

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF SUN TRACKING SOLAR PANEL WITH SELF-CLEANING SYSTEM USING ARDUINO UNO

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Computer Engineering Technology (Computer Systems) with Honours.

by

HENG AIK YUEN B071511070 941205016159

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF SUN TRACKING SOLAR PANEL WITH SELF-CLEANING SYSTEM USING ARDUINO UNO

Sesi Pengajian: 2018

Saya **HENG AIK YUEN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

г			
L			

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

÷.			Ξ.	
	•	ł	1	
	r	١		
	Ì	>	X	X

TIDAK

TERHAD*

TERHAD

Yang benar,

Disahkan oleh penyelia:

.....

HENG AIK YUEN

AHMAD NIZAMUDDIN BIN

.....

MUHAMMAD MUSTAFA

Cop Rasmi Penyelia

Alamat Tetap:

340, JALAN 4/1

KAMPUNG PAYA

86000 KLUANG

JOHOR.

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

iii

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF SUN TRACKING SOLAR PANEL WITH SELF-CLEANING SYSTEM USING ARDUINO UNO is the results of my own research except as cited in references.

Signature:Author:HENG AIK YUEN

Date:

iv

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Computer Engineering Technology (Computer Systems) with Honours. The member of the supervisory is as follow:

> Signature: AHMAD NIZAMUDDIN BIN

Supervisor :

MUHAMMAD MUSTAFA

v

ABSTRAK

Cahaya matahari merupakan sumber semula jadi penting yang telah mendatangkan banyak kebaikan kepada dunia di pelbagai sektor atau bidang. Berbandingkan dengan tenaga boleh diperbaharui yang lain di dunia ini, tenaga solar menunjukkan potensi yang tinggi dan baik dalam transformasi kepada tenaga elektrik. Akan tetapi, kecekapan keuntungan tenaga daripada panel suria tidak maksimum. Ini kerana kadang-kala ada objek yang jatuh ke atas panel suria sebagai halangan untuk mendapatkan cahaya matahari. Namun begitu, untuk memaksimumkan kecekapan panel suria dan penuaian tenaga, inovatif tenaga solar dapat dilaksanakan melalui projek ini. Kertas ini akan membincangkan cara membuat prototaip sistem pengesanan panel suria. Prototaip ini akan mengunakan satu berus sebagai alat untuk menghilangkan halangan daripada permukaan panel suria supaya panel ini dapat menyerap cahaya matahari sebanyak yang mungkin. Dalam projek ini, sensor ultrasonic dan LDR adalah komponen utama sistem pengesanan ini menerima cahaya matahari untuk membersihkan kotoran atau halangan dan mengesan cahaya matahari. Selain itu, prototaip ini juga membawa faedah dalam bentuk megurangkan pembaziran tenaga manusia dan masa pada membersihkan permukaan panel suria. Kecekapan dan penuaian tenaga daripada panel suria yang dilengkapi sistem pembersihan sendiri akan dibincangkan dalam laporan ini. Selepas analisis terhadap sistem, kecekapan dan penuaian tenaga telah meningkat 31.83% daripada sistem pengesanan suria yang biasa.

vi

ABSTRACT

Sunlight is the significant natural resource that provided a lot of benefit to the world in various of field and this resource can produce sustainable energy which is solar energy. Among the renewable energy in this world, solar energy provides a good potential for transformation into electric energy. For now, the community have a lot of the solar tracking panel which produce a lot of electricity for their application. However, the efficiency of the energy gain by the solar panel is not maximize. This is because sometimes there have some obstacle object dropped on the panel board to block the sunlight. Solar panel that blocked by obstacle object will not receive maximum light source to produce full power. Notwithstanding the foregoing to maximize the efficiency of the solar panel and energy harvesting, an innovative improvement can implement through this papers. This paper will develop a prototype sun solar tracking system. The prototype will be using a brush to clean the obstacle which to make the solar panel received all the possible sunlight. In this project, ultrasonic sensor and the LDR are the main component to let solar tracker receives input sources to clean the obstacles and face toward the sunlight. This prototype will bring the benefit to the community to reduce manpower and time on cleaning the surface of panel. By doing analysis on the system, the efficiency and energy harvesting for the solar tracker with self-cleaning system has shown increased about 31.84% compared to normal tracker. In short, this solar tracker prototype with the self-cleaning system has a good performance to maximize the energy harvesting.

