

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ENERGY MANAGEMENT, MONITORING USING RASPBERRY PI AND ARDUINO

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

by

NOR AMIRAH BINTI MAZLAN B071510575 940714-11-5636

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: ENERGY MANAGEMENT, MONITORING USING RASPBERRY PI AND ARDUINO

Sesi Pengajian: 2019

Saya **NOR AMIRAH BINTI MAZLAN** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

ii

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
	SULIT*	kepentingan Malaysia sebagaimana yang termaktub dalam AKTA					
		RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat 7	FERHA	D yang tel	lah ditentukan	oleh
		organisasi/bada	an di mana p	enyelid	likan dijalaı	ıkan.	
\boxtimes	TIDAK						
	TERHAD						
Yang benar,			Disa	Disahkan oleh penyelia:			
NOR	AMIRAH BIN	TI MAZLAN	ZUI	L HASF	RIZAL BIN	BOHARI	
Alamat Tetap:		Сор	Cop Rasmi Penyelia				
Kamp	ung Nerang Jer	rangau,					
23000	, Dungun						
Tereng	gganu						
Tarikh: Tarikh:							

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

iii

DECLARATION

I hereby, declared this report entitled ENERGY MANAGEMENT, MONITORING USING RASPBERRY PI AND ARDUINO is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	ZUL HASRIZAL BIN BOHARI

ABSTRAK

Laporan ini menangani pengurusan, pemantauan sistem menggunakan arduino dan raspberry pi. Dalam era ini, perkakas tenaga pintar untuk pengurusan tenaga adalah kemudahan untuk rumah kediaman. Dalam Home Energy Management (HEM) sistem menggabungkan sistem pengawasan dan pengawalan. Pengguna sistem ini dapat melihat penggunaan kuasa penggunaan perkakas di rumah. Untuk meningkatkan perkhidmatan tenaga pengurangan potensi ini adalah lebih baik jika komuniti di Malaysia dapat membuat penelitian untuk memantau dan mengawal penggunaan elektrik di rumah. Sistem utama ini dapat membangunkan Sistem Tenaga Rumah dan membantu pengguna atau pengguna memantau penggunaan perkakas di rumah. Fokus utama adalah di rumah kediaman yang merupakan perkakas rumah dan sistem harus meminta untuk memantau tenaga yang digunakan dalam satu alat perkakas. Asas utama system ini adalah perisian Raspberry Pi dan Arduino yang digunakan sebagai program utama untuk projek ini. Menyediakan peralatan ini ini mempunyai beberapa prosedur untuk diikuti dalam menjayakan projek ini.

ABSTRACT

This report addresses the management, monitoring system using Arduino and raspberry pi. In this era, the intelligent energy appliance for energy management is a convenience for a residential house. In-Home Energy Management (HEM) the system combined the monitoring and controlling system. This system user able to watch the power consumptions of the appliances used in-house. To increase this energy service of potential reduction it is best if the community in Malaysia can control their home's energy activity from far at their residential home and using gadgets such as device to monitor the electric usage. The main of the system is able to develop a Home Energy System and help the user or consumer monitoring the appliance usage at home. The main focus is in the residential house which is the house appliance and the system should ask to monitor the energy used in one appliance device. The fundamental is Raspberry Pi and Arduino which is used as a main based program for this project. Setting up this equipment this has a few procedures to follow to make this project successful. The current transformer will be used to detect the current flow. The data from current transformer will store in SQL database and will show the result in SQL result also graph. All the result in this paper is taken from the data obtained and analysed throughout the project.

DEDICATION

This report is dedicated to my respective parents Mazlan bin Muda and Ainun binti Ismail, who always support me to never give up and give me hope for me to complete this project completed successfully. Secondly, this report is dedicated to my project supervisor, Mr. Zulhasrizal bin Bohari, for been the one who play important rule and always give me help for any unresolved problem. Lastly, for my friend Nur Fatin Fatehah Hashim, always give me help in solve the problem. The others friends, who always help me on the hardware and circuit design and implementation part. Without their support this project would not have been made possible.

