

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF AUTOMATIC GAMELAN MECHANICAL PLAYER USING ARDUINO MICROCONTROLLER AND NDFEB MAGNET

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Automation and Robotics) With Honours.

by

MOHD ZAIRUNSHAH BIN BERNADOS B071510515 961030-12-6273

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Development of Automatic Gamelan Mechanical Player Using Arduino Microcontroller and NdFeB Magnet

Sesi Pengajian: 2019

Saya **MOHD ZAIRUNSHAH BIN BERNADOS** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

ii

	SULIT*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.	
	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.	
	TIDAK TERHAD		
Yang	benar,	Disahkan oleh penyelia:	
мон	D ZAIRUNSH	IAH BIN BERNADOS MOHAMED AZMI BIN SAID	
Alama	at Tetap:	Cop Rasmi Penyelia	
Quart	ers Hospital Ta	able,	
Peti S	urat 135,		
91007	Tawau,		
Sabah			
Tarikl	1:	Tarikh:	
*Jika Lap	ooran PSM ii	ni SULIT atau TERHAD, sila lampirkan surat daripada pihak	
berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini			

DECLARATION

I hereby, declared this report entitled Development of Automatic Gamelan Mechanical Player Using Arduino Microcontroller and NdFeB Magnet is the results of my own research except as cited in references.

MOHD ZAIRUNSHAH BIN
BERNADOS

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	MOHAMED AZMI BIN SAID

Signature:	
Co-supervisor:	

v

ABSTRAK

Pada masa kini, muzik Gamelan yang terkenal dengan melodi dan muzik sentimentalnya semakin pudar dan jarang didengari oleh generasi muda. Selain itu, instrumen Gamelan dan ahli muzik yang terlatih sukar ditemui di kalangan anak-anak muda. Oleh itu, Pemain Mekanikal Gamelan Automatik dengan menggunakan Arduino Microkontroler dan NdFeB Magnet dihasilkkan. Projek ini adalah untuk merekabentuk, mengarang, merangsang dan menguji Pemain Mekanikal Gamelan Automatik untuk memainkan muzik Gamelan yang difokuskan pada Bonang, sebahagian daripada Gamelan. Pemain Mekanikal Gamelan Automatik akan dikawal oleh mikrokontroler Arduino. Data nod muzik Gamelan akan dibaca oleh Arduino IDE dan IDE Pemprosesan dan menukar kepada isyarat sebagai input untuk mikrokontroler Arduino. Selain itu, isyarat yang dijana oleh Arduino akan dihantar kepada Pemandu Gate untuk menghasilkan arus tinggi untuk IGBT dari arduino semasa yang rendah. IGBT akan digunakan sebagai kelajuan pensuisan pantas untuk membolehkan daya elektromagnet untuk mekanisme mengetuk dalam tindak balas pantas. Pemain Mekanikal Gamelan Awam ini akan mengetuk Gamelan Bonang dengan daya tinggi dan tindak balas yang cepat. Terdapat beberapa faktor yang mempengaruhi magnitud daya mengetuk yang dihasilkan, iaitu pembekalan, bilangan giliran gegelung solenoid, sifat magnet dan kecekapan fluks yang dihasilkan. Oleh itu, Pemain Mekanikal Gamelan Automatik ini akan menjalani beberapa eksperimen dan ujian untuk menyiasat keupayaan dan prestasi projek ini.

ABSTRACT

Nowadays, the Gamelan music that famous for its melody and sentimental music is getting faded and rarely heard by the youth generations. Furthermore, the Gamelan instruments and the well-trained musicians are hardly to find among the youngsters. Therefore, the Automatic Gamelan Mechanical Player using Arduino Microcontroller and NdFeB Magnet is developed. This project is to design, fabricate, stimulate and test the Automatic Gamelan Mechanical Player to play the Gamelan music that be focussed on Bonang, part of Gamelan. The Automatic Gamelan Mechanical Player will be controlled by the Arduino microcontroller. The Gamelan music node data will be read by the Arduino IDE and the Processing IDE and change to signal as the input for the Arduino microcontroller. Other than that, the signal generated by the Arduino will be transmitted to the Gate Driver to produces a high current for IGBT from the low current of Arduino. The IGBT will be used as its fast switching speed to enable the electromagnetic force for the knocking mechanism in the fast response. This Automatic Gamelan Mechanical Player will knock the Gamelan Bonang with a high force and fast response. There are several factors that affects the magnitude of the resultant knocking force, which is the supply, number of turn of solenoid coils, magnet properties and the efficiency of the resultant flux. Thus, this Automatic Gamelan Mechanical Player will undergo several experiments and tests to investigate the ability and performance of this project.

