

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF AN ELECTRONIC EDUCATIONAL QUIZ BOARD WITH ANDROID APPLICATION THAT TEST STUDENT'S KNOWLEDGE ON SERIES AND PARALLEL RESISTOR IN ELECTRICAL CIRCUIT

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Award of Bachelor of Computer Engineering Technology (Computer System) with Honours.

by

NUR AZMEEN IEZZATI BT. IDRUS B071510615 941024-07-5678

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2018

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Development of An Electronic Educational Quiz Board with Android Application That Test Student's Knowledge on Series and Parallel Resistor in Electrical Circuit

Sesi Pengajian: 2018

Saya Nur Azmeen Iezzati Bt. Idrus mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

ii

	SULIT*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.	
	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.	
\boxtimes	TIDAK TERHAD		
Yang	benar,	Disahkan oleh penyelia:	
Nur A	zmeen Iezzati	Bt. Idrus Amar Faiz Bin Zainal Abidin	
Alam	at Tetap:	Cop Rasmi Penyelia	
No 7,	Jalan Jawi Jay	ya 6,	
14200	14200 Sungai jawi,		
Pulau	Pinang		
Tariki	h: 19 th Decemb	ber 2018 Tarikh: 19 th December 2018	
*Jika Lap	ooran PSM ir	ni SULIT atau TERHAD, sila lampirkan surat daripada pihak	
berkuasa/	organisasi berk	kenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini	

DECLARATION

I hereby, declared this report entitled Development of An Electronic Educational Quiz Board with Android Application That Test Student's Knowledge on Series and Parallel Resistor in Electrical Circuit is the results of my own research except as cited in references.

Signature	:	
Author	:	Nur Azmeen Iezzati Bt. Idrus
Date	:	19 th December 2018

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Computer Engineering Technology (Computer System) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	Amar Faiz Bin Zainal Abidin

Signature:	
Co-Supervisor:	Izzat Zakwan Bin Mohd Zabidi

v

ABSTRAK

Pembelajaran elektrik agak mencabar bagi mereka yang baru belajar sekiranya pemahaman mereka mengenai konsep asas dalam litar elektrik tidak kukuh. *Res-Circuit Quiz Board* telah dibina untuk menguji pengetahuan pelajar mengenai sambungan litar sesiri dan sambungan litar selari bagi matapelajaran Litar Elektrik dengan menggunakan *Bluetooth* sebagai medium untuk menghantar data. Kehadiran kaedah pembelajaran ini adalah satu alternatif bagi pendidik untuk membantu pelajar mendalami pengetahuan pelajar mengenai asas mata pelajaran Litar Elektrik. Penghasilan kit pendidikan sebagai alat pengajaran akan membantu merapatkan jurang antara teori dan pengukuran praktikal. Aplikasi telah dibina yang memerlukan pelajar menyambung kepadanya melalui *Bluetooth* untuk akses kepada kit pembelajaran. Pelajar perlu membina litar elektrik mengikit soalan yang diberi ke kit tersebut dan periksa jawapan dengan menggunakan aplikasi. Kaedah pembelajaran yang melibatkan teknologi tanpa wayar memberi peluang kepada para pelajar untuk menjadikan pembelajaran subjek Litar Elektrik menjadi lebih menyeronokkan dan dapat menarik minat pelajar untuk mempelajarinya.

ABSTRACT

Learning electricity is challenging for a beginner if their understanding of the basic concept in electrical circuit is low. Res-Circuit Quiz Board is design to test student's knowledge on series and parallel resistor connection for subject Electrical Circuit by using Bluetooth. The presence of this learning method is an alternative for educator to help students to deepen student's knowledge on the basic of Electrical Circuit subject. Evaluation of educational kit as a tool of teaching will help bridge the gap between theory and practical measurements. An application is design that required student connect to it through Bluetooth for access to the kit. Student need to construct electrical circuit to the quiz board according to the question and check the answer by using the application. This learning method with includes wireless technology provide opportunities for students to make learning electrical circuit to be more fun and to attached students interesting.

DEDICATION

This report is dedicated to my beloved parents who educated and supported me throughout the process of doing this project. I am also wanted to say thank you to my supervisor and my friends who have encouraged, guided and inspired me to complete this project.