ACKNOWLEDGEMENTS

I am highly indebted to Mr. Zulhasrizal bin Bohari for his guidance and constant supervision as well as for providing necessary information regarding the project and also for his support in completing the project. I would like to express my gratitude towards my parents and members for their kind co-operation and encouragement which help me in completion of this project. My thanks and appreciations also go to my colleague in developing the project and the people who have willingly helped me out with their abilities.

TABLE OF CONTENTS

		PAGE
TAB	LE OF CONTENTS	Х
LIST	OF TABLES	xiv
LIST	OF FIGURES	XV
LIST	OF APPENDICES	xviii
LIST	OF SYMBOLS	xix
LIST	OF ABBREVIATIONS	xx
СНА	APTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Statement of the Purpose	3
1.3	Problem Statement	3
1.4	Objective	5
1.5	Scope	5
1.6	Expected Project Outcome	5
1.7	Significant of The Project	5
1.8	Report Outline	6
		•
CHA	APTER 2 LITERATURE REVIEW	8
2.1	Introduction of Literature Review x	8

2.2	Theory and Basic Principle	8
2.2.1	Energy Management	9
2.2.2	Energy Monitoring	11
2.3	Review for Raspberry Pi	13
2.3.1	Raspberry Pi	13
2.4	Review for Previous Work	15
CHA	PTER 3 METHODOLOGY	22
3.1	Introduction of Methodology	22
3.2	Project Work Flow	22
3.2.1	Planning	23
3.2.2	Methodology Flow Chart	23
3.3	Detailed Discussion on Method	25
3.2.3	Explanation Flow Chart Methodology	25
3.4	Implement and Hardware	26
3.4.1	Circuit Connection	26
3.4.2	Arduino Uno	27
3.4.3	Raspberry Pi 3 Model B	28
3.4.4	Current Transformer	29
3.4.5	Arduino Uno Connection with Raspberry Pi 3 Model B	30
3.5	Monitoring System Plan	31

xi

3.5.1	Data Logging	32
3.5.2	Data Monitoring and Manage	33
3.5.3	Web Based on Database	34
3.6	Getting Started with Raspberry Pi 3	36
3.6.1	First Step in Raspberry Pi 3 Model B	38
3.6.2	Second Step in Raspberry Pi 3 Model B	40
3.6.3	Third Step in Raspberry Pi 3 Model B	40
3.6.4	Fourth Step in Raspberry Pi 3 Model B	42
3.7	Installation of Required Application for Database	44
3.8	Gantt Chart	48
CHAI	PTER 4 RESULT	49
CHAH 4.1	PTER 4 RESULT Introduction of Result	49 49
4.1 4.2	Introduction of Result	49
4.1 4.2	Introduction of Result Result	49 49
4.14.24.2.14.2.2	Introduction of Result Result Air conditioner in Bedroom Testing	49 49 51
4.14.24.2.14.2.2	Introduction of Result Result Air conditioner in Bedroom Testing Socket	49 49 51 56
 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 	Introduction of Result Result Air conditioner in Bedroom Testing Socket Living Room	49 49 51 56 59
 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 	Introduction of Result Result Air conditioner in Bedroom Testing Socket Living Room Summary	49 49 51 56 59 64

xii

5.2	Conclusion	65
5.3	Future Recommendation	67

REFERENCES 69

APPENDIX 72

xiii

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1:	Energy Service of Potential Reduction	4
Table 3.1:	Step for Format SD Card for Raspberry Pi	38
Table 3.2:	Step to Write the .img file to SD card	41
Table 3.3:	Table of Gantt Chart	47
Table 4.1:	Result of the air conditioner	51
Table 4.2:	Result of the socket	56
Table 4.3:	Data Collection of Living Room	58
Table 4.4:	Data Collection For Living Room (Second Testing)	60

