

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN, SIMULATION AND FABRICATION OF MICROSTRIP PATCH ANTENNA ARRAY FOR WI-FI APPLICATION

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunication) with Honours.

by

NUR SHAMIMI BINTI OTHMAN B071510294 951024-04-5312

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN, SIMULATION AND FABRICATION OF MICROSTRIPPATCH ANTENNA ARRAY FOR WI-FI APPLICATION

Sesi Pengajian: 2019

Saya **NUR SHAMIMI BINTI OTHMAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Ľ		SULI	T*	N k F	Aengano Tepentin RAHSIA	lungi gan Ma A RASI	maklumat alaysia seb MI 1972.	yang agaima	g berdarja ana yang te	ah kese ermaktuł	elamatan o dalam Al	atau KTA
		TERI	HAD*	N O	/lengano organisa	dungi si/bada	maklumat In di mana	TERH penyel	IAD yang lidikan dija	telah d alankan.	itentukan	oleh
Σ	\triangleleft	TIDA TERI	AK HAD									
Ya	ang b	enar,					Dis	ahkan	oleh peny	elia:		
NI Al Bt Lo 77 Ta	UR S amat 20 ½ orong 000 J urikh	SHAN Teta 2 Jln (Tere Jasin	/IMI p: Chincl ntang Melak	BINT hin 3 xa	FI OTH	MAN	PN HA Coj	WAN SSAN p Rasn ikh:	I HASZER I ni Penyelia	ILA BIY	NTI WAN	
*Jika		oran	PSM	ini	SULIT	atau	TERHAD.	sila	lampirkan	surat	daripada	pihak
berkua	isa/o	rganis	asi be	erken	aan der	ngan m	ienyatakan	sekali	sebab dar	n tempol	h laporan	PSM ini
							11					

DECLARATION

I hereby, declared this report entitled **DESIGN, SIMULATION AND FABRICATION OF MICROSTRIP PATCH ANTENNA ARRAY FOR WI-FI APPLICATION** is the results of my own research except as cited in references.

Signature:Author:NUR SHAMIMI BINTI OTHMANDate:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

> Signature: Supervisor : PN WAN HASZERILA BINTI WAN HASSAN

iv

ABSTRAK

Antena patch microstrip (MPA) telah digunakan secara meluas kerana kelebihannya iaitu mempunyai profil yang rendah, mudah dibuat dan juga kos rendah. Ciri-ciri persembahan MPA tunggal dapat ditingkatkan dengan menggunakan array antena patch microstrip. Terdapat beberapa cara untuk meningkatkan prestasi antena patch microstrip seperti teknik slotting, struktur tanah yang dibatalkan atau menjadikannya sebagai tatasusunan. Dalam projek ini, tatasusuan telah dipilih untuk meningkatkan prestasi MPA. Oleh itu, projek ini dijalankan untuk memberikan analisis perbandingan antara satu MPA dan 2 x 1 segi empat tepat MPA array untuk aplikasi Wi-Fi. Kedua-dua antenna ini telah direka dan disimulasi pada operasi frequency 2.45GHz. Substrat yang digunakan ialah FR-4 dielektrik dan simulasi dilakukan dengan menggunakan Perisian CST. Antena kemudian direka untuk mengesahkan prestasi antena dengan melakukan pengukuran. Teknik suapan MPA berbentuk empat segi adalah inset fed untuk dipadankan dengan galangan beban dengan antena untuk memaksimumkan pemindahan kuasa atau meminimumkan isyarat pantulan dari beban. Hasil simulasi dan pengukuran menunjukkan bahawa terdapat peningkatan parameter antena. Jalur lebar bagi array antena dari simulasi dan pengukuran masing-masing adalah 0.07894GHz dan 0.11GHz. Selain itu, simulasi keuntungan adalah 5.42dB dan 6.425dB keuntungan dari pengukuran untuk array antena. Berdasarkan keputusan, antena dapat digunakan dalam aplikasi Wi-Fi yang mempunyai jarak frekuensi antara 2.3GHz hingga 2.5GHz.