ACKNOWLEDGEMENTS

Special thanks to Allah S.W.T for His blissful and gift because giving me this ability to finish my Projek Sarjana Muda (PSM). This report is as a mark of my sincere appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for giving me this chance to further study on Bachelor's Degree in Computer Engineering Technology (System Computer) in Faculty of Electrical and Electronic Engineering Technology (FTKEE). I also would like to thanks to my supervisor, En. Amar Faiz Bin Zainal Abidin for the guidance, advices, encouragement, inspiration and attention given throughout the day in development of my final year project and while writing this report entitled as Development of an Electronic Educational Quiz Board with Android Application that Test Student Knowledge on Series and Parallel Resistor in Electrical Circuit. With this continuous support and interest, he was guiding me to complete this project with full commitment and dedication. My gratitude goes to my beloved family and my friends that always give courage and support me to achieve the goal of my project. Thanks to their moral support and care they had given to me up until this project done. May your charity and goodwill will be blessed.

TABLE OF CONTENTS

		PAGE
ABST	TRAK	vi
ABST	TRACT	viii
ACKN	NOWLEDGEMENTS	ix
TABI	LE OF CONTENTS	X
LIST	OF TABLES	xiv
LIST	OF FIGURES	XV
LIST	OF APPENDICES	xviii
LIST	OF SYMBOLS	xixx
LIST	OF ABBREVIATIONS	xx
CHA	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background	1
1.3	Problem Statement	3
1.4	Objective	4
1.5	Scope of Work	5
1.6	Project Contribution	7

СНА	PTER 2	LITERATURE REVIEW	9
2.1	Introdu	action	9
2.2	Past R	Past Related Research	
	2.2.1	The Effect of Combining Analogy-Based Simulation and	
		Laboratory Activities on Turkish Elementary School	11
	2.2.2	Resducational Kit	12
	2.2.3	An Educational Bluetooth Quizzing Application in Android	13
	2.2.4	An Electronic Quiz Board that Test Students Knowledge on Series	
		and Parallel Resistor Connection	14
	2.2.5	e-Logic Translator	15
	2.2.6	PLC Kit for Industrial Automation and Control Education	16
	2.2.7	Mobile Learning Based Worked Example in Electronic Circuit	17
		Application to Improve the High School Student's Electrical	
		Circuit Interpretation Ability	
	2.2.8	PLC Trainer that Translate Mnemonic Codes to Hardware	18
		Simulation	
	2.2.9	Educational Kit for Learning Control System by using Hot	19
		Air Blower	
СНА	PTER 3	METHODOLOGY	20
3.1	Introdu	action	20
3.2	Project	t Overview	20

3.3	Project Block Diagram	25
3.4	Project Layout	27
3.5	Circuit Layout	29
3.6	PCB Circuit Layout	30
3.7	Flowchart of The Program	31
3.8	Bill of Material	37
3.9	Project Costing	38
СНА	APTER 4 RESULT AND DISCUSSION	39
4.1	Introduction	39
4.2	Reliability Testing	39
	4.2.1 Drop Test	40
	4.2.2 Aging Test	41
4.3	Functionality Testing	42
	4.3.1 Unit Testing and Integration Testing	42
	4.3.2 Boundary Testing	43
4.4	Comparison between Expected Result and Actual Result	44
	4.4.1 Project Design	44
	4.4.2 Application Design	45
	4.4.3 Design flow of The Program Based on Scenario	47
	4.4.4 Prototype Simulation Result	51

4.5 Result Analysis and Survey Question	54
CHAPTER 5 CONCLUSION	65
REFERENCES	66
APPENDIX	68
Appendix 1 : Arduino Mega 2560 Datasheet	68
Appendix 2 : Survey Questions	69

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1:	Gantt Chart of Final Year Project (FYP 1)	23
Table 3.2:	Gantt Chart of Final Year Project (FYP 1)	24
Table 3.3:	Pin Connection Table	30
Table 3.4:	Estimating Cost and Actual Cost of the Project	38
Table 4.1:	Drop Test Table	40
Table 4.2:	Aging Test Table	41
Table 4.3:	Unit Testing Table	42
Table 4.4:	Integration Testing Table	43
Table 4.5:	Boundary Testing	43
Table 4.6:	Comparison of Expected and Actual Project Design	44
Table 4.7:	Comparison of Expected and Actual Application Design	45
Table 4.8:	Table Design Flow of the Program for Expected and Actual	47
	Result	
Table 4.9:	Result Simulation for Correct Connection	51
Table 4.10:	Result Simulation for Wrong Connection	53