DEDICATION

To My Parents

Thank for my father and mother always give me a lot of support.

To My Final Year Project Supervisor

Ahmad Nizamuddin bin Muhammad Mustafa

Thank for giving me a lot of useful suggestion and guidance, without his

professionalism spirit, my project will not successful finish in time.

To My Seniors

Thank for all the knowledge support and help.

To My Fellow Friends

Thank for the motivation, advice and mental support, whenever I lost myself.

viii

ACKNOWLEDGEMENTS

I would like to express a thousand thanks to my Final Year Project supervisor Mr Ahmad Nizamuddin bin Muhammad Mustafa for the guidance and encouragement during my Final Year Project. I sincerely appreciate the effort that he gives to me for the report and hardware design, not only psychological but also equipment support. Other than that, I would like to express my gratefulness to my co-supervisor Mr Mohd Saad bin Hamid for his knowledge support regarding the embedded system in this project.

Secondly, I would also like to include a special note of thank my academic assistant Pn Norain binti Rahim for remind me to follow the procedures of PSM. Other than lecturer, I also would give a special thanks to my fellow course mate, especially Ng Leong Hwee for giving me useful suggestion regarding the project programming language.

Last but not least, my appreciation to my beloved family for giving me a lot of blessing through call and message. They sacrifice their time of break to give me the living expenses support. In the end, I wish to thank all the people who giving me a help to finish my Final Year Project.

ix

TABLE OF CONTENTS

TAB	BLE OF CONTENTS	PAGE x
LIST	T OF TABLES	XV
LIST	T OF FIGURES	xvi
LIST	T OF APPENDICES	XX
LIST	T OF SYMBOLS	xxi
LIST	T OF ABBREVIATIONS	xxii
CHA	APTER 1 INTRODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	3
1.3	Objective	4
1.4	Scope	4
1.5	Summary	5
CHA	APTER 2 LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Background of the Solar Panel	6
2.3	Sunlight	7
	2.3.1 Elevation Angle and Zenith Angle	7

Х

	2.3.2	Azimuth	n Angle	8
	2.3.3	The Effe	ect of The Misaligned Angle to The Solar Panel	8
2.4	Comp	arison Be	tween Static and Dynamic Solar Panel Design	10
2.5	Types	of Solar	Tracking Techniques	12
	2.5.1	Active S	Solar Tracking	12
	2.5.2	Passive	Solar Tracking	13
2.6	Types	of Solar	Trackers	16
	2.6.1	Single A	Axis Trackers	16
	2.6.2	Dual Ax	tis Tracker	17
	2.6.3	Compar	ison Between the Single Axis and Dual Axis Solar Tracker	18
2.7	Metho	od of Max	imize The Energy Harvesting	19
2.8	Solar '	Tracking	Methods	20
	2.8.1	Existing	Tracking System of The Sun Solar Panel	21
		2.8.1.1	Design and Implementation of a Sun Tracker with a Dual-A	xis
			Single Motor for an Optical Sensor-Based Photovoltaic Sys	tem
				21
		2.8.1.2	Design of A Novel Passive Solar Tracker	22
		2.8.1.3	Solar Tracker	24
		2.8.1.4	Simplification of Sun Tracking Mode to Gain High	
			Concentration Solar Energy	25

