

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MICROSTRIP ANTENNA WITH RECTANGULAR PATCH SENSOR FOR SOIL CHARACTERIZATION

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunication) with Honours.

By

NOOR SYAZWANI BINTI AHMAD RAZANI B071510164 931109-01-6248

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: MICROSTRIP ANTENNA WITH RECTANGULAR PATCH SENSOR FOR SOIL CHARACTERIZATION

Sesi Pengajian: 2018

Saya NOOR SYAZWANI BINTI AHMAD RAZANI mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT* Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

	TERHAD*	Mengandungi maklur			h
		organisasi/badan di m	ana penyelidikan dijal	ankan.	
	TIDAK				
	TERHAD				
Yang l	benar,		Disahkan oleh penye	lia:	
NOOR SYAZWANI BINTI		BINTI	AZIEAN BINTI MO	HD AZIZE	
AHM	AD RAZANI				
Alamat Tetap:			Cop Rasmi Penyelia		
No.6 7	Fingkat 2 Blok	А,			
Batalio	Batalion 5 PGA,				
86200 Simpang Renggam, Johor					
Tarikh	1:		Tarikh:		

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

iii

DECLARATION

I hereby, declared this report entitled MICROSTRIP ANTENNA WITH RECTANGULAR PATCH SENSOR FOR SOIL CHARACTERIZATION is the results of my own research except as cited in references.

NOOR SYAZWANI BINTI AHMAD
RAZANI

Date:

APPROVAL

This report is submitted to the Faculty of Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	AZIEAN BINTI MOHD AZIZE

Signature:	
Co-supervisor:	MOHD ERDI BIN AYOB

v

ABSTRAK

Antena ialah peranti metalik yang direka untuk memancar atau menerima gelombang radio. Antenna tampalan microstrip adalah popular dalam komunikasi tanpa wayar yang mengandungi metalisasi kandungan pada substrat tanah elektrik tampalan. Pada masa kini, tidak ada antena khusus untuk mengukur komposit bahan seperti tanah. Jadi, projek ini adalah untuk membangunkan antena microstrip dengan sensor tampalan segi empat tepat untuk pencirian tanah pada kekerapan resonans 2 GHz dan untuk menganalisis prestasi antena berdasarkan hasil perbandingan antara simulasi dan pengukuran. Antena microstrip yang digunakan sebagai aplikasi penderiaan. Sensor tampalan segi empat tepat telah direka menggunakan Perisian Studio Suite CST dan direka menggunakan papan litar bercetak FR4 dan diuji ke tanah yang merupakan tanah organik dan pasir. Antena microstrip dengan sensor tampalan segi empat tepat memancarkan dengan cara refleksi untuk menghasilkan peralihan frekuensi resonans. Dengan antena ini, lebih mudah untuk mengukur kepelbagaian tanah.

ABSTRACT

An antenna is a metallic device designed for radiating or receiving radio waves. Microstrip patch antenna are popular in wireless communication that content metallization on an electric ground substrate of a patch. Nowadays, there is no have a specific antenna to measure the composite of materials such as soil. So, this project is to develop microstrip antenna with rectangular patch sensor for soil characterization at resonance frequency 2 GHz and to analyze the performance of the antenna based on comparison result between simulation and measurement. The microstrip antenna that was used as a sensing application. The rectangular patch sensor has been design using CST Studio Suite Software and fabricated using FR4 printed circuit board and tested towards soil which is organic and sand soil. The microstrip antenna with rectangular patch sensor is radiate in a reflection way to produces a resonance frequency shifting. With this antenna, it easier to measure the permittivity of the soil.

DEDICATION

Specially dedicated to my beloved parents and family with love and care.

ACKNOWLEDGEMENTS

First and foremost, all praise and gratitude to Allah SWT for giving strength and patients for me to went through all difficulties and hardship to successfully finishing up my thesis. I would like to convey my gratefulness and appreciation to my supervisor, Pn. Aziean Binti Mohd Azize for the valuable experience, guidance and encouragement. With the support and supervision truly help me on the progression and smoothness of completing this thesis. For the time being in preparing this thesis, I also would like to thank you to all people I was contact, the academicians, the researchers and practitioners who has be contributed in my understanding and thought.

I would like to extend my thankfulness to the most precious person in my life my father and mother, En. Ahmad Razani Bin Husin and Pn. Nurul Kamariah Binti Ahmad and my other family members for their continuous support either in moral and financial supports from the initial of this project till the end of it. Thanks to my beloved friends also for giving me supports and always be my side through ups and downs.