xiv

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1:	Common Type of Related Article and Publication Journal	10
Figure 2.2:	(a) Lab Activities and (b) Analogy-Based Simulation	11
Figure 2.3:	The Prototype of Resducational Kit	12
Figure 2.4:	(a) The Main Menu of BLUEQ and	13
	(b) Quiz Detail of the BLUEQ	13
Figure 2.5:	The Prototype of E-Circuit	14
Figure 2.6:	Prototype of e-Logic translator	15
Figure 2.7:	Diagram and Prototype of Portable PLC Kit Layout	6
Figure 2.8:	Initial Display of the Application	17
Figure 2.9:	The Prototype of PLC Trainer	18
Figure 2.10:	The Prototype of Educational Kit for Learning Control System	n 19
Figure 3.1:	Flowchart of the Final Year Project (FYP 1 and FYP 2)	22
Figure 3.2:	Block Diagram of the Project	25
Figure 3.3:	The Architecture of Res-Circuit Quiz Board	26
Figure 3.4:	Res-Circuit Project Layout	27
Figure 3.5:	Prototype of Res-Circuit Quiz Board	28
Figure 3.6:	The Actual Prototype of Res-Circuit Quiz Board	28
Figure 3.7:	Circuit Simulation	29

Figure 3.8:	Circuit Design using Proteus for the Top Circuit of the Kit	31
Figure 3.9:	Flowchart of the Program	36
Figure 3.0:	Bill of Material for Res-Circuit Quiz Board	37
Figure 4.1:	Drop Test for 0.5m	41
Figure 4.2:	Drop Test for 1.0m	41
Figure 4.3:	Before Temperature at Outside	42
Figure 4.4:	After Temperature at Outside	42
Figure 4.5:	Before Temperature in Refrigerator	42
Figure 4.6:	After Temperature in Refrigerator	42
Figure 4.7:	Expected Design Layout for the Top of the Kit	43
Figure 4.8:	Actual Design Layout for the Top of the Kit	43
Figure 4.9:	Expected Prototype of the Kit	43
Figure 4.10:	Actual Prototype of the Kit	43
Figure 4.11:	Expected Design for Main Screen of the Application	44
Figure 4.12:	Actual Design for Main Screen of the Application	44
Figure 4.13:	Expected Design for Option Screen of the Application	44
Figure 4.14:	Actual Design for Option Screen of the Application	44
Figure 4.15:	Expected Design Question Screen	44
Figure 4.16:	Actual Design Question Screen	44
Figure 4.17:	Expected Main Screen	45
Figure 4.18:	Actual Main Screen	45
Figure 4.19:	Expected Result when user Click Button Bluetooth	45
Figure 4.20:	Actual Result when user Click Button Bluetooth	45
Figure 4.21:	Expected Design Interface After Connected to Bluetooth	46

Figure 4.22:	Actual Design Interface After Connected to Bluetooth	46
Figure 4.23:	Expected Design Interface of the Option Screen	46
Figure 4.24:	Actual Design Interface of the Option Screen	46
Figure 4.25:	Expected Design for the Question	46
Figure 4.26:	Actual Design for the Question	46
Figure 4.27:	Green LED turn ON when Answer is Correct	47
Figure 4.28:	Res-Circuit Application display "You are Correct!"	47
Figure 4.29:	Red LED turn ON when Answer is Wrong	47
Figure 4.30:	Res-Circuit Application display "You are Wrong!"	48
Figure 4.31:	Pie chart Question 1	53
Figure 4.32:	Pie chart Question 2	54
Figure 4.33:	Pie chart Question 3	54
Figure 4.34:	Pie chart Question 4	55
Figure 4.35:	Pie chart Question 5	56
Figure 4.36:	Pie chart Question 6	56
Figure 4.37:	Pie chart Question 7	57
Figure 4.38:	Pie chart Question 8	58
Figure 4.39:	Pie chart Question 9	58
Figure 4.40:	Pie chart Question 10	59
Figure 4.41:	Pie chart Question 11	60
Figure 4.42:	Pie chart Question 12	60
Figure 4.43:	Pie chart Question 13	61
Figure 4.44:	Pie chart Question 14	62
Figure 4.45:	Pie chart Question 15	62

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
Appendix 1	Arduino Mega 2560 Datasheet	67	
Appendix 2	Survey Questions	68	

xviii

LIST OF SYMBOLS

cm	-	Centimetre
C°	-	Celsius
D, d	-	Diameter
F	-	Force
g	-	Gram
m	-	Meter
R	-	Resistance
V	-	Voltage
3D	-	3 Dimension
Ω	-	Ohm
%	-	Percentage

xix

LIST OF ABBREVIATIONS

BOM	-	Bill of Material
DC	-	Direct Current
IC	-	Integrated Circuit
IT	-	Information Technology
LCD	-	Liquid Crystal Display
LED	-	Light Emitting Diode
OS	-	Operating System
РСВ	-	Printed Circuit Board
PDA	-	Personal Digital Assistant
PLC	-	Programmable Logic Controller
Rx	-	Receiver
TFT LCD	-	Thin-Film-Transistor Liquid Crystal Display
Tx	-	Transmitter
VDR	-	Voltage Divider Rule
WEIEC	-	Worked Example in Electrical Circuits

XX

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter aim on creating the framework and introduces the brief idea of the project. It focused on the overview of the project, detailing the objectives, briefly the problem statement, scope and provide outcome of the project.

