

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FEASIBILITY CASE STUDY OF PV SOLAR SYSTEM WITH NET METERING: A CASE STUDY OF RESIDENTIAL AREA (BUKIT KATIL,MELAKA)

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Electrical Engineering Technology (Industrial Power) with Honours

by

MUHAMMAD ASIF RAZAN BIN MD DON

B071510578

940921-14-5061

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: FEASIBILITY CASE STUDY OF PV SOLAR SYSTEM WITH NET METERING: A CASE STUDY OF RESIDENTIAL AREA (BUKIT KATIL,MELAKA)

Sesi Pengajian: 2019

Saya **STUDENT NAME** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

ii

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
	SULIT*	kepentingan Malaysia sebagaimana yang termaktub dalam AKTA					
		RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh					
		organisasi/bada	an di mana p	enyelid	likan dijalar	ıkan.	
	TIDAK						
	TERHAD						
Yang	benar,		Disa	ıhkan o	leh penyelia	1:	
STUD	DENT NAME		SUF	PERVIS	SOR NAME	L	
Alamat Tetap:			Сор	Rasmi	Penyelia		
Х							
Х							
Х							
Tarikh:			Tari	kh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

iii

DECLARATION

I hereby, declared this report entitled FEASIBILITY CASE STUDY OF PV SOLAR SYSTEM WITH NET METERING: A CASE STUDY OF RESIDENTIAL AREA (BUKIT KATIL,MELAKA) is the results of my own research except as cited in references.

Signature:.....Author :STUDENT NAMEDate:....

iv

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	SUPERVISOR NAME

Signature:	
Co-supervisor:	CO SUPERVISOR NAME (delete if NA)

v

ABSTRAK

Net metering adalah satu mekanisme yang biasa yang membolehkan pengguna mengurangkan bil elektrik mereka dengan menggunakan elektrik sendiri yang dihasilkan dari sumber tenaga boleh diperbaharui, juga membolehkan menjual lebihan tenaga yang dikeluarkan kepada utiliti atau grid (TNB). Sistem fotovoltaik digunakan secara meluas dalam pengukuran bersih untuk pelaksanaan perumahan. Kajian ini adalah pemeriksaan kebolehlaksanaan untuk melaksanakan metering bersih di Malaysia dan juga menganalisis simpanan tahunan pengguna elektrik kediaman untuk isi rumah biasa. Kemungkinan ekonomi dianalisis dalam sistem PV kediaman berdasarkan perubahan pola penggunaan sebagai rendah, sederhana dan tinggi. Dari kajian kemungkinan, pengukuran bersih itu menguntungkan bagi lokasi yang mempunyai penggunaan yang tinggi dapat dibuktikan.

ABSTRACT

Net metering is a common mechanism which allows consumers to reduce their electricity bills by utilizing self-produced electricity from renewable energy resources, it also allows to sell the excess energy produced to utilities or grid (TNB). Photovoltaic system is used extensively in net-metering for residential implementation. This study is a feasibility check for implementing net metering in Malaysia and also to analyses the yearly savings of residential electricity consumers for typical household. The economic feasibility is analysed in residential PV systems based on changing consumption pattern as low, medium and high. From the feasibility study, that net metering is profitable for locations with high consumption can be proven.

DEDICATION

To my beloved parents

viii

ACKNOWLEDGEMENTS

Alhamdulillah, first of all thanks to Allah S.W.T, the most kind also merciful and with his bless I was able to complete this research for my final year project bachelor degree. I would take this opportunity to say thanks to all person who involved for helping me and assisting me while I was completing this research final year project. First and foremost my deepest gratitude and thanks to my project supervisor, Madam Emy Zairah Bt Ahmad for his support morally, assistance, tolerance, guidance, which attested to be vital as to completion for my research my final year project. I'm also would like to say thanks to my friends and family for their patients, understanding and also for their undivided support.

TABLE OF CONTENT

Ał	3STRACT	vii
A	CKNOWLEDGEMENT	ix
TA	ABLE OF CONTENTS	Х
LI	ST OF TABLE	xvi
LI	ST OF FIGURE	xvii
CI	IAPTER 1: INTRODUCTION	
1.	Introduction	1
	1.1. Project Background	2
	1.2. Problem Statement	2
	1.3. Objective	3
	1.4. Scopes	3
	1.5. Outline of Project	4
CI	IAPTER 2 : LITERATURE REVIEW	
2.	Introduction	5
	2.1. Net-Metering	5
	2.1.1. Concept of Net Energy Metering (Self Consumption)	7
	2.1.2. Net-Metering working Principle	7
	2.2. Renewable Energy and Photovoltaic Technology	8
	2.3. Environmental Impacts from the Solar Energy Technologies	8
	2.4. Efficiency of Solar Panel	9
	2.5. Solar Panel	10
	2.5.1. Mono-Crystalline PV solar Panel	10
	2.5.2. Poly-Crystalline PV Solar Panel	11
	2.6. Categories of PV systems	13
	2.7. Structure and Operation of Solar cells	16
	2.8. Energy Consumption	18
	2.8.1. Lighting and Air Conditioner Energy Consumption in Building	22
	2.8.2. Impact of Energy Consumption on the Environment	23
	2.9. Solar Radiation	24