Not to forget to Universiti Teknikal Malaysia Melaka (UTeM) for providing a great facility in the campus. To all my lecturers, teaching engineer and technicians of UTeM thank you for their supports and motivation during this project development and may Allah bless all of us.

TABLE OF CONTENTS

ТАВ	LE OF CONTENTS	PAGE x
LIST	FOF TABLES	XV
LIST	FOF FIGURES	xvi
LIST	Γ OF APPENDICES	xix
LIST	FOF SYMBOLS	XX
LIST	COF ABBREVIATIONS	xxi
СНА	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Project Background	1
1.3	Problem Statement	3
1.4	Objectives	3
1.5	Scope of Work	4
		_
СНА	APTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Basic of Antenna	5
2.3	Microstrip Patch Antenna	6
2.4	Advantages and Disadvantages of Microstrip Antenna	7

х

	2.4.1	Advantages	7
	2.4.2	Disadvantages	8
2.5	Anten	ina Parameters	8
	2.5.1	Reflection Coefficient	8
	2.5.2	Gain	9
	2.5.3	Radiation Pattern	9
	2.5.4	Bandwith	10
	2.5.5	Beamwidth	11
	2.5.6	Polarization	12
	2.5.7	Input Impedances	12
	2.5.8	Directivity	13
	2.5.9	Volatge Standing Wave Ratio (VSWR) and Return Loss	14
2.6	Feeding Techniques		
	2.6.1	Coaxial Probe Feed	15
	2.6.2	Microstrip Transmission Line Feed	15
	2.6.3	Aperture Coupling Feed	16
	2.6.4	Proximity Coupling Feed	16
2.7	Factor	r Affecting Microstrip Antenna Design	17
	2.7.1	Microstrip Antenna Discontinuity	17
		2.7.1.1 Open End	18
		2.7.1.2 Step in Width	18

xi

		2.7.1.3 Right Angle Equivalent Bends	19
	2.7.2	Fringing Effects	19
	2.7.3	Substrate Selection	20
2.8	Relate	d Research Paper	21
	2.8.1	A Rectangular Patch Antenna Technique for the Determination of	
		Moisture Content in Soil	21
	2.8.2	Characterization of a Ground Penetrating Radar Antenna in Lossless	
		Homogeneous and Lossy Heterogeneous Environments	22
	2.8.3	A Noninvasive Resonance-Based Method for Moisture Content	
		Evaluation Through Microstrip Antennas	24
	2.8.4	Microwave Dielectric Behaviour of Wet Soil-Part II: Dielectric Mixin	g
		Methods	25
2.9	Summ	ary	27
CHAT			20
	PTER 3		28
3.1	Introdu	uction	28
3.2	Project Flow Chart		28
3.3	Projec	t Planning	30
3.4	Calcul	ation of Microstrip Antenna	30
3.5	Desigr	n Specification	32
3.6	Desigr	n Process	34
	3.6.1	Design Process of The Conventional Microstrip Rectangular Antenna	34

xii

	3.6.2	Design Process of The Modified Microstrip Rectangular Antenna	35
3.7	Simula	ation Process	37
3.8	Fabric	ation Process	38
	3.8.1	Artwork Exposure	39
	3.8.2	PCB Development	40
	3.8.3	PCB Etching	41
	3.8.4	PCB Stripping	41
	3.8.5	PCB Finishing	42
	3.8.6	Soldering	43
3.9	Measu	rement Process	43
	3.9.1	Measurement Return Loss	44
	3.9.2	Farfield Measurement	44
	3.9.3	Gain Measurement	45
CHAF	PTER 4	RESULTS AND DISCUSSION	47
4.1	Introd	uction	47
4.2	Return	n Loss	47
4.3	Bandv	vidth	50
4.4	Gain		52
4.5	Radiat	ion Pattern	54
4.6	Refere	ence Impedance	56

xiii

4.7	Modified Microstrip Recta	ngular Patch Antenna Towards Soil	
	Characterization		58
4.8	Discussion		61
CHA	APTER 5 CONCLUSI	ON AND FUTURE WORKS	63
5.1	Conclusion		63
5.2	Future Works		64
REF	ERENCES 65		

