

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF SOLAR POWERED RIVER TRASH CANS MONITORING USING GLOBAL SYSTEM FOR MOBILE (GSM)

This report is submitted in accordance with the requirement of the Universiti Teknikal

Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology

(Industrial Power) with Honours.

by

HARYANTI BINTI AHMAD TAMIN

B071510590

940408-08-5002

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2018

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Development of Solar Powered River Trash Cans Monitoring Using Global System for Mobile (GSM)				
SESI PENG	GAJIAN: 2018/2019)		
Saya HARY	ANTI BINTI AHM	AD TAMIN		
•	Mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:			
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Silatandakan (✓) 				
	SULIT	(Mengandungimaklumat yang berdarjahkeselamatanataukepentingan Malaysia sebagaimana yang termaktubdalam AKTA RAHSIA RASMI 1972)		
	TERHAD TIDAK TERHAD	(Mengandungimaklumat TERHAD yang telahditentukanolehorganisasi/badan di manapenyelidikandijalankan)		
_		Disahkanoleh:		
	AlamatTetap: No 82, Lorong Harmoni 5,			
Taman Har	moni, 32000 Sitiaw	/an		

Perak Darul Ridzuan

Tarikh:

Tarikh:

**JikaLaporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

•

I hereby, declared this report entitled "Development of Solar Powered River Trash Cans Monitoring Using Global System for Mobile" is the results of my own research except as cited in references.

Signature	:
Author's Name	: HARYANTI BINTI AHMAD TAMIN
Date	:

C Universiti Teknikal Malaysia Melaka

i

APPROVAL

•

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

Signature:Supervisor:PN. INTAN MASTURA BT SAADON

ABSTRAK

Pemantauan Sampah Sungai Berkuasa Solar Yang Menggunakan Sistem Global Untuk Mudah Alih digunakan untuk membersihkan sungai daripada sampah sarap yang terapung di permukaan air. Sistem ini menggunakan tenaga mesra alam iaitu sistem solar sebagai sumber tenaga utama. Dengan menggunakan penderia inframerah jarak sebagai suis, Arduino UNO R3 sebagai pengawal mikro dan Global sistem untuk mobil sebagai penghantar isyarat kepada pihak berkuasa dalam sebuah sistem pengumpulan sisa sungai automatik telah dapat dibina. Pengumpulan data dan ujian yang dilakukan di bawah sinaran matahari telah membantu untuk memilih bilangan solar panel dan saiz bateri. Prototaip ini dapat menyumbang idea tentang bagaimana untuk membina suatu sistem yang boleh mengurangkan pencemaran sungai. Secara realitinya, projek ini dapat membersihkan sungai dengan lebih berkesan.

ABSTRACT

The Solar Powered River Trash Cans Monitoring using Global System for Mobile (GSM) is used to clean and remove solid waste that floats on the river. This system uses environmentally friendly energy that is solar system as a major energy source. Using the IR distance sensor as switch, Arduino UNO R3 as a microcontroller and Global System for Mobile (GSM) as a sending alert to operator is an automatic river waste collection system was developed. Data collection and testing under the sun have helped to choose the number of solar panels and battery sizing. This prototype can contribute ideas on how to build a system that can reduce river pollution. In reality, the project is able to clear the river more.

DEDICATION

•

To my beloved parents Ahmad Tamin Bin Kassan (father)

Padzilah Binti Mat Akib (Mother)

v

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim.

Alhamdulillah and a great thanks to Allah for His willing to give me the permissions and strength to complete this final year project. I also want to express my deepest appreciation to my supervisor, Pn Intan Mastura Binti Saadon for his guidance and supervision throughout the project. There are no proper words to convey my gratefulness and respect for all the guidance and information given regarding to the project of "Solar Powered River Trash Cans Monitoring Using Global System for Mobile (GSM)".

My greatest gratitude also extends to my Academic Advisor, En Mohamad Syahrani Bin Johal for all the support, guidance, and information given according to the flow of the final year project from the start till the end. I also want to thanks my parents, family and my friends for their unconditional trust, support and patience. I would not be able to complete this project without all the supports, wise ideas, and tips from all the people around me. Thank you.

vi

TABLE OF CONTENT

•

TABLE OF CONTENTS	PAGE vi
LIST OF FIGURES	xii
LIST OF TABLES	XV
LIST OF APPENDICES	xvi
LIST OF SYMBOLS	xvii
LIST OF ABBREVIATIONS	xviii

CHAPTER 1	INTRODUCTION	1
Background		1
Problem Statement		2
Objective		2
Scope of Work		3
Process Flow Of Sol	ar-powered River Trash Cans Using GSM	3
Contribution		5