		2.8.1.5	Self-Pow	vered Solar Tracker for Low	Concentration PV(LCPV)
			System		26
		2.8.1.6	New Pro	ototype of Photovoltaic Solar	Tracker Based on Arduino
					28
	2.8.2	Summar	ry of The l	Previous Project	30
СНА	PTER 3	6 M	ETHODO	DLOGY	31
3.1	Protot	ype Deve	lopment		31
	3.1.1	Planning	g of The P	Project	31
	3.1.2	Analysis	s of the Ex	xisting Project	32
	3.1.3	Prototyp	be Design		32
	3.1.4	Implem	entation of	f Prototype	32
	3.1.5	Implem	entation of	f Final System	33
	3.1.6	Project	Flowchart	of Prototype	33
3.2	Syster	n Overvie	ew		34
3.3	Equip	ment of S	olar Track	king Prototype	36
3.4	Hardw	are Imple	ementation	n	36
	3.4.1	Hardwa	re Compo	nent	37
		3.4.1.1	Arduino	Uno	37
		3.4.1.2	Light De	ependent Resistor (LDR)	37
		3.4.1.3	Ultrason	ic Sensor	38
		3.4.1.4	Servo M	lotor	40
			3.4.1.4.1	PWM for the Servo Motor	41
		3.4.1.5	Solar Par	nel	42

xii

		3.4.1.6	Power Bank	43
		3.4.1.7	Wiper	43
	3.4.2	Circuit	design	44
		3.4.2.1	Connection of the Ultrasonic sensor to the Arduino Uno	44
		3.4.2.2	Connection of the Servo Motor to the Arduino Uno	45
		3.4.2.3	Connection of the LDR to the Arduino Uno	46
		3.4.2.4	Connection of the LDR and Servo Motor Together to the	
			Arduino Uno	47
	3.4.3	Expecte	d Code for the Solar Tracker	48
	3.4.4	Hardwa	re Flowchart	49
		3.4.4.1	Flowchart of Ultrasonic Sensor	49
		3.4.4.2	Flowchart of Light Dependent Resistor	50
3.5	Syster	n Flowch	art	51
3.6	Softw	are Imple	mentation	53
	3.6.1	Softwar	e System	54
		3.6.1.1	Arduino IDE	54
		3.6.1.2	Proteus Design Suite	54
3.7	Protot	ype Desig	gn Diagram	55
CHAI	PTER 4	R	ESULT AND DISCUSSION	56
4.1	Introd	uction		56
4.2	Projec	t Hardwa	re Layout	56
4.3	Projec	t Demons	stration	59
	4.3.1	Sunlight	t Tracking Demonstration	59

	4.3.2	Cleaning System Demonstration	62
4.4	Analy	sis of the Project	65
	4.4.1	Comparison of Fixed Panel and Tracking Panel	65
	4.4.2	Impact of Self-Cleaning System to Sun Solar Tracker	71
	4.4.3	Input Voltage Efficiency	74
4.5	Testin	g of the Project	76
	4.5.1	Influence of Power Produce with Different Type of Obstacle Object	76
	4.5.2	Effect of Various Location of Obstacle Object to Cleaning System	77
	4.5.3	Effect of Various Angle of Board to Cleaning System	77
4.6	Applie	cation of the Project	78
4.7	Projec	et Market Availability	79
CHAI	PTER 5	5 CONCLUSION & FUTURE WORK	80
5.1	Introd	uction	80
5.2	Concl	usion	80
5.3	Recon	nmendations for Future Work	81
REFE	ERENC	ES	82
APPE	NDIX		85

xiv

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Static Versus Dynamic	11
Table 2.2:	Advantage and Disadvantage of Different Solar Tracker Type	15
Table 2.3:	Single Axis vs Dual Axis Solar Tracking System	18
Table 2.4:	The Comparison Between The Previous Project	30
Table 3.1:	The Equipment Uses In The Solar Tracking System	36
Table 4.1:	The Demonstration of Tracking	59
Table 4.2:	The Demonstration of Cleaning	62
Table 4.3:	The LDR Output For A Bright Sunny Day	66
Table 4.4:	Solar Panel Reading For A Bright Sunny Day	68
Table 4.5:	The Methods To Record The Reading of Cleaning System	71
Table 4.6:	The Output Reading of The Solar Panel At 17:30pm	72
Table 4.7:	The Reading of Solar Panel With Cleaning System And Non- System	Cleaning 72
Table 4.8:	The Comparison of Input Voltage And Output Voltage	75
Table 4.9:	The Analysis Between Various Obstacle Object To Power Ou	tput 76

