

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION OF PASSIVE COOLING TECHNIQUE ON SOLAR PANEL'S EFFICIENCY

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

by

MOHAMAD HAIRI BIN MOHAMAD NOOR B071510122 930804015197

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: INVESTIGATION OF PASSIVE COOLING TECHNIQUE ON SOLAR PANEL'S EFFICIENCY

Sesi Pengajian: 2019

Saya **MOHAMAD HAIRI BIN MOHAMAD NOOR** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

ii

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
	~~~~	kepentingan Malaysia sebagaimana yang termaktub dalam AKTA					
	SULIT*	RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat 7	TERHA	D yang tel	lah ditentukan	oleh
		organisasi/bada	organisasi/badan di mana penyelidikan dijalankan.				
$\boxtimes$	TIDAK						
¥¥	TERHAD						
Yang benar,		Disa	Disahkan oleh penyelia:				
MOH	AMAD HAIRI	BIN MOHAM	AD				
NOOI	ર		EN.	EN. ZAIHASRAF BIN ZAKARIA			
Alama	at Tetap:		Сор	Cop Rasmi Penyelia			
BATU	J 45, JALAN J	OHOR					
86200 SIMPANG RENGGAM,							
JOHOR.							
Tarikł	1:		Tari	kh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

### DECLARATION

## I hereby, declared this report entitled INVESTIGATION OF PASSIVE COOLING TECHNIQUE ON SOLAR PANEL'S EFFICIENCY is the results of my own research except as cited in references.

Signature:	
Author :	MOHAMAD HAIRI BIN MOHAMAD
	NOOR

Date:

### APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

> Signature: Supervisor : EN. ZAIHASRAF BIN ZAKARIA

#### ABSTRAK

Pada masa kini, tenaga solar semakin popular sebagai tenaga boleh diperbaharui untuk menampung keperluan tenaga elektrik yang semakin meningkat disebabkan oleh pertambahan penduduk dunia. Ianya juga tiada pencemaran dan yang paling penting ialah sumber yang tidak akan habis. Walau bagaimapun, tenaga solar mempunyai batasan di mana ia mempunyai suhu optimum yang akan mempengaruhi kecekapannya. Menurut Piawaian Ujian Keadaan (STC) suhu yang disarankan ialah 25°C dan kecekapannya akan menurun apabila suhu meningkat dan menyebabkan lebih banyak tenaga haba yang dihasilkan. Haba yang tidak diperlukan harus dikeluarkan daripada panel untuk menjana kuasa keluaran yang tinggi. Tujuan kajian ini ialah untuk meningkatkan kecepakan panel solar pada tengah hari dengan menggunakan teknik pengejukan pasif. Dalam kajian ini, dua jenis reka bentuk sink haba yang berbeza digunakan iaitu sirip campuran dan sirip biasa untuk membandingkan kebolehannya untuk mengejukan solar panel. Hasil kajian menunjukkan bahawa sirip campuran lebih baik berbanding sirip biasa dengan kecekapan 7.11% dan 6.6% masing-masing. Untuk mendapat hasil yang lebih baik kipas mudah alih digunakan untuk mempercepatkan proses pengejukan melalui permukaan hadapan dan belakang panel melalui proses perolakan dan pengaliran. dimana terbukti untuk kelajuan 3 (3.3 m/s) kecekapan meningkat untuk kedua jenis sirip dengan kecekapan sirip campuran sebanyak 8.94 % manakala sirip biasa sebanyak 8.44 %.

### ABSTRACT

Nowadays, solar energy becomes popular as a renewable energy to support the demand of electricity due the increasing population of world. It also no pollution and the most important is infinite source. However, solar energy have limitation where it have their optimum temperature that will influence their efficiency. According Standard Test Condition (STC) the optimum temperature is 25°C and it performance will drop due rise temperature and cause more heat energy will produced. The unwanted heat must be release from the panel to produce higher output power. The aim for this research is to improve the efficiency of solar panel during noon by using passive cooling method. In this experiment, two different design of heat sink are used that is normal fin and mixed fin to compare their performance to cooling solar panel. The results of the experiment shows that mixed fin better than normal fin with efficiency 7.11% and 6.6% respectively. To obtain better results portable are used to speed up cooling process through front and bottom surface through convection and conduction process, it prove that by using speed 3 (3.3m/s) their efficiency will increase for both types of the where mixed fin is 8.94 % while normal fin 8.44 %.