DEDICATION

This project I dedicate to my beloved family especially my parents who always been by my side. Their love and support give me some moral and motivate to achieve my dream in my life. I would to thank to them for their sacrifices and support me all the times.

To my beloved and respectful supervisor, Mr Mohamed Azmi Bin Said, thank for your guidelines and advices while conducting this project. I do appreciate and thankful for inspiring me with the idea and knowledge that shared by Mr Mohamed Azmi Bin Said.

ACKNOWLEDGEMENTS

First of all, thank to Allah for giving me strength, health and knowledge to complete this project successfully even though there has some difficulties and obstacles while conducting this project. My deepest appreciation for my supervisor, Mr Mohamed Azmi Bin Said who always gave moral support and guidance for assist me conducting this project and report. Last but not least, I would thank to lab assistant, Mr Azhan and my friends that assist me from the beginning till the end of the Final Year Project.

Thank You.

TABLE OF CONTENTS

		PAGE
DEC	CLARATION	iv
APP	PROVAL	v
ABS	STRAK	vi
ABS	STRACT	vii
DEL	DICATION	viii
ACk	KNOWLEDGEMENTS	ix
TAE	BLE OF CONTENTS	Х
LIST	T OF TABLES	XV
LIST	T OF FIGURES	xvi
LIST	T OF APPENDICES	xix
LIST	T OF SYMBOLS	XX
CHA	APTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Gamelan	1
1.3	Problem Briefing	3
1.4	Problem Statement	4
1.5	Objective	5

1.6	Work	Scope	5	
1.7	Projec	et Report Outline	6	
СНА	PTER 2	2 LITERATURE REVIEW	7	
2.1	Electr	onic Gamelan	7	
	2.1.1	Gamelan Elektrika: An Electronic Balinese Gamelan	7	
	2.1.2	Gamelan Sampul	8	
	2.1.3	Gamelatron	9	
2.2	Instru	Instruments In Gamelan		
	2.2.1	Instruments Involved in Melody Productions	11	
	2.2.2	Instruments Involved in Musical Time	12	
	2.2.3	Instruments Involved in Musical Structure	12	
	2.2.4	Music Notation	14	
2.3	Micro	controller	16	
	2.3.1	Arduino	16	
2.4	Power	Semiconductor	18	
	2.4.1	BJT	18	
	2.4.2	MOSFET	19	
	2.4.3	IGBT	19	
	2.4.4	Comparison between BJT, MOSFET, and IGBT	20	
2.5	Gate I	Driver	21	

xi

	2.5.1	Optocoupler	22
2.6	Electromagnetic Plunger Material		23
	2.6.1	Solenoid	23
	2.6.2	Neodymium Permanent Magnet	24
	2.6.3	Ferrites Magnet	24
	2.6.4	Comparison between Neodymium Permanent Magnet and Ferrit	es
		Magnet	25
2.7	Design Soft	ware	25
	2.7.1	Solidwork	26
	2.7.2	Comparison between Solidwork and AutoCAD	27
2.8	3D Printing		27
CHAI	PTER 3	METHODOLOGY	29
3.1	Introduction	1	29
3.2	Project Overview		30
3.3	Gamelan Bonang 3		32
3.4	Knocking Mechanism		33
	U		
	3.4.1	Solenoid	33
	3.4.1 3.4.2	Solenoid NdFeB Magnet	33 35
	3.4.1 3.4.2 3.4.3	Solenoid NdFeB Magnet Operation of Electromagnetic Actuator	333536

	3.4.5	Bearing	38
3.5	IGBT		39
3.6	Optocouple	r Gate Driver	40
3.7	Connection	between IGBT and Gate Driver	41
3.8	Arduino UN	10	41
3.9	Software Involved in the Project		
	3.9.1	Solidwork	44
	3.9.2	UP Studio 3D Printing	46
	3.9.3	Arduino IDE	47
	3.9.4	Processing IDE	48
	3.9.5	Proteus	51
CHAI	PTER 4	RESULT AND DISCUSSION	52
4.1	Introduction	1	52
4.2	Preliminary	Design	52
	4.2.1	Problem Definition	52
	4.2.2	Design Overview and Description	53
4.3	Results of P	roject Model	56
4.4	Result and I	Discussion of Experiments Conducted	57
	4.4.1	Comparison between Constantly High Output Signal and Altern	ate
		High Low Output	57

	4.4.2	Testing the Strength of Magnetic Field	60
	4.4.3	Distance between NdFeB Magnet and the Linear Bearing	61
СНАР	PTER 5	CONCLUSION AND FUTURE WORK	62
5.1	Introduction		62
5.2	Project Sum	mary	62
5.3	Future Work	X	63
REFE	RENCES		65
APPE	APPENDIX		67