v

ABSTRACT

The microstrip patch antenna (MPA) are widely used as the advantages were low profile, easy to fabricate and also low cost. The performances characteristics of a single MPA can be improved and enhanced by using microstrip patch antenna array. There are several ways to improve the performances of the microstrip patch antenna such as slotting technique, defected ground structure or by making it as an array. In this project, array have been chosen to enhance the performances of MPA. Therefore, this project was conducted to give a comparative analysis of between a single MPA and 2 x 1 rectangular MPA array for Wi-Fi application. Both of the antenna were designed and simulated at 2.45GHz operating frequency. The substrate used was FR-4 dielectric and simulations are performed by using CST Software. The antennas then was fabricated to validate the performances of antenna by doing measurement. The feeding techniques of rectangular MPA was inset feed as for matching the impedance load with the antenna in order to maximize the power transfer or minimize the signal reflection from the load. The results of simulation and measurement show that there were enhancement of the parameters of the antenna. The bandwidth for antenna array from simulation and measurement were 0.07894GHz and 0.11GHz respectively. Other than that, the gain of simulation was 5.42dB and 6.425dB of gain from the measurement for antenna array. Based on the results, the antenna can be applied in Wi-Fi application which is frequency range between 2.3GHz to 2.5GHz.

DEDICATION

Special dedication to my beloved parents,

EN. OTHMAN BIN IBRAHIM PN. NORHAYA BINTI MOHD NOR,

My Family,

(Qamarul Afiq Bin Othman, Ahmad Qusyairi Bin Othman, Khairil Faiz Bin Othman, Saiyidah Nadiah Binti Othman, Ainul Madihah Binti Othman)

My beautiful supervisor,

Pn Wan Haszerila Binti Wan Hassan.

My beloved friends,

(Noor Syazwan Bin Noor Azizi, Nur Farhana Binti Tajul Arus, Hafizah Auni Bt Azahar, Syafiq Ai'mullah Bin Sabaruddin, Mohd Farid Bin Asmir, Muhammad Muthanna Bin Jumadil, Mohamad Faiq Bin Rosli, Mohamad Izzat Bin Kamal Izani, Abdul Hadi Bin Salleh)

Thank you for all your love, care, and support also believe in me.

vii

ACKNOWLEDGEMENTS

First and foremost, all praise and gratitude to Allah SWT for giving me strength to went through all difficulties and hardship to successfully finishing up my thesis. I wish to express my sincere appreciation to my beloved supervisor, Puan Wan Haszerila Binti Wan Hassan for valuable experience, encouragement, guidance, critics and friendship. I would also to thank you to PM Dr. Mohamad Zoinol Abidin bin Abd Aziz for his contribution and knowledge in finishing this project.

I want to show my appreciation to my beloved parents, Othman Bin Ibrahim and Norhaya Binti Mohd Nor and all of my family members for all their supports, motivations and pray from the initial of the project until the end of it. Last but not least, special thanks to my friends and others that help and non-stop supporting in completing the project.

TABLE OF CONTENTS

		PAGE
TAB	BLE OF CONTENTS	ix
LIST	Г OF TABLES	xiii
LIST	Γ OF FIGURES	xiv
LIST	Γ OF APPENDICES	xvii
LIST	Г OF SYMBOLS	xviii
LIST	Γ OF ABBREVIATIONS	xix
LIST	Γ OF PUBLICATIONS	XX
1.1	Introduction	1
1.2	Background	1
1.3	Problem Statement	2
1.4	Objective	3
1.5	Scope	3
CHA	APTER 2 LITERATURE REVIEW	4
2.1	Introduction	4
2.2	Microstrip Antenna	4
2.3	Array Antenna	7

ix

2.4	Properties of Antenna		9
	2.4.1	Radiation Pattern	10
	2.4.2	Return Loss	11
	2.4.3	Gain	11
	2.4.4	Voltage Standing Wave Ratio (VSWR)	12
2.5	Feeding Tec	hniques	12
	2.5.1	Microstrip Inset Feed	13
	2.5.2	Coaxial feed	14
	2.5.3	Aperture Couple Feed	15
2.6	Polarization	Types	17
2.7	Summary		17
CHAF	PTER 3	METHODOLOGY	18
3.1	Introduction		18
3.2	Project Flow	vchart	19
	3.2.1	Flowchart of the methodology	20
3.3	CST Microv	vave Studio	21
	3.3.1	Dielectric Substrate	21
	3.3.2	Connector	23
3.4	Design Spec	ification	23