### **DEDICATION**

My special dedication goes to my beloved parents, siblings and friends who always support and help me to complete final year project successfully. Meanwhile, to my supervisor, Mr. Zaihasraf Bin Zakaria, who guide me to achieve success for my final year project.

#### ACKNOWLEDGEMENTS

Alhamdulillah, I would like to thanks to Allah S.W.T, the Most Merciful, and all praises to Allah for His blessing in completing this project. I would like to thank to my supervisor Mr. Zaihasraf Bin Zakaria for guidance and help in complete my final project. I would like also to thank to all people involve directly and indirectly in my final my project.

### **TABLE OF CONTENTS**

TAB	LE OF CONTENTS	PAGE x
LIST	OF TABLES	xiii
LIST	OF FIGURES	XV
LIST	OF APPENDICES	xix
LIST	OF ABBREVIATION, SYMBOLS AND NOMENCLATURE	XX
СНА	PTER 1 INTRODUCTION	1
1.0	Introduction	1
1.1	Project Background	1
1.2	Objective	2
1.3	Problems Statement	3
1.4	Scope	3
СНА	PTER 2 LITERATURE REVIEW	4
2.0	Introduction	4
2.1	P-N Junction	4
2.2	Photovoltaic Effect	7
2.3	Equivalent Circuit of a Solar Cell	8
2.4	Effects of Temperature on Efficiency x	9

2.5	Shaded Effect	
2.6	PV Cell Efficiency	12
2.7	Heat Transfer	13
	2.7.1 Conduction	13
	2.7.2 Convection	14
	2.7.3 Radiation	15
2.8	Heat Sink	16
2.9	Previous Studies	17
	2.9.1 Improve Efficiency of Solar Panel by using Passive Cooling Method	17
	2.9.2 Disparate Type of Fin in Cooling PV Panel	19
	2.9.3 Investigate the Tilted Angle of Solar Collector on Malaysia Climate	22
CHAI	PTER 3 METHODOLOGY	25
3.0	Introduction	25
3.1	Planning of Project	25
3.2	Flow Chart Whole Project	26
3.3	Selecting Materials	27
3.4	Instrumentation and Material	28
	3.4.1 Pyrometer	28
	3.4.2 Digital Multimeter	29
	3.4.3 Digital Anemometer	29

xi

	3.4.4 Heat Sink Compound	30
	3.4.5 Aluminium Angle	30
3.5	Solid Work Design	31
3.6	Procedure of Project	35
3.7	Field Test	37
CHAI	PTER 4 RESULTS AND ANALYSIS	39
4.0	Introduction	39
4.1	Experiment Data	39
4.2	Efficiency Calculation	58
CHAI	PTER 5 CONCLUSION	60
5.0	Introduction	60
5.1	Conclusion	60
5.2	Recommendation	61
REFE	CRENCES	62
APPE	INDIX	66

xii

### LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Band gap for different materials	10
Table 2.2:	Different type of solar day	22
Table 3.1:	Characteristic of different material	27
Table 4.1:	Specification of solar panel	40
Table 4.2:	Specification of portable fan	40
Table 4.3:	Voltage of normal and mixed fin in natural convection	41
Table 4.4:	Current of normal and mixed fin in natural convection	42
Table 4.5:	Temperature of normal and mixed fin in natural convection	43
Table 4.6:	Power output of normal and mixed fin in natural convection	44
Table 4.7:	Efficiency of normal and mixed fin in natural convection	45
Table 4.8:	Voltage of normal fin with fan and without fan	47
Table 4.9:	Current of normal fin with fan and without fan	48
Table 4.10:	Temperature of normal fin with fan and without fan	49
Table 4.11:	Power output of normal fin with fan and without fan	50
Table 4.12:	Efficiency of normal fin with fan and without fan	51
Table 4.13:	Voltage of mixed fin with fan and without fan	52
Table 4.14:	Current of mixed fin with fan and without fan	53

Table 4.15:	Temperature of mixed fin with fan and without fan	54
Table 4.16:	Power output of mixed fin with fan and without fan	55
Table 4.17:	Efficiency of mixed fin with fan and without fan	56

### LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1 (a):	Bond of Boron atom in silicon	5
Figure 2.1 (b):	Bond of Phosphorus atom in silicon	5
Figure 2.2:	Generation of a space-charge region, when both type semicor joint together to create junction	nductor 6
Figure 2.3:	The basic concept of photovoltaic	7
Figure 2.4:	The equivalent circuit of a solar cell	8
Figure 2.5 (a):	Band gap for insulators	10
Figure 2.5 (b):	Band gap for metals	10
Figure 2.5 (c):	Band gap for semiconductors	10