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	The Fixed Solar Panel Mount On The House	2
Figure 2.1:	The Angle of Azimuth, Altitude And Aenith	8
Figure 2.2:	The Connection Between Solar Panel Misalignment And Direct Power Loss	9
Figure 2.3:	The Horizontal And Vertical Single Axis Tracker	16
Figure 2.4:	Dual Axis Solar Tracker	17
Figure 2.5:	The Sun-tracking And Target-aiming Method	19
Figure 2.6:	Block Diagram Of the Close-loop Tracking System	22
Figure 2.7:	A Passive Solar Tracker Using Two Identical Cylindrical Filled A Fluid Under Partial Pressure	With 23
Figure 2.8:	The Circuit Diagram of The Tracker Using Both Bifacial and M Facial Solar Cells	lono- 26
Figure 2.9:	The Photographs of East Facing Side and The Glass Tracking P Panel	V 26
Figure 2.10:	The LCPV System With Bifacial Tracking Panel and Many Min	rors 27
Figure 2.11:	The prototype of the photovoltaic solar tracker	28
Figure 2.12:	The Sensors Block Scheme Which Is Built Prototype	29
Figure 3.1:	The Flowchart of The Prototype Development Process	34

Figure 3.2:	The Block Diagram of The Solar Tracking System	35
Figure 3.3:	Systematic Diagram of The Project	35
Figure 3.4:	Arduino Uno	37
Figure 3.5:	The Light Dependent Resistor	37
Figure 3.6:	The Ultrasonic Sensor	38
Figure 3.7:	The Ultrasonic Sensor Ratings	39
Figure 3.8:	The Dimensions of The Ultrasonic Sensor	39
Figure 3.9:	The Servo Motor	40
Figure 3.10:	The PWM of The Different Pulse	41
Figure 3.11:	The Solar Panel	42
Figure 3.12:	The Power Bank	43
Figure 3.13:	The Wiper Arm	43
Figure 3.14:	The Connection Between Ultrasonic Sensor to Arduino Uno	44
Figure 3.15:	The Working Principle of Ultrasonic Sensor	45
Figure 3.16:	The Connection Between Servo Motor and Arduino Uno	45
Figure 3.17:	The Connection Between LDR and Arduino Uno	46
Figure 3.18:	The Connection of The LDR and Servo Motor to Arduino	47
Figure 3.19:	The Expected Code For The Solar Tracker	48
Figure 3.20:	The Flowchart of The Ultrasonic Sensor	49
Figure 3.21:	The Flowchart of The Light Dependent Resistor	50
Figure 3.22:	The System Flowchart of The Solar Tracking xvii	52

Figure 3.23:	The System Flowchart of The Wiper Cleaning Application	53
Figure 3.24:	The Arduino IDE Software	54
Figure 3.25:	The Proteus Software	54
Figure 3.26:	The Prototype Design From The Side View	55
Figure 3.27:	The Prototype Design From The Top View	55
Figure 4.1:	The Overview of Project	56
Figure 4.2:	The Front View of Project	57
Figure 4.3:	The Back View of Project	57
Figure 4.4:	The Sides View of The Project	58
Figure 4.5:	The Top View of The Project	58
Figure 4.6:	The Light Dependent Resistors Design On Board	60
Figure 4.7:	The Programming Code For Tracking	60
Figure 4.8:	The Programming Code For Cleaning System	63
Figure 4.9:	The Programming Code For The Motor of Wiper	64
Figure 4.10:	The Methods For Recording The Reading of Fixed and Tracking Panel	65
Figure 4.11:	The Data Sample For Tracking Panel On 13:30 pm	66
Figure 4.12:	The Graph of The Comparison of Light Intensity Between Fixed an Tracking Panel Various Time	nd 67
Figure 4.13:	The Graph of Comparison of Power Produced Between Fixed and Tracking Panel Various Time	69

xviii

Figure 4.14:	The Graph of Comparison of Power Produced Between Cleaning			
	System and Without Cleaning System	73		
Figure 4.15:	Input Voltage Observation	75		
Figure 4.16:	The Obstacle Location Testing For The Cleaning System	77		
Figure 4.17:	The Power Bank Battery Charged By The Project	78		