1.2 Background

Educational kit is a tools used for teaching, to assist learning process in a readyto-teach formats while in the class where it will help bridge the gap between theory and practical measurements. According to the finding by N. Hikosaka (2012), educational kit are enjoying a remarkable market success today. There is a secondary effect market that stems from the need of education, demonstration, training and hobbies. Educational kit have sold extraordinarily well. In 2008, about 9000 educational system were shipped. In 2010, shipments exceed 100, 000 which is most of these is educational kit.

Another prove that show the successful of educational kit, in a report titled "Global Educational Toys Market 2017-2021," breaks down the toys market into three major categories: academic, cognitive thinking and motor skills. The most popular academic educational toys is math and science kit. This show that educational kit have becomes commercial success in market as one of the strategies for learning process. The

presence of this learning method not only gives an alternative for educator to help students to improve their knowledge, it also an effective method to help students to understand practically about what they learn since it need students to engage themself in the lesson.

Electricity is a subtopic inside Electrical subject that generally deals with the application and study of electricity and electronics. It is utilizes with nonlinear and active electrical components such as semiconductor devices, transistors, diodes, capacitor and integrated circuits, which is design to achieve a particular functionality. According to Calliot (1992), the teaching and learning of electricity, is a topic often included in primary and secondary curriculum to expose students on how the principle working of electric and electronic before go to another level where students will encounter with a conceptual and reasoning difficulties in understanding introductory electricity. After mastering the introductory of electricity, another deep-level is student need to innovate a new system.

According to Dermott & Shaffer (1992), argues that one of the difficulties the students encounter in understanding the behavior of electric circuits is the students' inability to give a qualitative reason about the electric circuit behavior. It can be proved from the survey that have been carried out, most of the learner state that Electrical Circuit is an interesting subject but hard to understand. However, the survey show that they are strongly agree that educational kit can be highly interactive during class session and they agree that educational kit can provide difficult things in simple way to understand. This show that education strategies is needed to make learning process to become more effective and clearly can give a real view on how the working principle of the subject.

Res-Circuit Quiz Box is an educational kit used to test student's understanding on how to construct series and parallel resistor circuit. It was created to attract student's interest in the basic of electrical circuit for primary, secondary school and also for a beginner. A question will be display on android smartphone and students need to connect to the application using Bluetooth. The question need students to construct a circuit on the quiz box according to the given diagram. After construct the circuit, the answer will be display on the application. This educational kit is a method for student to study the principle of electrical circuit.

1.3 Problem Statement

The principle of electrical subject has been exposed to students since primary and secondary school. The basic learning for this subject is on how the electrical flow in a circuit and how to construct a circuit. Topic inside this subject is quite tough and required student to deeply understand on how it is working. According to Mulhall, McKittrick, & Gunstone (2001), learning electricity is challenging because the physics concepts involved in electricity are highly abstract and complex. Cohen, Eylon & Ganiel, (1983) stated that, even if this topic is introduced to students several times in the course of their studies (from elementary to secondary), many students are still incapable of qualitatively analyzing simple circuits. In class, students are expose more to theoretically and practically lesson. A simple circuit with a few components and a fairly straightforward question is given for a beginner to understand. But, things can get hard when the circuit consist of many nodes and branches. When it comes to a difficult question, students need to think more about the working principle of electrical subject. Theoretical is not enough for a student to grasp each topic. So the laboratory session provides hands-on experience with a guidance of an educator. Laboratory session has a particular challenges and opportunities that differ from those in a standard classroom environment, it becomes tough for students to catch-up the lesson due to the laboratory session that sometimes is not suitable to the level of education. According to Babadogan and Olkun (2006), one of the most important barrier to the reform program was a shortage of learning activities that support hands-on learning and visible modelling to represent abstract concepts. Therefore one of the solution might be using educational kit to provide students with opportunities to actively engage and conduct experiments involving abstract theoretical concepts by using concrete products.

1.4 Objective

The main objective of this project is to make an improvement from the previous E-Circuit Quiz Kit by Farhanah et. al (2016) by displaying the questions and feedback of Android's application. In order to achieve the main objective, here are four sub-objectives to be follow :

To design an educational kit using Proteus for the circuit layout, drawing 3D prototype using Paint 3D, and build educational kit using Arduino Mega 2560 as the controller, which the program is written using Arduino IDE. The project also use mobile application by using MIT App Inventor to display question and to check the answer.