Figure 2.6 (a):	Illustration solar cells in series connection with one shading	11
Figure 2.6 (b):	Illustration effects on the I-V curve	11
Figure 2.6 (c):	The solution of partial shading by present of bypass diodes	11
Figure 2.7:	Efficiency of different materials	12
Figure 2.8:	Conduction process in heat transfer	13
Figure 2.9:	Convection process in heat transfer	14
Figure 2.10:	Illustration of heat transfer method	15
Figure 2.11 (a):	Illustration sparse fin pattern	16

XV

Figure 2.11 (b):	Illustration closely fin pattern	16
Figure 2.12:	I-V characteristics of solar cells with and without fins for various surrounding temperatures	17
Figure 2.13:	The performance of solar cells with fins and without fins for $800 \text{ W/m}^2$	18
Figure 2.14:	Cooling level for every illumination	18
Figure 2.15 (a):	Type of fin rectangular	19
Figure 2.15 (b):	Type of fin triangular	19
Figure 2.16:	Result of increasing air velocity	20
Figure 2.17:	Result of increasing fin thickness	20
Figure 2.18:	Result of increasing spacing of fin	21
Figure 2.19:	Result of increasing length of fin	21
Figure 2.20:	Solar radiations for each hours	23
Figure 2.21:	Output power generated for each hours	23
Figure 2.22 (a):	Monthly average power for tilt fixed	24
Figure 2.22 (b):	Monthly average power for tracking solar collector	24
Figure 3.1:	Pyrometer	28
Figure 3.2:	Digital multimeter	29
Figure 3.3:	Digital anemometer	29
Figure 3.4:	Heat sink compound	30
Figure 3.5:	Aluminium angle	30

Figure 3.6:	Illustration of mixed fin	31
Figure 3.7:	Front view of mixed fin	32
Figure 3.8:	A Bottom view of mixed fin	23
Figure 3.9:	Illustration of normal fin	33
Figure 3.10:	Front view of normal fin	33
Figure 3.11:	Bottom view of normal fin	34
Figure 3.12:	Base surface of aluminium angle	35
Figure 3.13:	Aluminium angle with heat sink compound	35
Figure 3.14:	Heat sink compound was flattened	36
Figure 3.15:	Installation of aluminium angle	36
Figure 3.16:	Slot of aluminium angle	36
Figure 3.17:	Experiment in natural convection	37
Figure 3.18:	Experiment in different air surrounding	38
Figure 3.19:	Tilt angle of solar panel	38
Figure 4.1:	Voltage of normal and mixed fin in natural convection	41
Figure 4.2:	Current of normal and mixed fin in natural convection	42
Figure 4.3:	Temperature of normal and mixed fin in natural convection	43
Figure 4.4:	Power output of normal and mixed fin in natural convection	44
Figure 4.5:	Efficiency of normal and mixed fin in natural convection	45
Figure 4.6:	Voltage of normal fin with fan and without fan	47
Figure 4.7:	Current of normal fin with fan and without fan	48

Figure 4.8:	Temperature of normal fin with fan and without fan	49
Figure 4.9:	Power output of normal fin with fan and without fan	50
Figure 4.10:	Efficiency of normal fin with fan and without fan	51
Figure 4.11:	Voltage of mixed fin with fan and without fan	52
Figure 4.12:	Current of mixed fin with fan and without fan	53
Figure 4.13:	Temperature of mixed fin with fan and without fan	54
Figure 4.14:	Power output of mixed fin with fan and without fan	55
Figure 4.15:	Efficiency of mixed fin with fan and without fan	56

xviii

### LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Mixed Fin and Normal Fin	66
Appendix 2	Gantt Chart	67

# LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

STC	-	Standard Test Condition
PV	-	Photovoltaic
CIGS	-	Copper Indium Gallium Selenide
CdTe	-	Cadmium Telluride
Р	-	Phosphorus
В	-	Boron
Rsh	-	Shunt Resistance
Rs	-	Series Resistance
c-Si	-	Crystalline Silicon
eV	-	Electron Volts
Vmp	-	Maximum power voltage
Imp	-	Maximum power current
V	-	Voltage
Ι	-	Current
A	-	Ampere
W	-	Watt
Isc	-	Short-Circuit Current
Voc	-	Open-Circuit Voltage
FF	-	Fill Factor
W/m ²	-	Watts Per Square Meter
°C	-	Degree Celsius

XX

m/s	-	Meter per Second
β	-	Tilt angle
CNC	-	Computer Numerical Control
CFD	-	Computer Fluid Dynamics
W/mK	-	Watts per Meter Kelvin
η	-	Efficiency
Pin	-	Power Input
Pout	-	Power Output

xxi