Х

3.5	Feeding Technique Used 24		
3.6	Design Calculation 2		
3.7	Design Process 20		
	3.7.1	Conventional Antenna	26
	3.7.2	Array Antenna	30
3.8	Simulation		32
3.9	Fabricating F	Process	32
3.10	Measuremen	t	36
			•••
СНАР	TER 4	DISCUSSION	38
4.1	Introduction		38
4.2	Return Loss 3		
4.3	Bandwidth 42		
4.4	Gain		45
4.5	Radiation Pa	ttern	47
4.6	Directivity		50
СНАР	TER 5	CONCLUSION & FUTURE WORK	51
5.1	Introduction		51
5.2	Conclusion 51		

xi

5.3	Future Work	53
REF	FERENCES	54
APP	PENDIX	57

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Comparison of the different feed techniques	16
Table 3.1:	Properties of FR-4 Glass Epoxy	22
Table 3.2:	Dimensions of conventional antenna after optimization	29
Table 3.3:	Dimensions of array antenna	31
Table 4.1:	Parameters comparison between simulation and measuremen	ıt 44

xiii

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1:	Basic Microstrip Patch Antenna	5
Figure 2.2:	Various Shapes Of Microstrip Patch	6
Figure 2.3:	2x1 Antenna Array	8
Figure 2.4:	2x2 Antenna Array	9
Figure 2.5:	Figure Of Radiation Pattern	10
Figure 2.6:	Microstrip Inset Feed	14
Figure 2.7:	Microstrip Coaxial Feed	15
Figure 2.8:	Microstrip Aperture Couple Feed	16
Figure 3.1:	Block Diagram Of Project Methodology	18
Figure 3.2:	Flowchart Methodology	20
Figure 3.3:	CST software	21
Figure 3.4:	FR-4 Glass epoxy structure	22
Figure 3.5:	SMA Connector	23
Figure 3.6:	Feeding Technique used	24
Figure 3.7:	Front view of conventional antenna after optimization	27

Figure 3.8:	Back view of conventional antenna after optimization	28
Figure 3.9:	Front view of array antenna	30
Figure 3.10:	Back view of array antenna	31
Figure 3.11:	UV curing machine	33
Figure 3.12:	PCB developer machine	34
Figure 3.13:	Etcher machine Mega Eloctronics model FAPC 3000	34
Figure 3.14:	Etcher machine Mega Electronics model PA320	35
Figure 3.15:	PCB cutter	35
Figure 3.16:	Measurement of return loss using Network Analyzer	36
Figure 3.17:	Gain measurement setup	37
Figure 3.18:	Radiation pattern setup at ancheonic chamber	37
Figure 4.1:	Fabricated conventional microstrip patch antenna	38
Figure 4.2:	Fabricated microstrip patch antenna array	39
Figure 4.3:	Simulation result of return loss for conventional antenna	39
Figure 4.4:	Simulation result of return loss for array patch antenna	40
Figure 4.5:	Measured result of return loss for conventional antenna	40
Figure 4.6:	Measured result of return loss for array patch antenna	41
Figure 4.7:	Simulation result of bandwidth for conventional antenna	42
Figure 4.8:	Simulation result of bandwidth for array antenna	42
Figure 4.9:	Measurement result of bandwidth for conventional antenna	43