APPENDIX 68

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1:	Designing Rectangular Patch Antenna	33
Table 3.2:	Dimension Characteristics for Rectangular Patch Antenna	34
Table 3.3:	Dimension Parameter of Conventional Microstrip Rectangular Antenna	r Patch 35
Table 3.4:	Dimension Parameter of Modified Microstrip Rectangular Pat Antenna	sch 36
Table 4.1:	Simulation and Measurement Result of Return Loss	49
Table 4.2:	Simulation and Measurement Result of Bandwidth	51
Table 4.3:	Simulation and Measurement Result of Gain	53
Table 4.4:	Simulation and Measurement result of Reference Impedance	57
Table 4.5:	Comparison Simulation and Measurement Result for Microstr Antenna with Rectangular Patch Sensor for Soil Characterizat	-
Table 4.6:	Measurement Result for Microstrip Antenna Rectangular Patc	h Sensor
	at Difference Soil	62

xv

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	Microstrip Patch Antenna on The Side View	2
Figure 2.1:	Microstrip Antenna with Rectangular Patch	6
Figure 2.2:	Radiation Pattern and 3 dB Beamwidth	10
Figure 2.3:	Coaxial Probe Feed Techniques	15
Figure 2.4:	Microstrip Transmission Line Feed Techniques	16
Figure 2.5:	Proximity Coupling Feed Techniques	17
Figure 2.6:	Open End Equivalent Circuit	18
Figure 2.7:	Step in Width Equivalent Circuit	18
Figure 2.8:	Right Angle Equivalent Circuit of Bends	19
Figure 2.9:	Microstrip Antenna and Coordinate System	20
Figure 2.10:	Reflection Coefficient, r of Peat and Loam Soil at 2.05 GHz	22
Figure 2.11:	Radiation Pattern of E-Plane and H-Plane in The Different So	il 24
Figure 3.1:	Flow Chart Project Work	30
Figure 3.2:	Dimension of Microstrip Antenna	31
Figure 3.3:	Calculator Tool in Microstrip Calculator	32
Figure 3.4:	Conventional Microstrip Rectangular Patch Antenna	34
Figure 3.5:	Modified Microstrip Rectangular Patch Antenna	36

Figure 3.6:	Front View of The Simulated Modified Microstrip Rectangular Pat	tch
	Antenna	37
Figure 3.7:	Back View of The Simulated Modified Microstrip Rectangular pat Antenna	ch 38
Figure 3.8:	Steps of Fabrication Process	39
Figure 3.9:	UV Curing Machine	40
Figure 3.10:	PCB Machine Developer	40
Figure 3.11:	Etcher Machine Mega Electronics	41
Figure 3.12:	Mega PA310 Tri-Tank Machine	42
Figure 3.13:	PCB Cutter	42
Figure 3.14:	Soldering The 50 Ω SMA Connector of Modified Microstrip Rectangular Patch	43
Figure 3.15:	Vector Network Analyzer	44
Figure 3.16:	Modified Microstrip Rectangular Patch Antenna Inside the Anecho Chamber Room	oic 45
Figure 3.17:	Testing for The Gain Measurement	46
Figure 4.1:	Return Loss for The Conventional Microstrip Rectangular Patch Antenna in Simulation Result	48
Figure 4.2:	Return Loss for The Modified Microstrip Rectangular Patch Anten in Simulation Result	na 48
Figure 4.3:	Return Loss for The Modified Microstrip Rectangular Patch Anten in Measurement Result	na 49
Figure 4.4:	Bandwidth for The Conventional Microstrip Rectangular Patch Antenna in Simulation Result xvii	50

Figure 4.5:	Bandwidth for The Modified Microstrip Rectangulat Patch Antenna in		
	Simulation Result	50	
Figure 4.6:	Bandwidth for The Modified Microstrip Rectangular Patch Antenn Measurement Result	a in 51	
Figure 4.7:	Gain for The Conventional Microstrip Rectangular Patch Antenna in Simulation Result		
Figure 4.8:	Gain for The Modified Microstrip Rectangular Patch Antenna in Simulation Result		
Figure 4.9:	Radiation Pattern for The Conventional Microstrip Rectangular Pat Antenna in Simulation Result	tch 54	
Figure 4.10:	Radiation Pattern for The Modified Microstrip Rectangular Patch Antenna in Simulation Result	54	
Figure 4.11:	Radiation Pattern for The Modified Microstrip Rectangular Patch Antenna in Measurement Result	55	
Figure 4.12:	Reference Impedance for The Conventional Microstrip Rectangula Patch Antenna in Simulation Result	r 56	
Figure 4.13:	Reference Impedance for The Modified Microstrip Rectangular Par Antenna in Simulation Result	tch 56	
Figure 4.14:	Reference Impedance for The Modified Microstrip Rectangular Par Antenna in Measurement Result	tch 57	
Figure 4.15:	Testing the Antenna Towards Orgnaic Soil	58	
Figure 4.16:	Measurement Result by Testing the Antenna Towards Organic Soil	1 59	
Figure 4.17:	Testing the Antenna Towards Sand Soil	59	
Figure 4.18:	Measurement Result by Testing the Antenna Towards Sand Soil	60	