27 28 29 29
29 29
29
•
30
30
30
31
31
32
33
34
ation 35
36
36
37
38
38
38
41
41 43
44
45
47
48
49
50
51
51

	3.3. Return On Investment (ROI)	54
	3.4. Research summary	56
	CHAPTER 4: RESULT & DISCUSSION	57
4.	Introduction	57
	4.1. Expected result	51
	4.2. Case study	58
	4.3. Project design for Net Energy Metering Scheme	59
	4.3.1. Billing History	59
	4.3.2. Solar Radiation	60
	4.3.3. Type of PV module	61
	4.3.4. Sizing the solar array	62
	4.3.5. PV Modules Required	63
	4.3.6. Sizing the Inverter	64
	4.3.6.1. Inverter Concepts	65
	4.3.6.2. ABB string inverters	66
	4.3.7. Solar Connection design	67
	4.3.8. Power Consumption VS PV installation 8kWp	69
	4.3.9. Sun Elevation	70
	4.3.10. Proposed installation Area	71
	4.3.11. Mounting structure	72
	4.3.11.1. Product specification	74
	4.3.11.2. Benefits	75
	4.3.12. NEM Rates identification	77
	4.3.13. Capital of investment	78
	4.3.14. Energy Consumption home appliance (Daily)	79
	4.3.15. Self-consumption	80
	4.3.16. Estimation excess electricity Sell to the grid (Daily)	83
	4.3.17. Estimation excess electricity Sell to the grid (Year)	84
	4.3.18. Cash flow	85

CE	CHAPTER 5: CONCLUSION 8		
5.	Introduction	88	
	5.1. Conclusion	88	
	5.2. Recommendation	89	
RE	REFFERENCES 90		
Ар	Appendix 95		

xiii

LIST OF TABLES

Table	Title	Page
1	Difference between mono-cystalline and poly-crystalline	12
2	Malaysian Electricity Intensity from 1990-2014	18
3	Solar PV (Community)	29
4	Solar PV (individual)	30
5	Solar PV (Non-individual (<500kW) / (>500kW)	31
6	Requirement for a mandatory study based on kWp of installation	31
	by Suruhanjaya Tenaga	
7	Solar irradiation for month	41
8	Solar irradiance for region	41
9	Energy consumption of household	42
10	Solar PV (individual)	48
11	Capital of investment	49
12	Billing History	52
13	Area estimation for specific PV module to be installed	60
14	Mounting Specification	62
15	NEM price rate	64
16	Quotation example	65
17	Home appliance power rating	66
18	Home appliance collected data power	67

19	Comparison between energy demand and PV module input	67
	power (daily)	
20	Excess electricity sell to the grid (daily)	69
21	Excess electricity sell to the grid (Year)	70
22	Cash Figure/Flow	90

LIST OF FIGURES

Figure	Title	Page
1	Net-metering PV system	6
2	Self-Consumption	8
3	Mono-Crystalline PV Solar Panel	10
4	The differences of poly-crystalline with mono-crystalline PV	11
	solar panel	
5	Performance ratio of each type of photovoltaic panel using	12
	single-axis time/date solar tracker	
6	Configuration of GCPV system	13
7	Grid Connected Photovoltaic Systems (GCPV) in Malaysia	13
8	Configuration of an SAPV system for DC load	14
9	Configuration of an SAPV system for DC and Ac Loads	14
10	Configuration of a hybrid SAPV system for DC and AC loads	14
11	Stand-Alone Photovoltaic System (SAPV)	15
12	Typical structure of silicon-based solar cell	15
13	Typical operation of silicon-based PV cell	16
14	Characteristics of a PV module	16
15	Electricity Generation from Various Sector	19
16	Annual average solar radiation in Malaysia	26
17	System Design	36
18	Return On investment	37
19	Solar Radiation at Melaka State	40

20	Solar irradiation for month	41
21	Poly crystalline solar panel	43
22	Mounting structure and its components	45
23	Example of Schematic diagram of the GC_PV system	47
24	Power Consumption	53
25	Solar radiation at Melaka state	53
26	ABB string inverters PVI-10.0/12.5-TL-OUTD 10 to 12.5 kW	58
27	Estimation Energy consumption household and Input solar power	59
28	Proposed area for installation	60
29	PV module roof mounting	61
30	Roman tile roof hook	62
31	Self Consumption PV system	68
32	Cumulative Cash Flow graph	73

LIST OF SYMBOLS

Vmp	-	Maximum Power voltage
Imp	-	Maximum power current
V	-	Voltage
Ι	-	Amps
Р	-	Power
DC	-	Direct Current
AC	-	Alternating Current
m	-	Meter
R	-	Resistor
h	-	Hour
Рр	-	Peak Power
Er	-	Daily energy requirement
Tmin	-	Peak Sun hour
Ε	-	Daily average energy Consumption
IDC	-	Total current needed
VDC	-	System DC Voltage
Ns	-	Series Module
Np	-	Parallel Module
Nm	-	Total number of module
KW	-	Kilowatt
W	-	Watts

xviii

Wp	-	Watt peak
Voc	-	Open circuit voltage
Pmax	-	Maximum power rating
Isc	-	Short circuit current
KG	-	Kilogram