CHAPTER 2 LITERATURE REVIEW

6

``	
Introduction	
Water Management	
Water Pollution	7
Previous Project Related To This Project	8
An Approach for Monitoring and Smart Planning of Urban Splid	8
Waste Management using Smart-M3 Platform. 17	
Energy Management of Photovoltaic System using Fuel Cells	8
Photovoltaic System	9
Operation	10
Type of Solar Cell	13
Stand-Alone Photovoltaic System	14
Wiring Connection of PV Module	14
Battery	16
Solar Charger Controller	17
Power Window Motor	19
DC Relay	20
IR Distance Sensor	
Arduino UNO R3 Microcontroller	

viii

Global Syste	em for Mobile	23
Conclusion		24
CHAPTER 3	3 METHODOLOGY	25
Introduction		25
Project Flow	,	25
Dimension C	Of Prototype	27
Photovoltaic	Solar System	28
Block Diagra	am	29
Formula to D	Formula to Determination Of Load	
	The Formula	30
	Module Sizing Calculation	31
	Battery Sizing Calculation	31
Equipment A	And Material	32
	Mono-Crystalline Solar Module	32
	PWM Solar Charger Controller	33
	12V Sealed Lead Acid Battery	34
	12V DC Relay	35
	IR Distance Sensor	36

Arduino UNO R3 Microcontroller	37
Global System for Mobile	38
Irradiance Meter	39
Thermometer	40
DC Power Window Motor	41
Work Implementation	42
Step of Making Prototype	42
Conclusion	47

CHAPTER 4	PRELIMINARY RESULT AND DISCUSSION	48
Introduction		48
The Formula		49
Module Sizing Calc	ulation	49
Battery Sizing Calcu	llation	50
Measurement Result	and Dimension	50
Measurement Result	t of Prototype	51
The Relationship of	Irradiance and Maximum Power Voltage	52
The Relationship of	Temperature and Maximum Power Voltage	53

The Relationship of Irradiance and Power	54
Battery Charging Time	55
Global System for Mobile (GSM) Time Taken	56
Conclusion	57

CHAPTER 5	CONCLUSION AND RECOMMENDATION	58
Conclusion		58
Recommendation		59
REFERENCES		60

APPENDICES	63

LIST OF FIGURES

FIGURES	TITLE	PAGE
1.1	Process Flow of Solar Powered River Trash Cans Monitoring using Global System for Mobile (GSM)	4
2.1	Electron and Current Flow in Solar Cell	10
2.2	Parallel Arrangement	11
2.3	PV Module Angle	12
2.4	Average Radiation in Malaysia	12
2.5	Connected of Stand-alone Photovoltaic System	14
2.6	Solar Module in Parallel Connecion	15
2.7	Rechargeable Sealed Lead Acid Battery	16
2.8	PWM Charger Controller for Solar	17
2.9	Power Window Motor.	19
2.10	12V DC Relay	20
2.11	Three Connection Pin	21
2.12	IR Distance Sensor	21
2.13	Arduino UNO R3 Microcontroller	22
2.14	Global System for Mobile (GSM)	23
3.1	Project Flow	26

3.2	Dimension of Prototype	27
3.3	Flow of Project System	28
3.4	Block Diagram of The System	29
3.5	Solar Module	32
3.6	Solar Charger Controller	33
3.7	Rechargeable Sealed Lead Acid Battery	34
3.8	12V DC Relay	35
3.9	GPYOA21YK IR Distance Sensor	36
3.10	Arduino Uno R3 Microcontroller	37
3.11	Global System for Mobile (GSM)	38
3.12	Seaward Solar 200R Irradiance Meter	39
3.13	Fluke 568 IR Thermometer	40
3.14	DC Power Window Motor	41
3.15	Aluminium Bar Cutting by Grinder Cutter	42
3.16	Attached All Cutting Plastic Sheet using Glue Gun	43
3.17	All Entire Cable Component Soldering and Fixing with Banana	43
3.18	IR Distance Sensor Placement to The Sensor Holder	44
3.19	Electronic Control Box	44
3.20	Testing GSM SIM900A	45
3.21	Alert from GSM as A Message	45

3.22	Solar Panel Tilt to 15° and Expose under The Sun	46
3.23	Measurement Reading	46
4.1	Irradiance and Maximum Power Voltage	52
4.2	Temperature and Maximum Power Voltage	53
4.3	Irradiance and Power	54
4.5	Battery Charging Time	55

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Module Efficiency	13
2.2	Comparison Between PWM and MPPT	18
3.1	Total Load in WH/day	30
4.1	Load Sizing for A Prototype	48
4.2	Data Collection	51
4.3	Time Taken For Global System for Mobile (GSM)	56

LIST OF APPENDICES

•

APPENDIX	TITLE	PAGE
Appendix A	PWM Solar Charger Controller	63
Appendix B	12V Rechargeable Sealed Lead Acid Battery	66
Appendix C	Mono-Crystalline Solar Module	68
Appendix D	Arduino UNO R3 Microcontroller	71
Appendix E	IR Distance Sensor	73
Appendix F	12V DC Relay	76
Appendix G	12V DC Ppwer Window Motor	79
Appendix H	Global System for Mobile (GSM)	81

xvi

LIST OF SYMBOLS

°C	-	degree celcius
W/m ²	-	Watt per meter square
V	-	Voltage
А	-	Ampere
W	-	Watt
cm ²	-	centimetre square
Wh/day	-	Watt.hours per day
AH	-	Ampere Hour
0	-	degree