Figure 4.10:	Measurement result of bandwidth for array antenna	43
Figure 4.11:	Simulation result of gain for conventional antenna	45
Figure 4.12:	Simulation result of gain for array antenna	46
Figure 4.13:	Simulation result of radiation pattern for conventional antenna	48
Figure 4.14:	Simulation result of radiation pattern for array antenna	48
Figure 4.15:	Measurement result of radiation pattern for conventional antenna	49
Figure 4.16:	Measurement result of radiation pattern for array antenna	49
Figure 4.17:	Simulation result of directivity for conventional antenna	50
Figure 4.18:	Simulation result of directivity for array antenna	50

xvi

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
Appendix 1	Gantt Chart 1		57
Appendix 2	Gantt Chart 2		58

xvii

LIST OF SYMBOLS

xviii

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

MPA	Microstrip Patch Antenna		
CST	Computer Simulation Technology		
VSWR	Voltage Standing Wave Ratio		
UV	Ultra Violet		
РСВ	Printed Circuit Board		

xix

LIST OF PUBLICATIONS

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter will explain about the background of this project entitle Design, Simulation and Fabrication of Microstrip Patch Antenna Array. Computer Simulation Technology (CST) was used to design and fabricate the antenna. This chapter include background, problem statement, objective and scope of the project.

1.2 Background

Antenna are one of the important key of any wireless system. An antenna acts as a device that will transmit or receives electromagnetic waves. Almost all antenna operates efficiently on a relatively narrow frequency band. Tuning the antenna to the same frequency band is a must in order to connect to the radio system that operates as it is to avoid any reception or transmission being impaired. One of the way to transmit and receive the electromagnetic waves is by tuning the wire to be effective. To tune the wire to be effective, is by ensuring the length of the wire is half from the wavelength of the operating frequency. Microstrip Patch Antenna (MPA) are most widely used type of antenna. This type of antenna consist of four parts which are patch, ground plane, substrate and feeding part. To design a microstrip patch antenna, a lot of substrates with dielectric constant in the range of 2.2 <er< 12 can be used. Usually,

for a better antenna performance, a thick substrate with low dielectric constant are most likely preferred as it offers a better efficiency, larger bandwidth and loosely bound fields for radiation into space.

Therefore, in this project the main things aimed is to design a linearly polarized rectangular microstrip patch antenna array. The aim of using linear polarization is because a linear polarized antenna radiates in a plane contain the propagation direction

1.3 Problem Statement

In order to fulfil the problem occurred, an antenna is developed hence upgraded for advanced technologies. Microstrip antenna is easier to design compared to conventional antenna. Other than that, conventional antenna also require more cost to build. As for microstrip patch antenna, it has simple structure and easy to fabricated. Although it has various shapes, but the most popular configuration usually used rectangular shape. In this project, Flame Retardant 4 (FR4) will be used as dielectric substrate of the antenna.

1.4 Objective

The objective of this project are:

- To design and simulate a MPA array using Computer Simulation Technology (CST) software.
- 2. To fabricate the MPA by using Flame Retardant 4 (FR4).
- 3. To analyse the performance of the antenna

1.5 Scope

This project consist of two parts which is software and hardware. For software part, Computer Simulation Technology (CST) software was used to design and simulate the MPA. As for hardware, after the simulation, the MPA will be fabricate using Flame Retardant 4(FR4). Finally, the MPA will be measured using network analyser to measure the value hence compared to the simulation values.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provided review on previous study and research which closely related to development of antenna working on MPA. All information is obtained from journal, books and internet. This literature review will discussed about types of antenna used, details explanation about microstrip antenna, shape of the MPA and feeding technique. The variation of antenna type and its feeding technique is compared and analysed so that this project can be carried on.

2.2 Microstrip Antenna

Microstrip antenna also referred as a patch antenna that has simplest configuration and consisting radiating patch on a side of a dielectric substrate which has a ground plane on the other side as in Figure 2.1. The ground plane that connected to the supply's ground terminal is act as a direct connection for the current in the antenna. The material of the patch conductors usually is gold and copper. To design microstrip antennas, a number of substrate are used. The range of dielectric constant substrate are usually at $2.2 \le \text{er} \le 12$. According to (Bhalla et al., 2013), Thick dielectric substrate are genuinely used for antenna as it has low dielectric constant hence providing better efficiency, larger bandwidth and better radiation, thus good for antenna performances.

4