld strength. Binbin Kuang et al. (2015) found that the keyhole also leaves anxiety for corrosion performance in the application. Another problem occurs in friction stir welding is difficulty in optimizing welding parameters due to the plates very thin. The limitation using thin plates is the thickness reduction in the weld, resulting from the forging effect of the shoulder which can significantly reduce the mechanical resistance of plates. Besides that, heat producing from tool also make the plate bend too fast due to the properties of plate is not rigid.

Based on a comparison of tensile strength and hardness is the best method to obtain the optimum parameters. Other than that, with the presence of the pinless tool can yield high strength of the weld. Since the absence of a pin on the tool shoulder, no keyhole produce on the weld surface. With help of a jig (backing plate or anvil) can make the thin plate cools in a matter of time where the material is made up of mild steel.

In this research project, the study was held to understand the parameters involved in the joining process of commercial cold rolled steel (SPCC) using PFSW. This study also geared toward learning the effect of tool design and process variable in quality of PFSW of commercial cold rolled Steel (SPCC). Additionally, it is to analyze the impact of this variable on mechanical properties (tensile strength and hardness), temperature and spindle motor current demand of welding joints.

1.2 Objective

The objective of this research project are:

- 1. To fabricate friction stir welding using pinless tool for welding 1 mm of commercial cold rolled steel (SPCC).
- 2. To investigate the effect of two parameters (spindle and travel speed) on tensile strength and micro-hardness on the welding process.
- To analyze the temperature distribution and current consumption of pinless friction stir welding.

1.3 Scopes

Based on the problem statements discussed above, this research project is a focus on the design of a simple pinless tool and to attain good weld properties. The various parameters like speed, temperature and current are taking as consideration in this research project. The approach is taken from the previous study. The PFSW machine is (CNC vertical milling 3-axis) is employed as a core platform. The material from commercial cold rolled (SPCC) was invoked as a substrate. This substrate has a size of 1mm for thickness x 174 mm (length) x 140 mm (width) were prepared by Laser Cutting Machine. For the fabrication, tool design is employing a tool H13 steel. It is manufactured in by using Conventional Lathe Machine. Butt weld configuration is utilized. The specimen is going to be tested by using Universal Testing Machine tensile shear test according to