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Appendix 1 Gantt Chart

68

xix

LIST OF SYMBOLS

W	-	Width
L	-	Length
r	-	Reflection Coefficient
Ω	-	Ohm
∞	-	Infinity
%	-	Percent
ε _r	-	Permittivity
tan ð	-	Loss of Tangent
h	-	Thickness
GHz	-	Giga Hertz
MHz	-	Mega Hertz
dB	-	Decibel

LIST OF ABBREVIATIONS

CST	Computer Simulation Technology		
FR-4	Flame Retardant 4		
VNC	Vector Network Analyzer		
VSWR	Voltage Standing Wave Ratio		
GPR	Ground Penetrating Radar		
RL	Return Loss		
РСВ	Printed Circuit Board		
FDTD	Finite Difference Time Domain		
TDR	Time Domain		
RMSA	Rectangular Microstrip Antenna		
UV	Ultra Violet		
AUT	Antenna Under Test		

xxi

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter discussed a microstrip antenna with rectangular patch sensor for soil characterization that consists of the project background, problem statement, objectives and scope of work.

1.2 Project Background

An antenna may be an electrical device designed to transmit or receive magnetic force waves [1]. Is usually works on air and exterior surface but can even controlled under water or else through soil and ordinary for short distance at certain frequencies. Microstrip patch antenna are popular in wireless communication that content metallization on an electric ground substrate of a patch. The patch consists of any shape, but the available shape that most often used for configuration is rectangular, circular and triangular. A three layer that contains in the simple microstrip patch antenna is substrate, a ground and a patch layer. A microstrip patch antenna on the side view showed in Figure 1.1 below.

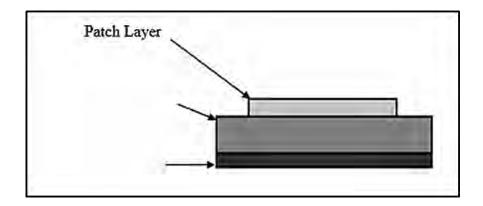


Figure 1.1: Microstrip Patch Antenna on The Side View

In designing of patch sensor are to give a frequency at 2 GHz. The sensor is used to estimate the characterization of soil by using two types of soil which is organic and sand soil. This project can be applied for the sensing application.

In the part of designation and simulation of the antenna, the computer simulation software (CST) were used. To generate antenna designing simulation vary fast the CST software were used compared to other software such as Microwave Office and CST also are able to draw a 3-D configuration of antenna.

The characteristics of associate antenna radiation are investigated by learning parameters like electrical resistance, field pattern form, and radial asymmetry in free area. graph in free area of straight forward antennas, at the side of additional wide used industrial GPR antennas are created. Forms of associate antennas over superimposed mass media are developed for associate off-ground horn antenna exploitation linear transfer functions [2] and so for an antenna operational within the near-field exploitation comparable sets of minute electrical dipoles. The energy division of a protected antenna over varied lossless half-space was studied by [3], associated within the same manner [4] used for model of an antenna to check simulated and measured knowledge. Totally different principles of material constant, and a unique sorts and distribution of soil characterization are compared. Principal electrical and force field habits are analysed at a range of observation distances from the antenna by employing a total energy metric.

1.3 Problem Statement

Nowadays, an antenna is developed to satisfy the challenge arise and upgrade the antenna for the technology advances but, there is no have a specific antenna to measure the composite of materials. So, the antenna is developed to measure the dielectric constant in a composite material such as the soil which have permittivity. Every material has their own permittivity. Without this antenna, it hard and difficult to measure the permittivity of the material. The rectangular microstrip patch antenna is that the most well-liked uses. In order, supported the issue, the rectangular microstrip patch antenna is appropriate to design for sensing applications, additionally for the advanced technologies. This antenna provides a straight forward of patch sensor for testing and observance soil to detect the soil characterization at 2 GHz of frequency.

1.4 Objectives

This project contains the objectives as:

- i. To study microstrip antenna with rectangular patch sensor for soil characterization.
- To develop a microstrip antenna with rectangular patch sensor for soil characterization at frequency 2 GHz.
- iii. To analyze the performance of the antenna based on the comparison result in the simulation and measurement.