•

xvii

LIST OF ABBREVIATIONS

DC	-	Direct Current
AC	-	Alternate Current
PWM	-	Pulse Width Modulation
MPPT	-	Maximum Power Point Tracking
PV	-	Photovoltaic
VMP	-	Maximum Power Voltage
IMP	-	Maximum Power Current
GSM	-	Global System for Mobile

•

xviii

CHAPTER 1

INTRODUCTION

Background

Malaysia meets progressively genuine strong waste issues in waterway and has embraced different strategies accordingly as of late. Activity is expected to stop this contamination before it destroys the nature. They are implanted with moral and ethical values that arrange them towards thinking about the earth. To changes Malaysia into insight of 2020, tourism sector is a portion of National Key Economic Areas (NKEA) in the 10th Malaysia Plan (2011-2015). Therefore, a Solar Powered River Trash Cans Monitoring Using Global System for Mobile (GSM) is developed in this project to reduce river contamination. This model may contribute some thought on the most proficient method to make a system which will scale back watercourse contamination. In Europe, this system is already used since a long time ago. However, in Malaysia, this technology has not been expanding, but this system is suitable to be used because Malaysia climate is the best to store solar energy.

First and foremost, this system is utilizes by renewable energy which is solar energy. The solar energy created by the sun is going to be consumed by module and alter into DC voltage output. At the purpose once the system is ON, the motor can activated with high starting torque to turn the water mill and conveyor belt. Next, a conveyor belt turns to get waste and trash on the river surface. At that point, all waste and trash will be put away inside a trash cans. When the IR distance sensor detects trash inside the trash cans at a certain height (10 cm to 80 cm) and Arduino UNO R3 will stop the conveyor from operating and send the trash cans to land while active the GSM module for send alert to operator. In a real situation, this project will be able to reduce manpower.

Problem Statement

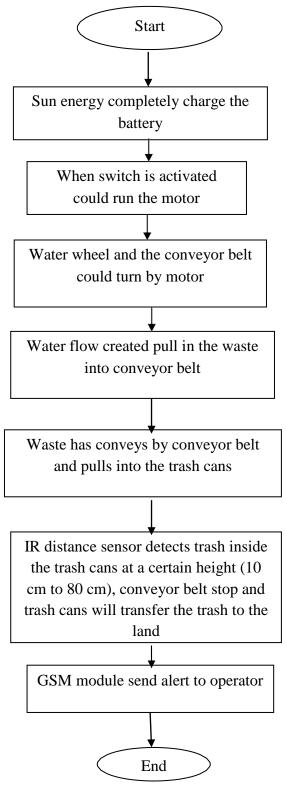
Automated river trash collecting system has been developed in several countries in order to ensure clean river and to reduce manpower for manual trash cleaning. However, the existing river trash collecting system does not really help as a trash collection system because operators are not notified about the actual trash condition and the trash height inside the trash cans. For instance, in Europe the river trash collecting system is controlled manually by the operator. The operator has to check manually from time to time if the trash can is already full in order to stop the system operation. To conquer this problem, a model of Solar Powered River Trash Cans Monitoring Using Global System for Mobile (GSM) is constructed. This River Trash Cans Monitoring can help to reduce the manpower to manually monitor the trash cans of the river trash collecting system.

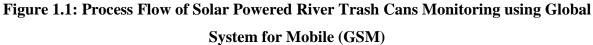
Objective

The main objectives to build this system are:

- i. To construct one equipment to collect trash automatically in the river.
- ii. To design a solar powered conveyor belt of a river trash collecting system.

iii. To design one systematic process in collecting trash and to send alert to system operator on the trash cans.


Scope of Work


This project will focus on:

- i. By using solar panel as a main power source in this system to move conveyor belt by using sizing method calculation.
- ii. To send alert to operator in this system by using Global System of Mobile (GSM).

Process Flow of Solar-powered River Trash Cans Monitoring Using Global System for Mobile (GSM)

> Figure 1.1 shows the process flow of Solar Powered River Trash Cans Monitoring Using Global System for Mobile (GSM). First and foremost, by using PWM charger controller may charge battery completely, gave by the PV array. Next, the motor is initiated once switch is activated. When motor flip the water mill, in the meanwhile it will run conveyor belt. From that time onward, the water flow created by the water mill turns and trash into conveyor belt. At the same time, the conveyor belt can conveys junk and send it to trash cans. At the purpose once the IR distance sensor is detects trash inside the trash cans at a certain height (10 cm to 80 cm), the conveyor belt will be deactivated naturally, and the chain will send the trash cans to the land GSM module will send alert to operator.