LIST OF TABLES

TABLE	TITLE		PAGE
Table 1: "Sléndro" pitches ar	nd Western-pitches equiva	lent	15
Table 2: "Pélog" scales and V	Western equivalents		15
Table 3: Comparison betwee	n BJT, MOSFET, and IGE	BT.	20
Table 4: Comparison betwee	n Neodymium and Ferrites	s Magnet	25
Table 5: Comparison betwee	n Solidwork and AutoCAI)	27
Table 6: Response of Gamela Signal	an Knocking Mechanism v	vith Constantly High Ou	tput 57
Table 7: Response of Gamela Signal	an Knocking Mechanism v	vith Constantly High Ou	tput 58
Table 8: Number of Turns of	Coils and Resultant Force	;	60
Table 9: Number of NdFeB N	Magnet and Resultant Forc	e (N)	60
Table 10: Distance of NdFeE	magnet and the Linear Bo	earing	61

XV

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.2.1: A Set of Gam	elan	3
Figure 2.1.1: Gamelan Elek	trika that performed by Gamelan Galak Tika	8
Figure 2.1.2: Gamelan Sam	pul Prototype	8
Figure 2.1.3: Gamelatron K	ebangkitan (2015)	9
Figure 2.1.4: Gamelatron M	Iurniati (2015)	10
Figure 2.2.1: Instruments o	f the Gamelan (Functions in the Ensemble)	11
Figure 2.2.2: Rebab, a two-	stringed bowed lute	11
Figure 2.2.3: Gambang, a w	vooden-xylophone	12
Figure 2.2.4: Bonang, two i	rows of horizontal gong-kettles	12
Figure 2.2.5: Kendhang, a t	wo-headed asymmetrical drum	12
Figure 2.2.6: Gong		12
Figure 2.2.7: Kempul, smal	l sized hanging gongs	13
Figure 2.2.8: Kenong, a set	of large horizontal gong kettle placed	13
Figure 2.2.9: Kethuk-Kepy	ang, two small horizontal gong-kettles placed	13
Figure 2.2.10: Sample of G	amelan Notation	14
Figure 2.2.11: Arrangemen	t of seven pitches in "Pélog" bonang.	15
Figure 2.3.1: Arduino IDE	open-source software	17

Figure 2.3.2: Arduino Uno R3 board	18
Figure 2.4.1: NPN Type and PNP Type Transistor	18
Figure 2.4.2: N-Channel and P-Channel	19
Figure 2.4.3: IGBT Terminal Structures	20
Figure 2.5.1: Basic Optocoupler (photo-transistor)	22
Figure 2.6.1: Solenoid	24
Figure 2.7.1: Dassault System Solidwork Software	26
Figure 2.8.1: MakerBot printer for 3D printing application	28
Figure 3.1.1: Flow Chart of Project Methodology	30
Figure 3.2.1: Block diagram of Project Overview	30
Figure 3.3.1: Arrangement of A Set of Bonang	32
Figure 3.3.2: Mallet for Bonang	32
Figure 3.4.1: Linear Solenoid	34
Figure 3.4.2: Rotary Solenoid	34
Figure 3.4.3: Figure 3.4.3: Disc Neodymium Iron Boron (NdFeB) magnet	35
Figure 3.4.4: Grading of Neodymium Magnet	36
Figure 3.4.5: Mallet Holder with Hangers	37
Figure 3.5.1: IGBT	40
Figure 3.8.1: Arduino Uno with the LED outputs	43
Figure 3.9.1: Sketch and dimension part of housing for linear bearing	45
Figure 3.9.2: Top and Side View of Solenoid Housing xvii	45

Figure 3.9.3: UP Studio Software	47
Figure 3.9.4: The sets up of Output/Input port	47
Figure 3.9.5: The sets up for Serial Monitor Read/Write	48
Figure 3.9.6: Import serial library	49
Figure 3.9.7: Code to read data in text file	49
Figure 3.9.8: Sample music node	49
Figure 3.9.9: Flowchart for one cycle to read text file	50
Figure 3.9.10: Proteus ISIS software	51
Figure 4.2.1: Housing for the Linear Bearing	53
Figure 4.2.2: Mallet Holder and Housing for Ball Bearing	53
Figure 4.2.3: Housing Cover and Pillar for Knocking Mechanism	54
Figure 4.2.4: Housing for Solenoid Coil	54
Figure 4.2.5: Base for Gamelan Bonang	55
Figure 4.2.6: Assemble of the Knocking Mechanism	55
Figure 4.3.1: Top View	56
Figure 4.3.2: Location of Solenoid	56
Figure 4.4.1: Graph of response of Gamelan knocking mechanism with constantly hi output signal	gh 58
Figure 4.4.2: Graph of response of Gamelan knocking mechanism in 3 consecutive knocks (ms)	59

xviii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Arduino IDE coding	67
Appendix 2	Processing IDE coding	69
Appendix 3	Gantt Chart	71