LIST OF ABBREVIATIONS

PV	Photovoltaic	
NEM	Net Energy Metering	
MH	Micro Hydro	
SET	Solar energy technology	
ST	Suruhanjaya Tenaga	
SEDA	Sustainable energy development authority Malaysia	
GCPV	Grid connected photovoltaic	
SAPV	Stand Alone Photovoltaic	
PCU	Power Conditioning unit	
СТ	Current Transformer	
TNB	Tenaga Nasional Berhad	
ROI	Return On Investment	
PV	Photovoltaic	
NEM	Net Energy Metering	

XX

CHAPTER 1

INTRODUCTION

1. Introduction

Solar energy is the energy that are been extract from the sun. This process includes changing the sun energy to the electricity for our everyday use. In order to convert this energy, we use a device call solar panel. Solar panel work by using multiple devices called a solar cell. When the photon hit a solar cell, the electrons will unattached from their atoms. If the conductors are attached to the negative and positive sides of a cell, it will form an electrical circuit. The electron that had been break off the atom will flow through the circuit and will generate electricity.

The common type of solar panel is photovoltaic solar panel are mostly known as PV solar panels. These solar panels are made up by a lot of solar cells. The main composition of solar cell is silicon. By constructed positive layer and negative layer together, it creates an electrical field. PV solar panel will generate direct current (DC) type of electricity. Dc means that the electron will flows only in one direction only different from alternating current (AC) type of electricity.

NEM concept which the energy produced by PV solar system installed will be consumed first by consumer, and an extra power will be sold to the distribution licensee (such as TNB/SESB) at the current Displayed Cost impose by the Energy Commission. This organization is relevant to all domestic, merchant and industrial section as long as they are customer of TNB (Peninsular Malaysia) or SESB (Sabah and FT Labuan). PV system are allowed to be locate at accessible car porch or rooftops and only within their own premise.

The purpose of this project is to study and promote initiatives for cost-efficient PV adoption and use without need for FIT. Besides that, this project will show how to handle PV energy generation through smart management of supply and demand but focusing to the net metering.

1.1. Project Background

The Industrial uprising was a time full of changes and many natural resources had to be used especially in the industrial. Therefore engineers were trying to increase the use of renewable energy (sunlight, biomass, geothermal, wind;etc) for industry. The use of renewable energy as a sources to the environment with renewable energy technology is to achieve the desired effect such as providing heat, power or work done. This project focus on PV solar system with net metering in household building. Solar cells, also can be called photovoltaic (PV) cells by way of scientists, convert sunlight directly into electricity. PV gets its name from the method of converting light (photons) to the electricity (voltage), which can also called as the PV effect. Research had to be made at several places to observe the accuracy and problem when using PV solar system and there are advantages and disadvantages of the PV solar system. This research is to study the feasibility of PV solar power system especially in household and maybe can make some encouragement to the public energy consumer to use this type of renewable energy in the future to their houses.

1.2. Problems Statement

Energy consumption in Malaysia rapidly increase through this modern years. Energy demand for residential are one of the reason energy demand in Malaysia increase and forced any resources such as natural resources to sustain the energy demand for economic growth. The government has reducing subsidies in the face of mounting Government fiscal deficit shrinking current account surplus and worsening debt. The huge subsidies bill has been a bone of contention over the last few years and will give negative impact to consumer.

Vitality utilization will rise annually, the cost and bills likewise will be corresponding to the vitality use. This will prompted the additional consumptions on it while with appropriate vitality administration; there will be a ton of additional saving money on bills in long haul runs. The cash that recoveries from this strategy can be utilized to pay different duties.

1.3. Objectives

The objectives of this project are:

- i. To design PV system for a typical household
- ii. To analyse the feasibility of solar PV installed using net metering scheme

1.4. Scopes

This research is focusing on the selected NEM scheme for housing area which facing high consumption of energy during daylight. The scope is listed as following:

- i. Collect data and analyse for energy consumption for household.
- ii. Method for installation Net Metering for typical household.
- iii. Analyse net metering scheme by using Return On Investment (ROI) method.Even though the starting cost for setup this system higher, in long term it will give the benefit to the user because of the cost saving.

1.5. Outline of project

This research consists of five main chapters which are:

- 1. Chapter 1: Introduction
- 2. Chapter 2: Literature Review
- 3. Chapter 3: Methodology
- 4. Chapter 4: Result and Discussion
- 5. Chapter 5: Conclusion

Chapter 1 will discuss regarding the introduction, objective, problem statement, scope of the project and the outline of project. On the following chapter, the theoretical information such as literature review and previous researches will be discussed. Chapter 3 will explain about the methodology of the project and progress track of the research. The flowchart of the project also is illustrated. In chapter 4, the discussion is discussed. From the result gathered, an analysis is done based from the research. It will show project improvement and failure result that we get during this period. The fifth