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Programming Code for The System	85
Appendix 2	Sample of Solar Tracker Values	92
Appendix 3	Voltage Divider Calculation for Arduino Input	93
Appendix 4	Voltage Divider Circuit	93
Appendix 5	Gantt Chart	94

LIST OF SYMBOLS

Si	-	Silicon
ms	-	Metre per second
cos	-	Cosine
%	-	Percent
MW	-	Megawatt
mA	-	Milliampere
Hz	-	Hertz
m	-	Metre
μs	-	Microsecond
μs mm	-	Microsecond Millimetre
	-	
mm	- - -	Millimetre
mm cm	- - -	Millimetre Centimetre
mm cm Kg		Millimetre Centimetre Kilogram
mm cm Kg RM		Millimetre Centimetre Kilogram Ringgit Malaysia

xxi

LIST OF ABBREVIATIONS

PV	-	Photovoltaic
LDR	-	Light Dependent Resistor
pm	-	Post Meridiem (Past Midday)
HSAT	-	Horizontal Single Axis Tracker
VSAT	-	Vertical Single Axis Tracker
TSAT	-	Tilted Single Axis Tracker
PIC	-	Programmable Interface Controller
LCPV	-	Low Concentration Photovoltaic
NEMA	-	National Electrical Manufacturers Association
IDE	-	Integrated Development Environment
OS	-	Operating System
USB	-	Universal Serial Bus
DC	-	Direct Current
AC	-	Alternating Current
PWM	-	Pulse Width Modulation
GND	-	Ground
Vcc	-	Voltage Common Collector
ADC	-	Analog To Digital Converter
РСВ	-	Printed Circuit Bo

xxii

CHAPTER 1

INTRODUCTION

This chapter will discuss briefly the project flow from introduction, objective and problems statement of the project. Furthermore, the scope of the project is also discussing through this section. Each sub-topic in order to make the reader more understand about the project flow and purpose of the project.

1.1 Project Background

Energy is the main factor for the development of a country. A huge amount of the energy is extracted, distributed, and consumed in the all around the world. 85% of the energy is dependent on fossil fuel. (Khan *et al.*, 2010). However, the fossil fuel is not unlimited in this world. A lot of the country have a small amount of fossil fuel. Hence, finding the new energy resource is the essential job for every people. Other than fossil fuel, wind energy, solar energy and rain also can replace the fossil fuel to be renewable energy. Among the non-conventional, solar energy provide a good potential for transformation into electric energy, and it can ensure the electricity requirement of the world is fully fulfilling. Sun is the significant resource of sustainable energy which is solar energy. Because its abundance and sustainability.

Sun is the main source of energy, which is also the fuel of the majority renewable energy system. Among all the renewable energy system, the photovoltaic is the best one to replace the traditional energy resource. Solar panel directly converts sunlight to electric power. The solar panel is mainly built from semiconductor materials. Si is the major component of solar panel. It has maximum 24.5% efficient.(Deb and Roy, 2012) Unless the high efficient solar panels are produced, the only ways improve the performance of a solar panel is increasing the sunlight intensity that focus on the solar panel. Most of the solar panel is using the photovoltaic solar energy to produce electricity which the semiconductor cell response to solar radiation to produce electrical impulses. Solar panel is easy to purchase in the market and it is not cheap, but the amount of electricity produce is a big amount. Figure 1.1 are shows the solar panel that mount on the house.

Figure 1.1: The Fixed Solar Panel Mount On The House

Before the solar tracking technique apply on the solar panel, there are a lot of the static solar panel which is mount on the building. Those static solar panel is not having the satisfactory performance compare to the solar tracker. Moreover, the efficient of the solar tracker is already proved by the scientist. Furthermore, solar tracker gets popularized in the global in recent years due to its performance. This is far more cost-effective solution than buying an extra solar panel. Because of the solar tracking system, the power output is increasing between 40% and 60% than the system that are stationary. Least but no less, solar tracking solar panel are produce a large number of the electricity to the social and country.