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1:	Raspberry Pi	13
Figure 2.2:	Sequence Diagram of the Previous Project	14
Figure 2.3:	Design of energy Management System using CometCloud	16
Figure 2.4:	The system of EEMS	17
Figure 2.5:	IHD system	18
Figure 2.6:	Block diagram based on Raspberry Pi	19
Figure 2.7:	Block diagram for Database	20
Figure 3.1:	Project Workflow	22
Figure 3.2:	Full Circuit Connection	25
Figure 3.3:	The Description for an Arduino Uno	27
Figure 3.4:	The Raspberry Pi 3 Model B	27
Figure 3.5:	The STC-013-30A Current Transformer.	28
Figure 3.6:	Connection Arduino Uno with Raspberry Pi	30
Figure 3.7:	System Overview	31
Figure 3.8:	logging process	32
Figure 3.9:	Block diagram for monitoring and managing data	33

Figure 3.10:	Problem in Connection	34
Figure 3.11:	Data Log	34
Figure 3.12:	Web Service Connecting Data and Device	35
Figure 3.13:	AC/DC Adapter	35
Figure 3.14:	HDMI Cable	35
Figure 3.15:	SD Card	36
Figure 3.16:	LCD Display Drive	36
Figure 3.17:	LCD Display (Back)	36
Figure 3.18:	LCD Display (Front	36
Figure 3.19:	Wireless Keyboard	36
Figure 3.20:	Raspberry Pi With Casing	36
Figure 3.21:	Software for Format SD Card	37
Figure 3.22:	NOOBS	39
Figure 3.23:	Raspbian.IMG	39
Figure 3.24:	Software Win32DiskImager	40
Figure 3.25:	Port connection between Raspberry and LCD Display	41
Figure 3.26:	LCD screen while rebooting	42
Figure 3.27:	Raspberry Pi starts Functioning	42
Figure 3.28:	Raspberry Pi Write Coding	43
Figure 3.29:	Software in Raspberry Pi to Write Coding	43
Figure 3.30:	Default Web-Page	44

Figure 3.31:	Configuration for MySQL-server	45
Figure 3.32:	phpmyadmin in browser	46
Figure 3.33:	Browser after log in	46
Figure 4.1:	MySQL web login	49
Figure 4.2:	Graph for Data Collection for Air Conditioner	53
Figure 4.3:	Taking data Air Conditioner from Distribution Board	54
Figure 4.4:	Air Conditioner for Data Collecting	54
Figure 4.5:	Clamp Meter Result for Current Flow	57
Figure 4.6:	Graph for Data Collection for Socket	57
Figure 4.7:	Graph for Data Collection of living Room (First Testing)	59
Figure 4.8:	Graph Data Collection for Living Room (Second Testing)	61
Figure 4.9:	Clamp Meter Value for Living Room	62
Figure 4.10:	HomeApplience for Testing	62

LIST OF APPENDICES

APPENDIX TITLE		TITLE	PAGE
	Appendix 1	Data Sheet STC 013	72
	Appendix 2	Raspberry Pi Specification	72
	Appendix 3	Raspberry Pi 3 Model B Pinout	72
	Appendix 4	Arduino Uno Pinout	72
	Appendix 5	Full Hardware	77
	Appendix 6	Analysis Calculation	78

xviii

LIST OF SYMBOLS

- V Volt
- I Current
- A Ampere
- W Watt
- **R** Resistance

LIST OF ABBREVIATIONS

HEM	Home Energy Management
IED	Intelligent Electronic Device EMS Energy
	Management System
IoT	Internet of Things
IHD	In Home Display
ICT	Information and Correspondence technology
VI	Virtual Instrument
WSN	Wireless Sensor Network
GSM	Global System for Mobile Communication
GPRS	General Packet Radio Service
MEMS	Micro Electro Mechanical System
LAN	Local Area Network
UI	User Interface
RAM	Random Access Memory
PC	Personal Computer
SPA	Standard Power Analyser
NI	National Instrument
DAQ	Data Acquisition
SoC	System on Chip
API	Application Programming Interface
LEMS	Laboratory for Engineering Man/Machine System