LIST OF SYMBOLS

NdFeB	-	Neodymium Iron Boron
IDE	-	Integrated Development Environment
FSR	-	Force Sensitive Resistors
IGBT	-	Insulated Gate Bipolar Transistor

XX

CHAPTER 1

INTRODUCTION

1.1 Background

Gamelan is the traditional ensemble music of Java and Bali in Indonesia and has grown around the Southeast Asian country. Due to the modernization, the musicians prefer the modern musical instruments and make the Gamelan's name less known by the young generations. Thus, this project is to give an opportunity to make an Automatic Gamelan Mechanical Player by Using Microcontroller and NdFeB Magnet for raising the spirit of traditional music especially for Gamelan music.

1.2 Gamelan

Gamelan is the traditional music instrumental which has long been introduced in Indonesia in general. But, this Gamelan also popular and can be found in other Southeast-Asian such as Malaysia, Philippine, Thailand and others nearby countries. In history, the word of Gamelan is originated from the root word "Gamel" (Javanese), which mean to hit or to do and "Gambel" (Balinese) means to play musically. This root word is based on a musician that makes a sound by striking or playing the melodic instruments. Hence, Gamelan refers to the whole ensemble of percussive instruments that made of bronze, iron, wood or bamboo bar. Gamelan is the combination of multiple music instruments consist metallophones, xylophones, flutes and gongs. Basically, Gamelan is usually play for traditional performance or ritual and ceremonies. Wayang kulit player also usually collaborates with the gamelan's musician as a soul and spirit for the wayang kulit performances.

The Malay Gamelan is believed to be exist in Riau-Lingga Sultanate since the 17th century. Pahang and Terengganu also believed to be the early existence at Malay land. The dancers and musicians with the gamelan instruments are brought to play gamelan to gives honour for royal wedding. The nation's earliest rhythms were nearly connected by correspondence and declarations. In the past, this gamelan music only played for royal family at the palace. But, for today, the gamelan is played for citizen for formal events such as wedding and ceremony.

However, the popularity of Malay gamelan has declined dramatically due to presence of modern music genre. The youngsters nowadays are not interested anymore to traditional music and the techniques of modern musical instruments that are easier and more convenient compare to traditional one. Hence, Aaron Taylor Kuffner has implemented a project and introduced Gamelatron to public as the innovation by combining the modern and traditional, between robotics and gamelan to continue the legacy. Gamelatron is the world's first completely automated Gamelan symphony fully without human help to plays.

In this project, an automated Gamelan mechanical player will be implemented. The system is built up of an electromagnetic knocking mechanism and controlled by microcontroller. To perform more better, the knocking mechanism and microcontroller that are paired with gate driver and power electronic switch (IGBT).

Figure 1.2.1: A Set of Gamelan

1.3 Problem Briefing

This project, automated Gamelan mechanical knocking mechanism is to design, stimulate, fabricated, and test the automated Gamelan to play the Gamelan. This system is use the electromagnetic function as knocking mechanism with the combining of permanent magnet (NdFeB) and the solenoid coil. The NdFeB permanent magnet will play as main role that produce the electromagnetic power that will be able to knock the Gamelan Bonang with high force and quick response. The number of loop of solenoid coil also can affect the strength of the electromagnetic field cause by the NdFeB permanent magnet.

This project uses the gate driver as the low-power input from the microcontroller and produce high-current that will be supplied to gate of power transistor (IGBT). Furthermore, this system is controlled by a microcontroller, Arduino as the main component that control the whole Gamelan knocking mechanism that act as interfaces between the software and hardware.

1.4 Problem Statement

Gamelan is traditional music that been popular in South East Asia. In Malaysia and Indonesia, Gamelan is commonly played for formal ceremonies and occasions. The combinations of gamelan and dance make gamelan has made gamelan a major and recognizable music in the past. Nowadays, the performer got less chance to perform the Gamelan music except only played for traditional music council and festival. Due to the lack of demand for gamelan performances, the name of gamelan became increasingly unrecognizable and unfamiliar. The uniqueness of the sound and melodies of gamelan are rarely heard due to the modern music that became more popular amongst the youngster nowadays. Other than that, well-trained musicians also hardly to find because of the toughness of gamelan's practices compare to other musical instruments that can be practices in short of time.

In the absence of an effort to make innovation or improvement to gamelan, it will become historical remains for the youngsters and its fascinated and delighted sound that only recognized by the older generation. Therefore, this project is created in hope to solve the problem with innovative combination between gamelan and robotics and maintain the unique sounds of gamelan.

4