#### **CHAPTER 1**

### **INTRODUCTION**

### **1.0 Introduction**

This chapter will discuss about the benefit and evolution of solar system to support demand of electricity every years and their limitation as stated in project background and problems statement. The solution of the problems and illustration of project implementation was stated in objective and scope.

#### **1.1 Project Background**

Every years the demand of electricity are rise due the increasing population of world. The main energy source such as coal and petroleum cannot support the demand of electricity as it will finally run out. The best solution is renewable energy. It is generated from the environment such as sun, water, geothermal and wind. Nowadays, it becomes popular as there are no pollution, cheaper for the long term and the most important is infinite source.

Solar energy is one of the most useful renewable energy. It absorbs energy or heat from sunlight and converts it into electricity. It also potentially used in many sectors in the future as new technologies continue to evolve to meet consumer demand. Many studies have been conducted to increase the efficiency of photovoltaic panels by using passive or active cool techniques. It is because the optimum temperature of solar panel is 25°C and the efficiency will drop about 0.45% per degree when over it (Popovici, Hudişteanu, Mateescu, & Cherecheş, 2016). As a result, only 15-20% will produce electrical energy and the rest generate heat energy (Stropnik, 2016). Furthermore, by using cooling method the solar panel lifetime can be extend (Royo et al. 2016). Normally passive cooling method more easily and small initial investment unlike passive method (Grubisic-Cabo et al., 2016 and Elbreki, Alghoul, Sopian, & Hussein, 2016). However, the efficiency of passive cooling method are less compared active cooling method. Hence, various study was conducted to improve passive cooling method.

A photovoltaic (PV) cell also known as solar cell comprises at least two thin layers of semiconductor material. This cell will operate when it receive light and produces direct current. A single photovoltaic cell produces small output but it can generate more electricity in array connection.

The technology of solar cell can separate into three generations (Praveen & Vijaya Ramaraju, 2017). The first generation is commonly using a crystalline silicon wafer and the efficiency around 15-20%. The advantages is high performers and high stability. The second generation is photovoltaic cell made from amorphous silicon, CIGS (Copper Indium Gallium Selenide) and CdTe (Cadmium Telluride) with the efficiency is 10-15%. The advantages is costs manufacturing can be reduced, lessen mass and flexible to few of angle. The last generation is organic solar cell which based on organic substance for example polymers or small molecules. Due to high production cost, this type only used in some commercial applications. In this experiment only focus on crystalline silicon type. This experiment also uses a heat sink with attached at the rear to cooling solar panel and improve the efficiency of solar panel.

### **1.2 Objective**

The objectives of this project are:

- 1. To study the effect of surrounding temperature to solar panel performance.
- 2. To design and fabricate heat sink for solar panel.
- 3. To investigate the efficiency of PV module.

#### **1.3 Problems Statement**

Each solar panel has an ability to transform photon energy from sunlight to produce electricity. The efficiency of solar panel will decrease when rising the temperature during peak at noon which causes more heat energy to be produced. The unwanted heat should be released from the panel to produce more output power. This system focuses on how the passive cooling method can reduce the temperature of the panel and improve the efficiency.

### 1.4 Scope

From the concept of heat transfer, the fabrication heat sink with fin are built. It considers the spacing between fin and design of fin. Besides that, to effectiveness cooling, the portable fan are used to speed up cooling process and reduce overheating at the solar module and increase the efficiency of the solar panel.