XX

AWS	Amazon Web Services
EEMS	Energy Efficiency System
MQTT	Message Queuing Telemetry Transport
IEEE	Institute of Electric and Electronic
RTU	Remote Terminal Unit
AVR	Automatic Voltage Regulator
IPC	Information and Privacy Commissioner
SQL	Squelch (Radio Communication)

xxi

CHAPTER 1

INTRODUCTION

1.1 Background

In this century, the growing complement on environment protection and more intelligent energy appliance this day call for better energy management system. For residential units, this ordinarily includes overseeing the power utilization of the entire appliance and controlling their activity states. The home system gives users with not just a more available illustration of their energy consumption practices, yet additionally the possibility to remotely control their home appliances. These abilities will eliminate the energy misuses and the potential dangers presented by the appliances due to running off extra time (Li, Tan, & Tsang, 2015), (Coetzee, Mouton, & Booysen, 2017).

In the studies of Wenjin (Jason) Li, Xiaoqi Tan, Danny H.K. Tsang, structure of smart home energy management system combining both approaches which are monitoring and controlling, so precise power consumption observing and natural communication with the all home appliance are accomplished (Li et al., 2015).

Home Energy Management (HEM), the act of giving input and control over private vitality utilize, has appreciated a lot of consideration starting late. Consideration of energy usage made by the nations over the world stated this justified study that in the United States of America, living arrangements expend 37% of all electrical vitality delivered. Dutch private utilization involves 24% of power use. In South Africa, family units make up 28% of aggregate vitality expended. The capability of this underinvestigated HEM arrangement space is huge and the application thereof could reshape the vitality scene on both a neighborhood and utility scale. The HEM idea is executed through methods for a Home Energy Management System (HEMS), which is an umbrella term for all system that reduced family vitality utilization (Coetzee et al., 2017),(Son, Pulkkinen, Moon, & Kim, 2010).

In power sector, the deregulation in power sector picked up a huge change in the improvement, which encouraged the industrial and commercial user to deliver power at the less expensive cost furthermore, notwithstanding pitching it to the customers. There are such huge numbers of elements that are related to Deregulation in control division, for example, Privatization, reliable and cheap, privatization, customer focus and innovation (Shenghui & Yong, 2012) ,(Han, Choi, Park, Lee, & Kim, 2014).

Reliability of electric distribution system is in particular fundamental for the two utilities and purchasers. Generally, control blackouts are caused because of environmental hazardous condition what's more, overhead of electrical cables. Modernisation in the smart grid makes utilization of bidirectional savvy meters, remote control switches and Intelligent Electronic Devices (IED's), which accumulates a substantial measure of information and gives adequate data to screen system activity in close continuous (Shenghui & Yong, 2012),(Nguyen, Tran, Leger, & Vuong, 2010).

So as to lessen the power utilization at home residential, HEMS assumes a basic part. Effective Energy management with the home apparatus is a key element of HEMS set-up. Setting mindful and client movement data can be additionally used to advance the vitality utilization in HEMS. The fundamental objective of HEMS is to decrease the vitality utilization considering the clients' needs, to accomplish this, checking of the vitality utilization is required along with the energy management techniques (Li, Tan, & Tsang, 2015),(Coetzee, Mouton, & Booysen, 2017).

1.2 Statement of the Purpose

The purpose of the project is to investigate the energy usage in residential house.

1.3 Problem Statement

Based on Malaysia- Energy Policy, laws and Regulations Handbook volume one which is Strategic Information and Basic Laws 2015 Edition in Malaysia as much as 97% people connected with electricity in 2000. In fact, at the year 2011, energy services of potential reduction is 998MWh and total cost saving is 0.36(million RM), and in the year 2012 it shows improvement which is three times from 2011 in total cost saving is 1.01(million RM), yet in 2013 energy consumption is 2896MWh and cost saving is 1.54(million RM). Table 1.1 shows the energy Service of Potential Reduction of Energy Consumption.